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ABSTRACT. We study a family of mutually commutative difference operators associated
with root systems and discuss their simultaneous eigenvectors in a special case. For root
systems with rank n, we construct 3n commutative difference operators, which are a
generalization of elliptic Ruijsenaars operators. In particular, for the BC; root system,
we construct an explicit simultaneous eigenvector of these operators described in terms of
elliptic hypergeometric integrals.

1. INTRODUCTION

In [14] Ruijsenaars introduced the operators acting on the space of meromorphic func-
tions which are defined by
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where wy,wy € C\ {0} are arbitrary such that wi/wy € R, and w3, € C\ {0} and the
action of 7;(w) is defined by (7;(w)f)(x1,. .., Tj, ..., 2pn) = f(@1,...,Tj —w,...,x,). It is
shown that these operators are mutually commutative. The first result of this article is a
generalization of the elliptic Ruijsenaars operators. We define
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where p, ¢, € Z/37Z are distinct, and for p € Z/3Z, w, € C\{0} are such that w,/w, & R if
p # q. Put ny, = 2¢(wp/2; wp, wy) with Weierstrass’ zeta function ¢ and a, = 1wy — Ngpwp,
then a, = £2mi. If v, p, satisfy three equations v,wy + ppngr = Vewp + Lgnpy for distinct

p,q,r € Z/37Z, then all Yn(p ) are shown to be mutually commutative. For instance, these
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equations are solved by
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where g, ug, 13 are regarded as free parameters. Although the discussion above is for
A-type root system, the construction can be applied to arbitrary root systems.

The second result is a construction of a simultaneous eigenvector of the elliptic Ruijse-
naars operators of type BC;. We obtain an explicit meromorphic eigenvector described in
terms of the elliptic hypergeometric integral. Note that for the A-type root system, some
classes of eigenvectors are discussed in [1,4,6,12,15-18|.

2. AFFINE ROOT SYSTEMS

We summarize some facts about affine root systems and affine Weyl groups [2, 3,7,

8]. In this article, we will omit Ag)—type root system because of simplicity, though it is
straightforward. The notation and symbols are a little different from those in the previous
papers [9,10] in order to generalize the results.

Let A be the irreducible reduced finite root system of type X; in a complex vector
space V with dimV = [ and the inner product (-,-), I = {1,...,l} a set of indices,
IT={a; | i€ I} CV the set of simple roots, IV = {a | i € I} C V the set of simple
coroots, @ and @V the root and coroot lattices, P and PV the weight and coweight lattices,
{A; | i € I} and {A) | i € I} the fundamental weights and fundamental coweights such
that (o, A}) = (Ai,af) = 6;;. Then we have

(2.1) Q=Pza,cP=PZACY,
i€l el

(2.2) Q'=PzZo) cP'=PzA CV.
el el

The inner product (-, -) is normalized such that («, ) = 2 for the longer roots a. Let A,
and A_ be the set of positive roots and negative roots respectively.

Let A; C A be the set of shorter roots and A; C A the set of longer roots. Let r be the
ratio of the square lengths of longer roots and shorter roots. Fix parameters v, for a € A,
such that in noritwisted case all 7, = 1, and in twisted case, 7, = r if @« € A, 7, = 1
otherwise. Let V =V & Cé with (a;,d) = (6,0) = 0 and its linear extension. Then the

associated affine root system A C V is written as

(2.3) A={a+ny.d|acAnell
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Let 3+ and A_ be the set of positive affine roots and negative affine roots respectively.
We denote by v for v € V' the natural projection on V.
For av € A, let s, be a reflection defined by

(2.4) 5a(v) = v — {a,v)a”, veV.

The Weyl group W' is generated by the fundamental reflections {sZ =S, |1 €1} onV

and the affine Weyl group W is generated by {si|iel } where T = TU{0} and ap = 6 — 6
with 6 the highest root in nontwisted case and the highest short root in twisted case.
The defining relations are given by s? = id and the Coxeter relations:

(2.5) (s;s;)™ =id,  fori#jel,

where m;; = 2 if a; and «; are disconnected in the Dynkin diagram and m;; = 3,4,6 if
1,2,3 lines respectively connect o; and «;. For p € V', we define endomorphisms 7, of the
vector space V' by

(2.6) Tu(A) ==X — (A, p)d.

Let M := Z(W -0¥) C V. For an arbitrary lattice L, we denote by T}, the corresponding
group of translations of L. Then one sees that W is the semidirect product W W x Ty
Let M :={A eV [a€ A, {a]) €712} The extended affine Weyl group W is defined
by the semidirect product W := W x T3;. Let 2 be the subgroup of W which stabilizes

the affine Weyl chamber C'. Then one sees that W is isomorphic to the semidirect product
W x €. Here are the explicit description of M and its canonical basis {\; | i € I}:

27) M=

—~ PV, nontwisted case, \ AY, nontwisted case,
P, twisted case, e

A;, twisted case.

We also use M_ := DicrL<o.
The length ¢(w) of w € W is defined by the length ¢ of a reduced decomposition:

(2.8) W= Sj ...5,w, irelwe.

It is equivalent to the number of the negative roots made positive by w:

(2.9) (D) == |Apl,  Agp:=ALNDA_.

The set A, is explicitly described as Ay = {a® = a;,,a® = s (ay,),...,a") =

ws;,(a;,)}. By definition, A, is independent of reduced expressions. One sees that
Q={weW | lw)=0} A weight A € M is said to be minuscule if A, , C A,.

In the following, we use the constants

(2.10) Py 1= ZxaiAi = % Z T,

el aEA L
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where z, € C which depends only on the length of roots,
We shall define the root algebras after Cherednik [3,10].

Definition 2.1. Root algebra R is generated by independent variables { R, | « € 3} and
{mx | A € M} with the following defining relations:

(2.11) Rua Rusio; Rusissai = Ruo, Rusja Rusysia; - forw € W
ma factors mag Jactors

(2.12) TRo = RryaTh,

(2.13) TATN = TA4N -

Theorem 2.2 (Cherednik). 1. There exists a unique set {R,, | w € /VI7} C R satisfying
the relations:

(2.14) Ryw=R,'R,, R, =R, (iel), R,=1,
) pr—

where w € Q, v,w € W and {(vw l(v) +L(w), and *(Ry, ... Ra;) = Ryay - - - Ry,
2. We have the R-matriz for w € W and its arbitrary reduced decomposition w =
Siy - .- Si,W as
R, =R, ... R,

aV = Qs a® = si (aiy), ., af

(2.15) )

= ws;,(v,) € Ay

Theorem 2.3. The subalgebra S C R generated by {Y* := R, 7\ | X € ]\N/L} forms a
commutative algebra and is generated by {Y > | i € I},

3. REPRESENTATION AND DIFFERENCE OPERATORS

Let ’y&l) = 7, and 7&2), ”y&g) be taken similarly as fyél). Accordingly let M® = M and

M® | M® be taken similarly. Here 4% and 7§ may differ if i # j. Let M be the set of
meromorphic functions on V. To define the action of W on M, it is sufficient to specify
the action of s; for i € I and 7, for A € M. For f € M, we define

(3.1) si(N)©) = flsi(@), (@) =7 () = flv—w).

Fix €1, ¢W € V and let ,ugl), v be constants depending only on the length of roots.
Then one can check that (3.1) and

(3.2) (Raf)(v) := Ha(pl, vV) f(v) = Ha((€W, ), (¢, ")) f(sa0),

satisfy the defining relations of the root algebra [11], where H,(n, ) is a meromorphic
function defined by

(10127 Pog) o (a(0) + 77 Piwn AP )
(3.3) Ho(n, k) (v) := e Ha ;Yo W2, Yo Ws 15 Yo W2, Yo W3

(70w, 7 ws)  o(a(v); 7wy, 7 ws)
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and a root « acts on V' as an affine linear functional a(v) = (a,v) 4+ nw; for v € V and
a=a +nd, o €A. Then we have the following theorems [9, 10]

Theorem 3.1. Let V := MW, the W-invariant subspace of M and let £ = —Pum,
(W = —p . Then Y)\(l) =Y € Endc V.

Theorem 3.2. Let (—)\) € MW be minuscule. Then we have

Y

v

1
(34) Y)\’v — W Z ’w( H HQ(:“E;P? y(gl)) 7'>(\1)>

weW aEA L
(A a)=—7a

where Wy is the stabilizer of X in W.

Let YA(Q) be the operator obtained by changing the role of the indices 1 and 2 in the
construction of Y/\(l) and Y>\(3) be obtained in the same manner. In the following, we assume
that p g + vPw, = ,uglk)njl + Vék)wj where j # k # | # j. Then one sees that Y/\(J) for

? € MY are commutative by Theorem 2.3 for a fixed j. Let £0) = —p, and ¢V = —p )
or j=1,2.3.

Theorem 3.3. Let j, k € {1,2,3} and —\ € M(j),—y € M® . Then Y)\(j) and Y® are
commutative.

For minuscule weights —\, the periodicity of the coefficients is easily obtained since
the explicit forms of the operators Y are calculated [10]. Hence the commutativity of
the operators for A-type root system follows because all the fundamental weights are
minuscule in this root system. However Y for general \ is complicated and the proof of
the commutativity requires a further investigation.

4. BC1-TYPE OPERATORS AND EIGENVECTOR

Generally, it is very difficult to construct explicit eigenvectors of the elliptic Ruijsenaars
operators. However we can construct simultaneous eigenvectors in the BCY root system.
In this root system, there are three mutually commutative operators.
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Let wy,ws, fo, - - -, g € C such that Swy,ws > 0 and 2ug + 1 + -+ + g + w1 + wo = 0.
Then the operators are given by

6
Pz — po + wiyws) Hﬁ(x — [y w2)
=0
V(25 we) (22 4 wr; wo)

(4.1) y ) = g2 (T(w1) — 1),

t(z o —2)

6
Pz — po + waywi) Hﬁ(x — pjiwi)

(42) v = 19(2:6;001)19(2:6:-1- wa; w1) (7(w2) = 1),
t(z o —2)
(4.3) Y@ =7(1) +7(-1) — 2,

where v/ denotes the Jacobi odd theta function. For these commutative difference operators
we can construct an explicit simultaneous eigenvector:

Theorem 4.1. Let
7

[T (wgco/cisp,q)

o(c) = =
L(pgeosp,q) [ Tlpgco/ciciipq)
(4.4) 1<i<j <7
7
T(pa/(paco)=*";p, ) [ [ T((paco)"? /e;z*p, q)
o j=1 dz
c ['(z%,27%p,q) ’
with
Co = 62Fi(M0—M1—W1—w2)’ e = 627ri(lm-i-uz)7 Co = 627”(/!0-!-/!3)7
c3 = 627ri(u0+u4)7 cy= 627ri(#0+#5)7 o5 = 627”'(#0+M6)7

g = 627”(—9:—;11) cr = eZm(:L‘—ul)

Y Y

2w 2miwa

p=e¢e , g=¢€ 5

and C a closed circle taken appropriately, and I'(z;p,q) elliptic Gamma function defined
by
(Pgz™ip: @)oo

[(z;p,q) = p.d)
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Then ¢(c) is a simultaneous eigenvector of Y9 with the eigenvalues

6
B — —2mino Hﬁ(ﬂo + i3 wo), BB — 0,
iﬁl
E® — ¢ 2mino Hﬁ(uo + pi;wr).
i=1
An integral analogue of Bailey transformation and the other properties of the integral
factor of (4.4) are investigated in [13].

5. SPECIAL CASES

In this section, we will clarify the relation between ¢(c) and the elliptic hypergeometric
series 12V7; introduced by Frenkel and Turaev [5].

Theorem 5.1. If ¢; = p Mg for some j, then ¢(c) (4.4) splits into two elliptic hyper-
geometric series,

(51) ¢(C) = ¢(CO7 BRI q_Na s 767;p) X CE(CO) s ap_M7 <o Cr q)7
where
00 7
7 CO7 CO; k: Czy
5.2 o(coy ... emm)
52) e kzzo (cosr)  (pa;r 1} pch/cz, >>

and {(u; e = (u;r) - (u(pg)*= 1 r) with (u,r) = u‘l/Q(u;r)oo(u_ 757 oo
Now we state the relation between ¢(c) and 15V}; which is defined by
o (g% bo; ) (boi ) Tp (b T

Vi1(bo; b1,y ... b)) = ,

12V11(bo; by 7i7) kZ; (bo;r)  {r;7)p E (1bo /b3 )k

where one of b; should be 7= for the series to terminate and (u; 7). = (u;7) - - - (urk=1; 7).
The following is shown by a direct calculation.

Theorem 5.2.

gg(cm e 7C7;p) = 12‘/11(p00§ Ciy. - 7pcj7 s 707;]))7
which is independent of the choice of j.
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