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Abstract. We study a family of mutually commutative difference operators associated
with root systems and discuss their simultaneous eigenvectors in a special case. For root
systems with rank n, we construct 3n commutative difference operators, which are a
generalization of elliptic Ruijsenaars operators. In particular, for the BC1 root system,
we construct an explicit simultaneous eigenvector of these operators described in terms of
elliptic hypergeometric integrals.

1. Introduction

In [14] Ruijsenaars introduced the operators acting on the space of meromorphic func-
tions which are defined by

(1.1) Yn =
∑

I⊂{1,...,l}
|I|=n

(∏

j∈I
k∈Ic

σ(xj − xk + µ; ω1, ω2)

σ(xj − xk; ω1, ω2)

) ∏

j∈I

τj(ω3),

where ω1, ω2 ∈ C \ {0} are arbitrary such that ω1/ω2 6∈ R, and ω3, µ ∈ C \ {0} and the
action of τj(ω) is defined by (τj(ω)f)(x1, . . . , xj, . . . , xn) = f(x1, . . . , xj − ω, . . . , xn). It is
shown that these operators are mutually commutative. The first result of this article is a
generalization of the elliptic Ruijsenaars operators. We define

(1.2) Y (p)
n =

∑

I⊂{1,...,l}
|I|=n

(∏

j∈I
k∈Ic

eνp(xj−xk)σ(xj − xk + µp; ωq, ωr)

σ(xj − xk; ωq, ωr)

) ∏

j∈I

τj(ωp),

where p, q, r ∈ Z/3Z are distinct, and for p ∈ Z/3Z, ωp ∈ C\{0} are such that ωp/ωq 6∈ R if
p 6= q. Put ηpq = 2ζ(ωp/2; ωp, ωq) with Weierstrass’ zeta function ζ and ar = ηpqωq − ηqpωp,
then ar = ±2πi. If νp, µp satisfy three equations νpωq + µpηqr = νqωp + µqηpr for distinct

p, q, r ∈ Z/3Z, then all Y
(p)
n are shown to be mutually commutative. For instance, these
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equations are solved by

ν1 =
a1(ν3ω1 + µ3η12) − (a2µ2 + a3µ3)η32

a1ω3

,(1.3)

ν2 =
ν3ω2 + µ3η21 − µ2η31

ω3

,(1.4)

µ1 =
a2µ2 + a3µ3

a1

,(1.5)

where ν3, µ2, µ3 are regarded as free parameters. Although the discussion above is for
A-type root system, the construction can be applied to arbitrary root systems.

The second result is a construction of a simultaneous eigenvector of the elliptic Ruijse-
naars operators of type BC1. We obtain an explicit meromorphic eigenvector described in
terms of the elliptic hypergeometric integral. Note that for the A-type root system, some
classes of eigenvectors are discussed in [1, 4, 6, 12, 15–18].

2. Affine Root Systems

We summarize some facts about affine root systems and affine Weyl groups [2, 3, 7,

8]. In this article, we will omit A
(2)
2l -type root system because of simplicity, though it is

straightforward. The notation and symbols are a little different from those in the previous
papers [9, 10] in order to generalize the results.

Let ∆ be the irreducible reduced finite root system of type Xl in a complex vector
space V with dim V = l and the inner product 〈·, ·〉, I = {1, . . . , l} a set of indices,
Π = {αi | i ∈ I} ⊂ V the set of simple roots, Π∨ = {α∨

i | i ∈ I} ⊂ V the set of simple
coroots, Q and Q∨ the root and coroot lattices, P and P∨ the weight and coweight lattices,
{Λi | i ∈ I} and {Λ∨

i | i ∈ I} the fundamental weights and fundamental coweights such
that 〈αi, Λ

∨
j 〉 = 〈Λi, α

∨
j 〉 = δij. Then we have

Q =
⊕

i∈I

Z αi ⊂ P =
⊕

i∈I

Z Λi ⊂ V,(2.1)

Q∨ =
⊕

i∈I

Z α∨
i ⊂ P∨ =

⊕

i∈I

Z Λ∨
i ⊂ V.(2.2)

The inner product 〈·, ·〉 is normalized such that 〈α, α〉 = 2 for the longer roots α. Let ∆+

and ∆− be the set of positive roots and negative roots respectively.
Let ∆s ⊂ ∆ be the set of shorter roots and ∆l ⊂ ∆ the set of longer roots. Let r be the

ratio of the square lengths of longer roots and shorter roots. Fix parameters γα for α ∈ ∆,
such that in nontwisted case all γα = 1, and in twisted case, γα = r if α ∈ ∆l, γα = 1

otherwise. Let V̂ = V ⊕ Cδ with 〈αi, δ〉 = 〈δ, δ〉 = 0 and its linear extension. Then the

associated affine root system ∆̂ ⊂ V̂ is written as

(2.3) ∆̂ = {α + nγαδ | α ∈ ∆, n ∈ Z}.
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Let ∆̂+ and ∆̂− be the set of positive affine roots and negative affine roots respectively.

We denote by v for v ∈ V̂ the natural projection on V .

For α ∈ ∆̂, let sα be a reflection defined by

(2.4) sα(v) := v − 〈α, v〉α∨, v ∈ V.

The Weyl group W is generated by the fundamental reflections {si := sαi
| i ∈ I} on V

and the affine Weyl group Ŵ is generated by {si | i ∈ Î}, where Î = I ∪{0} and α0 = δ−θ
with θ the highest root in nontwisted case and the highest short root in twisted case.

The defining relations are given by s2
i = id and the Coxeter relations:

(2.5) (si sj)
mij = id, for i 6= j ∈ Î ,

where mij = 2 if αi and αj are disconnected in the Dynkin diagram and mij = 3, 4, 6 if
1,2,3 lines respectively connect αi and αj. For µ ∈ V , we define endomorphisms τµ of the
vector space V by

(2.6) τµ(λ) := λ − 〈λ, µ〉δ.
Let M := Z(W · θ∨) ⊂ V . For an arbitrary lattice L, we denote by TL the corresponding

group of translations of L. Then one sees that Ŵ is the semidirect product Ŵ = W n TM .

Let M̃ := {λ ∈ V | α ∈ ∆, 〈α, λ〉 ∈ γαZ}. The extended affine Weyl group W̃ is defined

by the semidirect product W̃ := W n T
fM . Let Ω be the subgroup of W̃ which stabilizes

the affine Weyl chamber C. Then one sees that W̃ is isomorphic to the semidirect product

Ŵ o Ω. Here are the explicit description of M̃ and its canonical basis {λi | i ∈ I}:

(2.7) M̃ =

{
P∨, nontwisted case,

P, twisted case,
λi =

{
Λ∨

i , nontwisted case,

Λi, twisted case.

We also use M̃− := ⊕i∈IZ≤0λi.

The length `(w) of w ∈ W̃ is defined by the length ` of a reduced decomposition:

(2.8) w = si1 . . . si`ω, ik ∈ Î , ω ∈ Ω.

It is equivalent to the number of the negative roots made positive by ŵ:

(2.9) `(ŵ) := |∆ŵ|, ∆ŵ := ∆̂+ ∩ ŵ∆̂−.

The set ∆ŵ is explicitly described as ∆ŵ = {α(1) = αi1 , α
(2) = si1(αi2), . . . , α

(`) =
wsi`(αi`)}. By definition, ∆ŵ is independent of reduced expressions. One sees that

Ω = {ω ∈ Ŵ | `(ω) = 0}. A weight λ ∈ M̃ is said to be minuscule if ∆τ−λ
⊂ ∆+.

In the following, we use the constants

ρx :=
∑

i∈I

xαi
Λi =

1

2

∑

α∈∆+

xαα,(2.10)
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where xα ∈ C which depends only on the length of roots,
We shall define the root algebras after Cherednik [3, 10].

Definition 2.1. Root algebra R is generated by independent variables {Rα | α ∈ ∆̂} and

{τλ | λ ∈ M̃} with the following defining relations:

Rwαi
Rwsiαj

Rwsisjαi
· · ·︸ ︷︷ ︸

mij factors

= Rwαj
Rwsjαi

Rwsjsiαj
· · ·︸ ︷︷ ︸

mij factors

, for w ∈ W̃(2.11)

τλRα = Rτλατλ,(2.12)

τλτλ′ = τλ+λ′ .(2.13)

Theorem 2.2 (Cherednik). 1. There exists a unique set {Rw | w ∈ W̃} ⊂ R satisfying
the relations:

(2.14) Rv w = Rv
vRw, Rsi

= Rαi
(i ∈ Î), Rω = 1,

where ω ∈ Ω, v, w ∈ W̃ and `(v w) = `(v) + `(w), and v(Rα1 . . . Rαi
) = Rvα1 . . . Rvαi

2. We have the R-matrix for w ∈ W̃ and its arbitrary reduced decomposition w =
si1 . . . si`ω as

Rw = Rα(1) . . . Rα(`) ,
α(1) = αi1 , α(2) = si1(αi2), . . . , α(`) = wsi`(αi`) ∈ ∆w.

(2.15)

Theorem 2.3. The subalgebra S ⊂ R generated by {Y λ := Rτλ
τλ | λ ∈ M̃−} forms a

commutative algebra and is generated by {Y −λi | i ∈ I}.

3. Representation and Difference Operators

Let γ
(1)
α = γα and γ

(2)
α , γ

(3)
α be taken similarly as γ

(1)
α . Accordingly let M̃ (1) = M̃ and

M̃ (2), M̃ (3) be taken similarly. Here γ
(i)
α and γ

(j)
α may differ if i 6= j. Let M be the set of

meromorphic functions on V . To define the action of W̃ on M, it is sufficient to specify

the action of si for i ∈ I and τλ for λ ∈ M̃ (1). For f ∈ M, we define

(3.1) si(f)(v) = f(si(v)), τλ(f)(v) = τ
(1)
λ (f)(v) = f(v − ω1λ).

Fix ξ(1), ζ(1) ∈ V and let µ
(1)
α , ν

(1)
α be constants depending only on the length of roots.

Then one can check that (3.1) and

(3.2) (Rαf)(v) := Hα(µ(1)
α , ν(1)

α )f(v) − Hα(〈ξ(1), α∨〉, 〈ζ(1), α∨〉)f(sαv),

satisfy the defining relations of the root algebra [11], where Hα(η, κ) is a meromorphic
function defined by

(3.3) Hα(η, κ)(v) := eκα(v)σ(µ
(1)
α ; γ

(2)
α ω2, γ

(3)
α ω3)

σ(η; γ
(2)
α ω2, γ

(3)
α ω3)

σ(α(v) + η; γ
(2)
α ω2, γ

(3)
α ω3)

σ(α(v); γ
(2)
α ω2, γ

(3)
α ω3)

,
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and a root α acts on V as an affine linear functional α(v) = 〈α, v〉 + nω1 for v ∈ V and
α = α′ + nδ, α′ ∈ ∆. Then we have the following theorems [9, 10]

Theorem 3.1. Let V := MW , the W -invariant subspace of M and let ξ(1) = −ρµ(1),

ζ(1) = −ρν(1). Then Y
(1)
λ := Y λ ∈ EndC V.

Theorem 3.2. Let (−λ) ∈ M̃ (1) be minuscule. Then we have

(3.4) Y λ|V =
1∣∣Wλ

∣∣
∑

w∈W

w

( ∏

α∈∆+

〈λ,α〉=−γα

Hα(µ(1)
α , ν(1)

α ) τ
(1)
λ

)∣∣∣∣∣
V

,

where Wλ is the stabilizer of λ in W .

Let Y
(2)
λ be the operator obtained by changing the role of the indices 1 and 2 in the

construction of Y
(1)
λ and Y

(3)
λ be obtained in the same manner. In the following, we assume

that µ
(j)
α ηkl + ν

(j)
α ωk = µ

(k)
α ηjl + ν

(k)
α ωj where j 6= k 6= l 6= j. Then one sees that Y

(j)
λ for

λ ∈ M̃ (j) are commutative by Theorem 2.3 for a fixed j. Let ξ(j) = −ρµ(j) and ζ(j) = −ρν(j)

for j = 1, 2, 3.

Theorem 3.3. Let j, k ∈ {1, 2, 3} and −λ ∈ M̃ (j),−ν ∈ M̃ (k). Then Y
(j)
λ and Y

(k)
ν are

commutative.

For minuscule weights −λ, the periodicity of the coefficients is easily obtained since
the explicit forms of the operators Y λ are calculated [10]. Hence the commutativity of
the operators for A-type root system follows because all the fundamental weights are
minuscule in this root system. However Y λ for general λ is complicated and the proof of
the commutativity requires a further investigation.

4. BC1-type Operators and Eigenvector

Generally, it is very difficult to construct explicit eigenvectors of the elliptic Ruijsenaars
operators. However we can construct simultaneous eigenvectors in the BC1 root system.
In this root system, there are three mutually commutative operators.
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Let ω1, ω2, µ0, . . . , µ6 ∈ C such that =ω1, ω2 > 0 and 2µ0 + µ1 + · · · + µ6 + ω1 + ω2 = 0.
Then the operators are given by

Y (1) = e2πix

ϑ(x − µ0 + ω1; ω2)
6∏

j=0

ϑ(x − µj; ω2)

ϑ(2x; ω2)ϑ(2x + ω1; ω2)
(τ(ω1) − 1),(4.1)

+ (x ↔ −x)

Y (2) = e2πix

ϑ(x − µ0 + ω2; ω1)
6∏

j=0

ϑ(x − µj; ω1)

ϑ(2x; ω1)ϑ(2x + ω2; ω1)
(τ(ω2) − 1),(4.2)

+ (x ↔ −x)

Y (3) = τ(1) + τ(−1) − 2,(4.3)

where ϑ denotes the Jacobi odd theta function. For these commutative difference operators
we can construct an explicit simultaneous eigenvector:

Theorem 4.1. Let

φ(c) =

7∏

i=1

Γ(pqc0/ci; p, q)

Γ(pqc0; p, q)
∏

1≤i<j≤7

Γ(pqc0/cicj; p, q)

×
∫

C

Γ(pq/(pqc0)
1/2z±1; p, q)

7∏

j=1

Γ((pqc0)
1/2/cjz

±1; p, q)

Γ(z2, z−2; p, q)

dz

z
,

(4.4)

with

c0 = e2πi(µ0−µ1−ω1−ω2), c1 = e2πi(µ0+µ2), c2 = e2πi(µ0+µ3),

c3 = e2πi(µ0+µ4), c4 = e2πi(µ0+µ5), c5 = e2πi(µ0+µ6),

c6 = e2πi(−x−µ1), c7 = e2πi(x−µ1),

p = e2πiω1 , q = e2πiω2 ,

and C a closed circle taken appropriately, and Γ(z; p, q) elliptic Gamma function defined
by

Γ(z; p, q) =
(pqz−1; p, q)∞

(z; p, q)∞
.
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Then φ(c) is a simultaneous eigenvector of Y (j) with the eigenvalues

E(1) = e−2πiµ0

6∏

i=1

ϑ(µ0 + µi; ω2), E(3) = 0,

E(2) = e−2πiµ0

6∏

i=1

ϑ(µ0 + µi; ω1).

An integral analogue of Bailey transformation and the other properties of the integral
factor of (4.4) are investigated in [13].

5. Special Cases

In this section, we will clarify the relation between φ(c) and the elliptic hypergeometric
series 12V11 introduced by Frenkel and Turaev [5].

Theorem 5.1. If cj = p−Mq−N for some j, then φ(c) (4.4) splits into two elliptic hyper-
geometric series,

(5.1) φ(c) = φ̃(c0, . . . , q
−N , . . . , c7; p) × φ̃(c0, . . . , p

−M , . . . , c7; q),

where

(5.2) φ̃(c0, . . . , c7; r) =
∞∑

k=0

〈(pq)2kc0; r〉
〈c0; r〉

〈〈c0; r〉〉k
〈〈pq; r〉〉k

7∏

i=1

〈〈ci; r〉〉k
〈〈pqc0/ci; r〉〉k

,

and 〈〈u; r〉〉k = 〈u; r〉 · · · 〈u(pq)k−1; r〉 with 〈u, r〉 = u−1/2(u; r)∞(u−1r; r)∞.

Now we state the relation between φ(c) and 12V11 which is defined by

12V11(b0; b1, . . . , b7; r) =
∞∑

k=0

〈q2kb0; r〉
〈b0; r〉

〈b0; r〉k
〈r; r〉k

7∏

i=1

〈bi; r〉k
〈rb0/bi; r〉k

,

where one of bi should be r−N for the series to terminate and 〈u; r〉k = 〈u; r〉 · · · 〈urk−1; r〉.
The following is shown by a direct calculation.

Theorem 5.2.
φ̃(c0, . . . , c7; p) = 12V11(pc0; c1, . . . , pcj, . . . , c7; p),

which is independent of the choice of j.
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