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Abstract

This note is an introduction to a geometric aspect of the elliptic P&rdguation which
is described as a non-autonomous deformation of the addition formula on cubic curves.

1 Introduction

Discrete analogs of the Painkequations have attracted much interest over the years. This is
largely because, by considering théfeiential and discrete Painkequations together, their
common algebrajgeometric aspect, such as théiree Weyl group symmetry, becomes more
transparent.

Extending Okamoto’s pioneering work, Sakai[9] clarified that one origin of flieeaWeyl
group symmetry of Painlé&equations is the Cremona isometry on a rational surface (the nine
point blown-up of the projective plane)[1]. In this formulation, the discrete afiéréntial
Painlee equations appear according to various configurations of the nine points. Among them,
the equation corresponding to the most generic configuration is unique since it is an “elliptic”
difference equation.

In this note, we give an introduction to this elliptic Pairdegquation based on our recent
work[2, 3]. In this formulation, the “elliptic” nature of the equation appears intrinsically. Ap-
plication to construction of the hypergeometric solutions is also discussed.

2 Elliptic Painlevé equation

2.1 A geometric formulation

Let Py,..., Pi be points on the projective plai&. In the context of Painlé equations, the
first nine points play the role of parameters and the last gRinis the dependent variable. For
1<i#j<9,defineamafj : P« — Pyas follows: () Parameter®,, ..., Py are transformed
as _

Pe=Pe (k#1,]),

Pi+--+Pjo1+Pj+Pja+---+Pg=0, (1)

Eﬁ +5j = Pi + Pj,
with respect to the addition on the cubic cu@gpassing through,, ..., Py. (ii) Dependent
variablePy is transformed as o

Pj + P = Pi + P1o, 2)

with respect to the addition on the culiicpassing througl, .. ., I5,-, ..., P1o, where "'means
deletion. We note that this is not the original definition of the elliptic Paimleguation based

on the Cremona transformation but a consequence of it[9, 2]. Here, we simply start from the
above formulation to make the geometric aspect clear.
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2.2 A Numerical Example

It would be instructive to give an explicit numerical example. We put the initial configuration
of the ten points in the inhomogeneous coordinateg) @sP; = (2,1), P, = (£, 2), Ps = (3, 1),
Py = (g’ g)’ Ps = (O’ 1)’ Ps = (1’ O)’ P7 = (%’ g), Ps = %’ 2)1 Po = (3’ %) andPyo = (%1’ 421) We
evaluate their transformatiof® = T12(Py).

The equations of the relevant cubi€gandC are given by

Co: 36300+ 25210k — 79050¢ + 17540¢ — 83708 + 885Ky
+404622y + 527072 — 27053y — 52997 = 0,
3)
C: 847524- 651870 — 3157742 + 120120¢ — 1753099 + 92498Xy
+51510¢y + 11711832 — 2250652 — 265615 = 0,

respectively. Then the poirR, is the intersection of these cubics other than the trivial ones

D. _ (33410885 10047904 intD. _ (32228531258 7755226259
P1,Ps, ..., Py, namelyP; = (f5571iss 465211593' The pointPy = (Gi5s280587 921842@553 €

Co is such that the liness5, and ¢p,p, meet on Co.  Finally, the point Py =
S i Io0s 530002810531} € C is determined so that the linés s and¢p,p,, meet onC.

If the initial points are rational, so is the transformed points since the transformation is
birational. Note that the cubi€C moves according to the time evolution, while the cuBicis
always fixed.

For the readers convenience, we give a sanva¢hematicaprogram for the above com-

putation. (The following part in thisgXsource file will be directly used iMathematici.

Clear[ml,m3,cl,c3,thd,cbc,cbc®,np,T];

ml[{x_,y_}1:={x,y,1};

m3[{x_,y_}1:={x"3,x"2 y,x y°2,vy°3,x"2,Xx v,y 2,X,y,1};
cl[p_]:=Det[Map[ml[#]&,Append[p,{x,y}]1]1];
c3[p_]:=Det[Map[m3[#]&,Append[p, {x,y}1]1];
thd[cubic_,p_]:=Complement[{x,y}/.Solve[{cubic,cl[p]}==0,{x,y}]1,p]1[[1]];
cbc[p_,i_]:=cbc[p,i]=c3[Drop[p,{i}l];

cbcO:=cbc[pp, 10];
np[p_,i_,j_,j_1:=np[p,i,j,jl=Complement[{x,y}/.Solve[{cbc[p,j],cbc0}==0,{x,y}],p]1[[1]];
np[p_,i_,j_,10]:=thd[cbc[p,j],{thd[cbc[p,jl,{p[[i1],p[[10]1}],np[p,i,],31}];
np[p_,i_,j_,i_]:=thd[cbc®, {thd[cbc®,{p[[i]],p[[j11}]1,nplp,i,7,j1}]1;
np[p_,i_,j_,k_1:=p[[k]1]1/;(k=!=1]| |k=!=j]| |k=!=10);
T{i_,j-},p_1:=T[{i,j},p]=Table[np[p,i,],k],{k,1,10}];

(* T[{1,2},pp] gives the above example for the input data:
pp={{2,1},{7/4,5/4},{1/5,1},{2/5,4/5},{0,1},{1,0},{1/3,4/3},
{3/2,5/2%,{3,3/7},{1/4,7/4}}; *)

3 Commutativity

Itis easy to see that; = T;;*, but the following is non-trivial.
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Theorem 3.1 The transformations;T's are mutually commutative:
[Tij, Tw] = 0. 4)

We will give a direct geometric proof of this.

3.1 Proof: autonomous case

Let us first consider the case when the nine poiits. ., Py are in thespecial configuration
such that they are the intersection points of a peraing parameter family) of cubic curves
Af(P) + ug(P) = 0. We call this casautonomousinceP, = P, (k = 1,...,9). We note that
the discrete dynamical systems obtained from this case is nothing but the QRT map[11].

Let X be the blown-up oP? at the nine point®, ..., Ps. ThenX has an elliptic fibration:
7 X —> Pl

aP)=(@:w), PeX Af(P)+ug(P)=0. (5)
The transformatiorP;o — Py is nothing but the fiber-wise application of the addition formula
and their commutativity is obvious.

For our later use, let us determine the actioriTgfon the Picard lattice oK : PicX =
ZEy® ZEL @ --- & ZE9. Here, &y is the class of line and; (1 < i < 9) is the exceptional
divisor. The intersection pairing is given By- &; = diag(1 -1, ..., —1). The following results
were obtained by Manin[7]. For X i < 9, let M; be the transformation oX such that
Mi(P) + P + P; = 0 on the cubic passing througf, ..., Py andP. Then we have

Mi(E) =& —-&-8Ej, (j#0,i)

Mi((gi) =5+80—28i, (6)
Mi(SO) =0+ 280 - 38i,
whered = 36y — &1 — - -+ — Eg (Mi(0) = 6). SinceT;; = M;M;, one has

Tij(Sk):8k+(8i—8j)+6, (k# 0,1, )

Ti,-(8j) = 8j + (8i - 8j), (7)
Tij((gi) =& + (Si - (SJ') + 20,

Tij(80) = 80 + 3(8, - 81) + 36.

The commutativity (4) also follows from (7).

Remark. We give an interpretation of (7) in view of thé&iae Weyl group and the Cremona
transformation. Pu = {a € PicX|a - 6 = 0}. A basis ofQis chosenagy=&Ey—&E1—E>— E3
anda; = & - &iy1 (1 <i < 8). The intersection matrixf - ;)o<i j<s is the minus of the Cartan
matrix of typeES". The simple reflections(1) = 4 + (4 - a;); generate theffine Weyl group
W(Egl)) on PicX. Note that the reflectior, is the standard Cremona transformation with center
P1, P2, Ps. The translation; alongg € Q is given by the Kac formula

2
Tp) = A+B(S- ) — [%(5 L)+ (8- )]o. (8)

Comparing with (7), we conclude thdfj = T, ;. !

1The translations of typ&s, s, generate an index three subgroup of the full translatithns W(Eél)). Simple
geometric description for the remaining part is expected.
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3.2 Proof: non-autonomous case

Consider the nine point,, ... ., Py in general position. In this case, the poiR{sP; also move
under the action of;; as well as the dependent variallg,. For the parameters, the transfor-
mation is given by the addition on the fixed culfig, hence the commutativity is clear. For
the dependent variable,,, however, the action of;; is defined ormovingcubic C, and the
commutativity is not obvious. Nevertheless the argument of the autonomous case can also be
applied in this situation. The key points are the followini:The new poinPs is independent
of P;. (ii) The pointsf’,- andP,..., F3,-, ..., Pg are in the special position. Due to these prop-
erties, by replacing?; with I3,-, one can compute the action &f on PicX as in equation (7).
Hence the commutativity follows.

Remark. As we have seen above, cubic pencils are important in the geometric formulation
of the discrete Painlévequations. It is interesting to note that a certain cubic pencil also plays
an essential role in theftierential Painleg& equations [4].

4 Applications

4.1 Relation to the bhilinear formalism

Fora = d&y — m&; — - -+ — my&Eg € PicX, a family of curvegA| (called the linear system) is
defined as followsC € |1| & the degree o€ is d and the multiplicity ofC at P; is m. The
dimension of the family and the genus of the curve is given by

2dimA| = A2+1-6, 29-2=2>-2-6. (9)

We putA = {1 € PicX|A2 = -1, 1-6 = 1}. Fora € A, |4] is a unique rational curve
(= PY). Letg, = O be the defining equation of the curve. For ang PicX such thaf? = 0
andés - u = 2, the|u| is one-parameter family of rational curves. Simple geometric argument
(counting of Euler number) shows that there exist eight decomposjtieng; + 1, such that
A, A €A, (1<i <8). Thenforanyi, j,k} c {1,...,8}, we have the following bilinear relation

Ci(p/li ¢j| + CJ ¢/lj ¢/fj + Ck¢/lk¢/fk = 0’ (10)

with some constants, c;, ¢.. This is the geometric origin of the bilinear equations given in [8].
To make the bilinear equation explicit, one need to fix the normalization of the polynamials
Appropriately normalized polynomialsare called the functions. Detailed discussion on the
7 functions and their bilinear equations is given in [5].

4.2 Hypergeometric solutions

For (discrete) Painlé&vequations, special solutions of hypergeometric type appear on reflection
hyperplanes in the parameter space. In our case, each hyperplane corresponds doca@oot
such thar? = —2. Typical examples are as follows:

[ condition
& - & P = P;
Eo— & - & — & Pi, P, Px are collinear
260 -6 - Ej—E—-E —En—En | P, Pj,...,Pyare on aconig
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For sucha, there exists a rational cure, < |a| if the corresponding condition is satisfied. For

B € Qsuch thatr - g = 0, we haveTs(a) = a. This means that iP1g € C, thenT;(Pg) € C,.
Hence, in this case, the elliptic Painéegquation can be reduced to the discrete Riccati equation
Ts(u) = (au+ b)/(cu+ d) onC, = P* which can be easily linearizéd.

Example. Consider the case wheRg, Pg, P; are on a line andPy € £. Under a suitable

normalization of homogeneous coordinate®gf, Pio, P, we have

dikoChiahj5dses dyg— dikgCkiotijgUseg , iks
T %F - F) " T(%E - F) = j Okgolsei F, (11)

wherefi, j,k} = {1,2,3}, X = Tgg(X), X = Tog(X), danc = det[Pa, Py, Pc] andF = det[P;, Py, P1q].

In [2], (11) was identified with the three-term relation for the elliptic hypergeometric func-
tion 1oEo[10]. An advantage of the geometric method is that it can be applied also for the degen-
erate cases such gsPainlee equations [3, 6] to provide a “good” coordinate for identifying
the linearized equation with three-term relation of appropiigtgpergeometric function.
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