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Abstract

This note is an introduction to a geometric aspect of the elliptic Painlevé equation which
is described as a non-autonomous deformation of the addition formula on cubic curves.

1 Introduction

Discrete analogs of the Painlevé equations have attracted much interest over the years. This is
largely because, by considering the differential and discrete Painlevé equations together, their
common algebraic/geometric aspect, such as the affine Weyl group symmetry, becomes more
transparent.

Extending Okamoto’s pioneering work, Sakai[9] clarified that one origin of the affine Weyl
group symmetry of Painlevé equations is the Cremona isometry on a rational surface (the nine
point blown-up of the projective plane)[1]. In this formulation, the discrete and differential
Painlev́e equations appear according to various configurations of the nine points. Among them,
the equation corresponding to the most generic configuration is unique since it is an “elliptic”
difference equation.

In this note, we give an introduction to this elliptic Painlevé equation based on our recent
work[2, 3]. In this formulation, the “elliptic” nature of the equation appears intrinsically. Ap-
plication to construction of the hypergeometric solutions is also discussed.

2 Elliptic Painlevé equation

2.1 A geometric formulation

Let P1, . . . ,P10 be points on the projective planeP2. In the context of Painlev́e equations, the
first nine points play the role of parameters and the last pointP10 is the dependent variable. For
1 ≤ i , j ≤ 9, define a mapTi j : Pk 7→ Pk as follows: (i) ParametersP1, . . . ,P9 are transformed
as

Pk = Pk, (k , i, j),
P1 + · · · + Pj−1 + Pj + Pj+1 + · · · + P9 = 0,
Pi + Pj = Pi + Pj ,

(1)

with respect to the addition on the cubic curveC0 passing throughP1, . . . ,P9. (ii ) Dependent
variableP10 is transformed as

Pj + P10 = Pi + P10, (2)

with respect to the addition on the cubicC passing throughP1, . . . , P̌j , . . . ,P10, where ˇmeans
deletion. We note that this is not the original definition of the elliptic Painlevé equation based
on the Cremona transformation but a consequence of it[9, 2]. Here, we simply start from the
above formulation to make the geometric aspect clear.
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2.2 A Numerical Example

It would be instructive to give an explicit numerical example. We put the initial configuration
of the ten points in the inhomogeneous coordinates (x, y) asP1 = (2,1), P2 = (7

4,
5
4), P3 = (1

5, 1),
P4 = (2

5,
4
5), P5 = (0,1), P6 = (1,0), P7 = (1

3,
4
3), P8 = (3

2,
5
2), P9 = (3, 3

7) andP10 = (1
4,

7
4). We

evaluate their transformationsPi = T12(Pi).
The equations of the relevant cubicsC0 andC are given by

C0 : 36300+ 25210x− 79050x2 + 17540x3 − 83708y+ 8859xy
+40462x2y+ 52707y2 − 27053xy2 − 5299y3 = 0,

C : 847524− 651870x− 315774x2 + 120120x3 − 1753090y+ 924983xy
+51510x2y+ 1171181y2 − 225065xy2 − 265615y3 = 0,

(3)

respectively. Then the pointP2 is the intersection of these cubics other than the trivial ones
P1,P3, . . . ,P9, namely P2 = (33410885

46521159,
100479044
46521159). The point P1 = (32228531258

92184280557,
77552262590
92184280557) ∈

C0 is such that the lines̀ P1P2
and `P1P2 meet on C0. Finally, the point P10 =

(393389319323583
66300508799780,−

99340628463911
33150254399890) ∈ C is determined so that the lines`P2P10

and`P1P10 meet onC.
If the initial points are rational, so is the transformed points since the transformation is

birational. Note that the cubicC moves according to the time evolution, while the cubicC0 is
always fixed.

For the readers convenience, we give a sampleMathematicaprogram for the above com-
putation. (The following part in this TEXsource file will be directly used inMathematica).

Clear[m1,m3,c1,c3,thd,cbc,cbc0,np,T];

m1[{x_,y_}]:={x,y,1};

m3[{x_,y_}]:={xˆ3,xˆ2 y,x yˆ2,yˆ3,xˆ2,x y,yˆ2,x,y,1};

c1[p_]:=Det[Map[m1[#]&,Append[p,{x,y}]]];

c3[p_]:=Det[Map[m3[#]&,Append[p,{x,y}]]];

thd[cubic_,p_]:=Complement[{x,y}/.Solve[{cubic,c1[p]}==0,{x,y}],p][[1]];

cbc[p_,i_]:=cbc[p,i]=c3[Drop[p,{i}]];

cbc0:=cbc[pp,10];

np[p_,i_,j_,j_]:=np[p,i,j,j]=Complement[{x,y}/.Solve[{cbc[p,j],cbc0}==0,{x,y}],p][[1]];

np[p_,i_,j_,10]:=thd[cbc[p,j],{thd[cbc[p,j],{p[[i]],p[[10]]}],np[p,i,j,j]}];

np[p_,i_,j_,i_]:=thd[cbc0,{thd[cbc0,{p[[i]],p[[j]]}],np[p,i,j,j]}];

np[p_,i_,j_,k_]:=p[[k]]/;(k=!=i||k=!=j||k=!=10);

T[{i_,j_},p_]:=T[{i,j},p]=Table[np[p,i,j,k],{k,1,10}];

(* T[{1,2},pp] gives the above example for the input data:

pp={{2,1},{7/4,5/4},{1/5,1},{2/5,4/5},{0,1},{1,0},{1/3,4/3},

{3/2,5/2},{3,3/7},{1/4,7/4}}; *)

3 Commutativity

It is easy to see thatT ji = T−1
i j , but the following is non-trivial.
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Theorem 3.1 The transformations Ti j ’s are mutually commutative:

[Ti j ,Tkl] = 0. (4)

We will give a direct geometric proof of this.

3.1 Proof: autonomous case

Let us first consider the case when the nine pointsP1, . . . ,P9 are in thespecial configuration
such that they are the intersection points of a pencil (=one parameter family) of cubic curves
λ f (P) + µg(P) = 0. We call this caseautonomoussincePk = Pk (k = 1, . . . , 9). We note that
the discrete dynamical systems obtained from this case is nothing but the QRT map[11].

Let X be the blown-up ofP2 at the nine pointsP1, . . . ,P9. ThenX has an elliptic fibration:
π : X→ P1,

π(P) = (λ : µ), P ∈ X, λ f (P) + µg(P) = 0. (5)

The transformationP10 7→ P10 is nothing but the fiber-wise application of the addition formula
and their commutativity is obvious.

For our later use, let us determine the action ofTi j on the Picard lattice ofX : PicX =
ZE0 ⊕ ZE1 ⊕ · · · ⊕ ZE9. Here,E0 is the class of line andEi (1 ≤ i ≤ 9) is the exceptional
divisor. The intersection pairing is given byEi · E j = diag(1,−1, . . . ,−1). The following results
were obtained by Manin[7]. For 1≤ i ≤ 9, let Mi be the transformation onX such that
Mi(P) + P+ Pi = 0 on the cubic passing throughP1, . . . ,P9 andP. Then we have

Mi(E j) = E0 − Ei − E j , ( j , 0, i)
Mi(Ei) = δ + E0 − 2Ei ,

Mi(E0) = δ + 2E0 − 3Ei ,

(6)

whereδ = 3E0 − E1 − · · · − E9 (Mi(δ) = δ). SinceTi j = M j Mi, one has

Ti j (Ek) = Ek + (Ei − E j) + δ, (k , 0, i, j)
Ti j (E j) = E j + (Ei − E j),
Ti j (Ei) = Ei + (Ei − E j) + 2δ,
Ti j (E0) = E0 + 3(Ei − E j) + 3δ.

(7)

The commutativity (4) also follows from (7).
Remark. We give an interpretation of (7) in view of the affine Weyl group and the Cremona

transformation. PutQ = {α ∈ PicX|α · δ = 0}. A basis ofQ is chosen asα0 = E0 − E1 − E2 − E3

andαi = Ei − Ei+1 (1 ≤ i ≤ 8). The intersection matrix (αi · α j)0≤i, j≤8 is the minus of the Cartan
matrix of typeE(1)

8 . The simple reflectionssi(λ) = λ + (λ · αi)αi generate the affine Weyl group
W(E(1)

8 ) on PicX. Note that the reflections0 is the standard Cremona transformation with center
P1,P2,P3. The translationTβ alongβ ∈ Q is given by the Kac formula

Tβ(λ) = λ + β(δ · λ) −
[β2

2
(δ · λ) + (β · λ)

]
δ. (8)

Comparing with (7), we conclude thatTi j = TEi−E j .
1

1The translations of typeTEi−E j generate an index three subgroup of the full translationsZ8 ⊂ W(E(1)
8 ). Simple

geometric description for the remaining part is expected.
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3.2 Proof: non-autonomous case

Consider the nine pointsP1, . . . ,P9 in general position. In this case, the pointsPi, Pj also move
under the action ofTi j as well as the dependent variableP10. For the parameters, the transfor-
mation is given by the addition on the fixed cubicC0, hence the commutativity is clear. For
the dependent variableP10, however, the action ofTi j is defined onmovingcubicC, and the
commutativity is not obvious. Nevertheless the argument of the autonomous case can also be
applied in this situation. The key points are the following: (i) The new pointP10 is independent
of Pj. (ii ) The pointsPj andP1, . . . , P̌j , . . . ,P9 are in the special position. Due to these prop-
erties, by replacingPj with Pj, one can compute the action ofTi j on PicX as in equation (7).
Hence the commutativity follows.

Remark. As we have seen above, cubic pencils are important in the geometric formulation
of the discrete Painlevé equations. It is interesting to note that a certain cubic pencil also plays
an essential role in the differential Painlev́e equations [4].

4 Applications

4.1 Relation to the bilinear formalism

For λ = dE0 − m1E1 − · · · − m9E9 ∈ PicX, a family of curves|λ| (called the linear system) is
defined as follows:C ∈ |λ| ⇔ the degree ofC is d and the multiplicity ofC at Pi is mi. The
dimension of the family and the genus of the curve is given by

2dim|λ| = λ2 + λ · δ, 2g− 2 = λ2 − λ · δ. (9)

We putΛ = {λ ∈ PicX|λ2 = −1, λ · δ = 1}. For λ ∈ Λ, |λ| is a unique rational curve
(' P1). Let φλ = 0 be the defining equation of the curve. For anyµ ∈ PicX such thatµ2 = 0
andδ · µ = 2, the |µ| is one-parameter family of rational curves. Simple geometric argument
(counting of Euler number) shows that there exist eight decompositionsµ = λi + λ̃i, such that
λi , λ̃i ∈ Λ, (1 ≤ i ≤ 8). Then for any{i, j, k} ⊂ {1, . . . , 8}, we have the following bilinear relation

ciφλiφλ̃i
+ cjφλ jφλ̃ j

+ ckφλkφλ̃k
= 0, (10)

with some constantsci , cj , ck. This is the geometric origin of the bilinear equations given in [8].
To make the bilinear equation explicit, one need to fix the normalization of the polynomialsφ.
Appropriately normalized polynomialsφ are called theτ functions. Detailed discussion on the
τ functions and their bilinear equations is given in [5].

4.2 Hypergeometric solutions

For (discrete) Painlev́e equations, special solutions of hypergeometric type appear on reflection
hyperplanes in the parameter space. In our case, each hyperplane corresponds to a rootα ∈ Q
such thatα2 = −2. Typical examples are as follows:

α condition
Ei − E j Pi = Pj

E0 − Ei − E j − Ek Pi ,Pj ,Pk are collinear
2E0 − Ei − E j − Ek − El − Em− En Pi ,Pj , . . . ,Pn are on a conic
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For suchα, there exists a rational curveCα ∈ |α| if the corresponding condition is satisfied. For
β ∈ Q such thatα · β = 0, we haveTβ(α) = α. This means that ifP10 ∈ Cα thenTβ(P10) ∈ Cα.
Hence, in this case, the elliptic Painlevé equation can be reduced to the discrete Riccati equation
Tβ(u) = (au+ b)/(cu+ d) onCα ' P1 which can be easily linearized.2

Example. Consider the case whereP5,P6,P7 are on a linè andP10 ∈ `. Under a suitable
normalization of homogeneous coordinates ofP10,P10,P10, we have

djk9dki8di j9d568

di89

(dik9

dik8
F − F

)
+

djk8dki9di j8d569

di89

(dik8

dik9
F − F

)
= di jkdk89d56jF, (11)

where{i, j, k} = {1,2,3}, x = T89(x), x = T98(x), dabc = det[Pa,Pb,Pc] andF = det[Pj ,Pk,P10].

In [2], (11) was identified with the three-term relation for the elliptic hypergeometric func-
tion 10E9[10]. An advantage of the geometric method is that it can be applied also for the degen-
erate cases such asq-Painlev́e equations [3, 6] to provide a “good” coordinate for identifying
the linearized equation with three-term relation of appropriateq-hypergeometric function.
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