
ELLIPTIC INTEGRABLE SYSTEMS

CLASSICAL LEONARD TRIPLES

ALYONA KOROVNICHENKO AND ALEXEI ZHEDANOV

Abstract. We study classical Leonard triples from the point of view of nonlinear Pois-
son algebras. It is shown that these triples essentially are equivalent to the classical
Askey-Wilson algebra. Chains of involutions of these triples give rise to dynamical sys-
tems with discrete time. In special cases they can be solved explicitly in terms of elliptic
functions of second order. Relations with the generalized Markov problem in number
theory and the Poncelet problem in projective geometry are demonstrated.
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1. Introduction

Assume that X(q, p) and Y (q, p) are two independent dynamical variables of canonical
variables q, p with the standard Poisson bracket (PB) {q, p} = 1. As usual, independence
of functions X,Y means that in some domain of interest of the phase space (q, p) they
satisfy the condition

∂(X, Y )

∂(q, p)
≡ ∂X

∂q

∂Y

∂p
− ∂X

∂p

∂Y

∂q
= {X,Y } 6= 0, (1.1)

where ∂(X,Y )/∂(q, p) is the Jacobian of a change of variables.
According [13], two independent variables X and Y are said to form a classical Leonard

pair (CLP) if there exist two different canonical transformations (q, p) → (x, y) and
(q, p) → (ξ, η) such that in the first case one has

X = ϕ(x), Y = A1(x) ey + A2(x) e−y + A3(x) (1.2)

and in the second one

Y = ψ(ξ), X = B1(ξ) eη + B2(ξ) e−η + B3(ξ), (1.3)

where (x, y) and (ξ, η) are canonical pairs (i.e. {x, y} = {ξ, η} = 1) and ϕ(x), Ai(x), ψ(ξ),
Bi(ξ) are some functions. Using canonical transformations y → κy, x → x/κ and taking
the limit κ → 0 one can obtain from (1.2) the limiting form Y = a1(x)y2 +a2(x)y +a3(x).
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Therefore we shall assume that CLP admit such degenerate forms of Y in (1.2) (or of X
in (1.3)) without further reservations.

Define the variable
W = {X, Y }. (1.4)

We assume that there exists a region of values of X, Y where X and Y are independent
variables, i.e. Z 6= 0. The latter means that in this domain one can invert (at least
locally) the changes of variables to find x = x(X, Y ), y = y(X,Y ) and consider W as a
function of X and Y , W = W (X, Y ). The condition that X and Y form a CLP allows
one to establish the explicit form of this function W (X, Y ).

Namely, one can show (see [13], [29]) that there exist 9 arbitrary constants αik, i, k =
0, 1, 2, such that

W 2 =
2∑

i,k=0

αikX
iY k = F (X, Y ). (1.5)

Vice versa, it can be shown that starting from the condition (1.5) for arbitrary αik one
arrives at a CLP (including its degenerate form mentioned above). The condition F =
0 determines the region of the phase space with complex values of q, p where such a
consideration is broken down.

From (1.5) it follows that the dynamical variables X, Y and W = {X, Y } form a Poisson
algebra with the relations (1.4) and

{W,X} = −1

2

∂F (X,Y )

∂Y
, {Y, W} = −1

2

∂F (X, Y )

∂X
, (1.6)

which are known as the classicla Askey-Wilson algebra relations [9]. It can be shown [13],
[29] that the Poisson algebra (1.6) generates (1.5) and the constant α00 is interpreted
as a value of the corresponding Casimir element. The derived algebra is a particular
example of the quadratic algebras, the most popular representative of which is given by
the Sklyanin algebra [23].

Suppose that X is the Hamiltonian of some physical system. Then the first canoni-
cal transformation (q, p) → (x, y) is, in fact, an action-angle transformation: it maps X
into a function depending on only one canonical variable x. Similarly, canonical trans-
formation (q, p) → (ξ, η) is an action-angle variables transformation for a system with
the Hamiltonian Y . Existence of a CLP can be considered as some duality property of
two Hamiltonians with respect to prescribed dependence on the momenta y and η of the
“conjugated” Hamiltonians (i.e. Y and X, respectively). From this point of view, the
CLP property is equivalent to the notion of duality discussed in the theory of integrable
systems, see e.g. [22, 7].

Note that the quantum analogue of CLP property coincides with the standard Leonard’s
duality [14] or the bispectrality condition [5] for two 3-diagonal N ×N matricies L,M . In
this case the matrix M is tridiagonal in the basis formed by eigenvectors φk of the matrix
L, whereas M is 3-diagonal in the basis formed by eigenvectors ψk of M :

Lφk = λkφk, Mφk = αk+1φk+1 + βkφk + γkφk−1, (1.7)

and
Mψk = µkψk, Lψk = ξk+1ψk+1 + ηkψk + ζkψk−1, (1.8)
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where k = 1, 2 . . . , N. It is assumed that eigenvalues λk, µk are nondegenerate, so that the
vectors φk and ψk form two independent complete bases. In such a form the problem of
classifying all (“quantum”) Leonard pairs L,M was investigated by Terwilliger [26]. It is
equivalent to the original Leonard problem [14] in the following sense. Let us decompose
the vectors ψk in the basis of vectors φk

ψk =
N∑

s=1

Pksφs, (1.9)

with some expansion coefficients Pks. It follows from (1.7), (1.8) that the coefficients Pks

satisfy simultaneously two three term recurrence relations

ζs+1Pk,s+1 + ηsPks + ξs−1Pk,s−1 = µkPks (1.10)

and

γk+1Pk+1,s + βkPks + αk−1Pk−1,s = λsPks, (1.11)

which mean that Pks can be expressed in terms of some orthogonal polynomials of the
argument λs or µk. It appears that these polynomials are self-dual: permutation of the
discrete variables k and s is equivalent to some permutation of parameters entering the
recurrence coefficients ηs, ξs (for details see [14, 26, 28]).

Leonard’s theorem [14] states that the q-Racah polynomials, discovered by Askey and
Wilson [1], are the most general self-dual orthogonal polynomials. As shown in [28],
the quantum analogue of the algebra (1.6) with the generators L,M and N = [L,M ] ≡
LM−ML describes these polynomials through the representation theory (see also [26] for
similar algebraic treatments). Relations of this algebra with the standard slq(2) quantum
algebra have been established in [10, 11].

The main purpose of the present paper is to derive relations for so-called classical
Leonard triples, i.e. for 3 dynamical variables x, y, z such that all pairs (x, y), (y, z), (z, x)
form a CLP. In quantum case (i.e. on the level of operators acting on a finite-dimensional
space) such Leonard triples were studied recently in [21]. We observe interesting and
rather unexpected relations between this problem and other problems in pure mathematics
(e.g. Markov cubic in number theory) and mathematical physics.

2. Classical Leonard triples and generalized Markov cubic

Let x(q, p) and y(q, p) be two variables which form a CLP in sense of the previous
section or [29], i.e. we assume that PB w = {x, y} satisfies the condition

w2 = F (x, y) =
2∑

i,k=0

αikx
iyk (2.1)

with some coefficients αi,k which are not all zero. In this case variables x, y are independent
as well as canonical variables q, p.

Equivalently, CLP is characterized by 3 relations for the so-called classical AW-algebra
for 3 generators x, y, w [9], [29]:

{x, y} = w, {y, w} = −Fx/2, {w, x} = −Fy/2, (2.2)
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where Fx, Fy are partial derivatives of the polynomial F (x, y) defined by (2.1) with arbi-
trary (but not all zero) coefficients αik. We see that PB {y, w} is linear in x, whereas PB
{w, x} is linear in y. For the AW-algebra (2.2) the function Q = w2 − F (x, y) plays the
role of the Casimir element, i.e. {x,Q} = {y, Q} = {w,Q} = 0. Thus Q = const, which
is compatible with relation (2.1).

In what follows we will assume that α22 = ρ2 6= 0. Under this assumption we can define
a new generator z by the relation

z = ξ(w − ρxy − A1y − A2x) + η, (2.3)

where A1 = α12/(2ρ), A2 = α21/(2ρ) and ξ, η are arbitrary parameters. Then, excluding
variable w from (2.1) and (2.3) we arrive at expression

Φ(x, y, z) = 0, (2.4)

where Φ(x, y, z) is a cubic polynomial

Φ(x, y, z) = ρxyz +A1yz +A2xz +A3xy +B1x
2 +B2y

2 +B3z
2 +C1x+C2y +C3z +E = 0

(2.5)
with the coefficients

A3 =
ξα12α21 − 4ηρ3 − 2ξα11ρ

2

4ρ2
, B1 = ξ

−4ρ2α20 + α2
21

8ρ2
,

B2 = ξ
−4ρ2α02 + α2

12

8ρ2
, B3 = 1/(2ξ), C1 = −ξρα10 + α21η

2ρ

C2 = −ξρα01 + α12η

2ρ
, C3 = −η/ξ, E = −−η2 + ξ2α0,0 + ξ2Q

2ξ

It is easily sen that 3 generators x, y, z satisfy Poisson brackets relations

{x, y} = Φz, {y, z} = Φx, {z, x} = Φy (2.6)

which is a special realization of general Poisson structure with 3 dynamical variables with
Casimir element Φ(x, y, z) [19].

By affine transformations of the generators xi → αixi + βi with appropriate constants
αi, βi it is possible to kill all bi-quadratic terms xy, yz, zx in Φ(x, y, z). Then we have

Φ(x, y, z) = ρxyz + B1x
2 + B2y

2 + B3z
2 + C1x + C2y + C3z, (2.7)

where B1 = B2 = 1 for nondegenerate case and B1 = 0, B2 = 1 or B1 = 0, B2 = 1 or
B1 = B2 = 0. The nondegenerate case occurs if

D2 = α2
12 − 4α22α02 6= 0, D1 = α2

21 − 4α22α20 6= 0. (2.8)

The degenerate cases take place when one or both discriminants D1,2 are zero.
Explicitly, relations for corresponding Poisson algebra are as follows:

{x, y} = ρxy + 2B3z + C3,

{y, z} = ρyz + 2B1x + C1,

{z, x} = ρxz + 2B2y + C2. (2.9)

As far as we know, firstly a special case of the algebra (2.9) appeared in Dubrovin’s
paper [6] as a Poisson algebra for the Stokes matrices in the isomonodromy problem
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for a matrix differential equation. In the Dubrovin case the algebra’s parameters are
ρ = −1, B1 = B2 = B3 = 1, C1 = C2 = C3 = 0. Recently, the Poisson algebra (2.9) with
general parameters ρ, Bi, Ci appeared in Oblomkov work [18] as the non-trivial Poisson
structure corresponding to some ”classical limit” of the double affine Hecke algebra.

Now we start from the Poisson algebra (2.9) with generic coefficients ρ, Bi, Ci. We
will assume only that ρ 6= 0. (We don’t include terms xy, yz, zx because they always
can be removed by an appropriate shifts of the generators). It is elementary verified
that the polynomial Φ(x, y, z) defined by (2.11) is the Casimir element of the algebra:
{x, Φ} = {y, Φ} = {z, Φ} = 0. The main property of the Poisson algebra (2.9) is that
all pairs of variables (x, y), (y, z), (z, x) form CLP. Indeed, assume that B3 6= 0. Then
we have z = (w − ρxy − C3)/(2B3), where w = {x, y}. Substituting z into the Casimir
element Φ(x, y, z) = q, where q is a fixed constant for a given realization of the algebra
(2.9), we get relation (2.1) with

α22 = ρ2, α12 = α21 = 0, α11 = 2ρC3, α20 = −4B1B3, α02 = −4B2B3,

α10 = −4C1B3, α01 = −4C2B3, α00 = 4qB3 + C2
3 (2.10)

Hence the variables x, y form a CLP. If B3 = 0 then from the first relation in (2.9) we
have

w2 = (ρxy + C3)
2

and hence again the pair (x, y) is a CLP of a special type.
Due to the obvious symmetry of the algebra (2.9) with respect to each variable x, y, z

we get that two other pairs (y, z) and (z, x) are CLP for every choice of parameters Ci, Bi.
In what follows we will consider only the nondegenerate case (2.8). Then all coefficients

in front of squares x2, y2, z2 can be chosen to be equal to 1:

Φ(x, y, z) = ρxyz + x2 + y2 + z2 + C1x + C2y + C3z. (2.11)

Corresponding Poisson algebra takes the form

{x, y} = ρxy + 2z + C3,

{y, z} = ρyz + 2x + C1,

{z, x} = ρxz + 2y + C2. (2.12)

This algebra possesses 3 remarkable anti-automorphisms. Indeed, return to relation
(2.3). We can define an alternative variable z̃ by just replacing w → −w:

z̃ = −ξ(w + ρxy + A1y + A2x) + η, (2.13)

It is easily seen that variables x, y, z̃ satisfy the polynomial equation Φ(x, y, z̃) = 0 with
the same polynomial (2.5). However corresponding Poisson algebra for variables x, y, z̃ is
obtained from the algebra (2.9) by changing of signs of PB:

{x, y} = −Φz̃, {y, z̃} = −Φx, {z̃, x} = −Φy (2.14)

Geometrical meaning of transformation z → z̃ is obvious: z, and z̃ are two roots of the
quadratic equation Φ(x, y, z) = const with x, y being fixed parameters, i.e. points z, z̃ are
two point of intersection of the 3-dimensional surface Φ(x, y, z) = const and the straight
line parallel to the axis z. Obviously variables (x, y, z̃) form classical Leonard triple as
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well as the variables (x, y, z). This means, that starting from the given CLT (x, y, z) one
can construct many other triples. We will investigate this problem in the next section.

3. 9 fundamental involutions

Consider first the simplest case C1 = C2 = C3 = 0, i.e.

Φ(x, y, z) = ρxyz + x2 + y2 + z2. (3.1)

We will call Φ(x, y, z) a Markov cubic because it was A.Markov who investigated this
polynomial from the point of view of number theory [16]. More exactly, Markov considered
the case ρ = −3. It appears that such cubic is connected with theory of quadratic
forms. Markov investigated a problem of finding all integer (nonzero) solutions of the
equation Φ(x, y, z) = 0. For ρ = −3 one such solution is obvious: (x0, y0, z0) = (1, 1, 1).
Markov showed that all integer solutions can be obtained from (1, 1, 1) by application
of 9 fundamental involutions of the cubic Φ(x, y, z). Among these involutions there are
obvious 3 permutations

Px : (x, y, z) → (x, z, y), Py : (x, y, z) → (z, y, x), Pz : (x, y, z) → (y, x, z) (3.2)

and 3 reflections:

Rx : (x, y, z) → (x,−y,−z), Ry : (x, y, z) → (−x, y,−z),

Rz : (x, y, z) → (−x,−y, z). (3.3)

The only non-trivial automorphisms are

Tx : (x, y, z) → (−x − ρyz, y, z), Ty : (x, y, z) → (x,−y − ρxz, z),

Tz : (x, y, z) → (x, y,−z − ρxy). (3.4)

The involutions Tx, Ty, Tz have the same geometrical meaning as in the end of the previous
section: e.g. (x, y, z) and (−x − ρyz, y, z) are two points of intersection of the surface
Φ(x, y, z) = 0 with the line parallel to the axis x. Further deep analysis of this problem
was done by Frobenius [8] who showed, in particular, that ρ = −1 and ρ = −3 are the only
values of the parameter ρ when nonzero integer solutions of the equation Φ(x, y, z) = 0
exist. In these admissible cases all nonzero integer solutions of such equation can be
obtained by application of 9 fundamental involutions to the simplest ones (1, 1, 1) (for
ρ = −3) and (3, 3, 3) (for ρ = −1). It is interesting to note that in the Dubrovin example
[6] one encounters just with the second admissible case ρ = −1. The reason for this, as
well as relations of the Dubrovin’s Poisson algebra with the Diofantine equations (and
theory of quadratic forms) are still unclear.

In what follows we will use the following rule for compositions of transformations
Tα, Rα, Pα. Let f(x, y, z) be an arbitrary function of 3 variables x, y, z. Define the trans-

formed function f̃(x, y, z) as f̃(x, y, z) = f(x̃, ỹ, z̃), where variables x̃, ỹ, z̃ are given by
above mentioned transformation formulas. Thus we can define action of the correspond-
ing operators, e.g. Txf(x, y, z) = f̃(x, y, z) = f(−x − ρyz, y, z). Then composition of

operators is defined by standard rules, e.g. TyTxf(x, y, z) = Tyf̃(x, y, z) etc.
Dubrovin noticed [6] that one can construct two operators

σ1 = RzTyPx, σ2 = RyTxPz (3.5)
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which are generators of the braid group, i.e. these generators satisfy the relation

σ2σ1σ2 = σ1σ2σ1. (3.6)

Explicitly, the braid operators act as σ1(x, y, z) = (−x, z, y + ρxz), σ2(x, y, z) = (y, x +
ρyz,−z). Moreover, there is relation

(σ1σ2)
3 = (σ2σ1)

3 = 1 (3.7)

Dubrovin found several finite orbits of the corresponding braid group. Some of these
orbits are connected with perfect polyhedra (i.e. tetrahedron, cube, icosahedron), for
others geometric meaning is still unknown.

Now, let us consider 9 fundamental involutions for the case of generic polynomial
Φ(x, y, z) given by (2.11). Involutions Tx, Ty, Tz have almost the same expression and
the same geometric meaning:

Tx : (x, y, z) → (−x − ρyz − C1, y, z), Ty : (x, y, z) → (x,−y − ρxz − C2, z),

Tz : (x, y, z) → (x, y,−z − ρxy − C3). (3.8)

Involutions Px, Py, Pz take now the form

Px : (x, y, z) → (x, z +
C2 − C3

ρx − 2
, y +

C3 − C2

ρx − 2
),

Py : (x, y, z) → (z +
C1 − C3

ρy − 2
, y, x +

C3 − C1

ρy − 2
),

Pz : (x, y, z) → (y +
C1 − C2

ρz − 2
, x +

C2 − C1

ρz − 2
, z) (3.9)

It is easily seen that P 2
x = P 2

y = P 2
z = 1 (i.e. these are indeed involutions) and for

C1 = C2 = C3 we return to permutations (3.2).
Involutions Rx, Ry, Rz are constructed as follows:

Rx : (x, y, z) → (x,−y +
2(2C2 − ρC3x)

ρ2x2 − 4
,−z +

2(2C3 − ρC2x)

ρ2x2 − 4
),

Ry : (x, y, z) → (−x +
2(2C1 − ρC3y)

ρ2y2 − 4
, y,−z +

2(2C3 − ρC1y)

ρ2y2 − 4
),

Rz : (x, y, z) → (−x +
2(2C1 − ρC2z)

ρ2z2 − 4
,−y +

2(2C2 − ρC1z)

ρ2z2 − 4
, z) (3.10)

Again it is easily verified that R2
x = R2

y = R2
z = 1 and these involutions become simple

reflections (3.3) when C1 = C2 = C3 = 0.
There are simple relations between involutions. E.g. in the simplest case C1 = C2 =

C3 = 0 all reflections Ri commute and we have

RxRy = RyRx = Rz (3.11)

From (3.11) we can obtain other relations of such type, e.g. RyRz = Rx, RxRz = Ry.
However, in general case involutions (3.10) do not commute. Nevertheless, in general case
there are simple relations between involutions, e.g. all involutions Rα commute with all
involutions Tβ if α 6= β:

[Rα, Tβ] = 0, if β 6= α. (3.12)
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Moreover, there are relations

[Rα, Pα] = 0, α = x, y, z (3.13)

and
PαTβPα = Tγ, if α 6= β 6= γ (3.14)

By direct computation it is verified the following important property of these involu-
tions:

Proposition 1. The involutions Rα, Pα and Tα (α = x, y, z) lead to anti-automorphisms
of the AW-algebra, i.e. {xα, xβ} → −{xα, xβ} .

In general case when Ci are nonzero, the operators σ1,2 constructed by (3.5) do not
satisfy braid relations (3.6). The open problems are:

(i) describe all integer solutions of the equation Φ(x, y, z) = 0;
(ii) describe the group generated by 9 involutions P, R, T and find its finite orbits;
(iii) find relation of classical AW-algebra with isomonodromy problem.

4. Trigonometric chain of CLT

We describe in this section an algorithm based on involutions Tx and Ty which leads to
a chain of CLT.

Fix the value of the variable z and consider the operator K = TyTx. As both Tx and
Ty are involutions, the operator K can be considered as a ”shift”. From proposition 1
we conclude that operator K is an automorphism of the AW-algebra. Denote (xn, yn, z)
variable which are obtained as (xn, yn, z) = Kn(x, y, z), n = 1, 2, . . . . Clearly, for all n
the triple (xn, yn, z) is a CLP satisfying the same AW -relations as initial triple (x, y, z).
In general Kn 6= 1, however there are special cases when KN = 1 for some N . In these
cases we have periodic orbit (xn, yn, z), n = 0, 1, 2, . . . , N − 1.

From (3.8) we obtain formula for action of K on the triple (x, y, z):

K(x, y, z) = (−x − ρyz − C1, ρzx + (ρ2z2 − 1)y + ρzC1 − C2, z) (4.1)

As the variable z is fixed under action of K, we can restrict ourselves with variables (x, y)
only. Then we have recursively

xn+1 = −xn − ρynz − C1, yn+1 = ρzxn + (ρ2z2 − 1)yn + ρzC1 − C2 (4.2)

The system (4.2) is a linear recurrence system with constant coefficients for two discrete
variables xn, yn. If z 6= 0 and ρz 6= ±2 general solution of this system can be presented in
the form

xn = µ1q
n + ν1q

−n + κ1, yn = µ2q
n + ν2q

−n + κ2 (4.3)

with some parameters q, µi, νi, κi, i = 1, 2 depending on z. For q we have quadratic
equation

q2 + (2 − ρ2z2)q + 1 = 0. (4.4)

If, however, z = 0 or ρz = ±2 then instead we have solution

xn = µ1n
2 + ν1n + κ1, yn = µ2n

2 + ν2n + κ2 (4.5)

It is intersting to note that in both cases we have for xn, yn so-called Askey-Wilson grids
[17],[15].
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Denote q = exp(iω). From (4.4) it is seen that

2 cos ω = ρ2z2 − 2 (4.6)

Thus if z is chosen such that condition ρ2z2 = 2 + 2 cos(2πM/N) holds for some integers
M,N then we have a N- periodic orbit of automorphisms of classical AW-algebras with
the same Casimir element. This condition can be rewritten in the form

ρz = ±2 cos(πM/N).

5. Elliptic chain of CLP and the Poncelet problem

In previous section we constructed a sequence of automorphisms of the classical AW-
algebra, connected with involutions Tx, Ty of the generalized Markov cubic (2.11) Φ(x, y, z) =
0.

In this section we construct another sequence of automorphisms of the AW-algebra
which is connected with involutions Rx, Ry. We show that these involutions have trans-
parent geometrical meaning and are closely related with the famous Poncelet problem in
projective geometry.

Return to canonical representation of the CLP in terms of bi-quadratic polynomial
F (x, y) (2.1). It is possible to present it in two forms:

F (x, y) = U2(y)x2 + U1(y)x + U0(y) = V2(x)y2 + V1(x)y + V0(x)

where Ui(y), Vi(x) are polynomials of degree ≤ 2. Take an arbitrary point (x0, y0) on the
bi-quadric F (x, y) = 0 and construct two involutions I1 and I2 having obvious geometrical
meaning. Involution I1 transforms the point (x0, y0) to the point (x0, y1) where y1 is
another point of intersection between vertical line x0 = const and biquadric F (x, y) = 0.
Explicitly

I1(x0, y0) = (x0, −y0 − V1(x0)/V2(x0))

Analogously we introduce involution I2:

I2(x0, y0) = (−x0 − U1(y0)/U2(y0), y0)

where the point −x0 − U1(y0)/U2(y0) is the second point of intersection of the biquadric
with horizontal line y0 = const. Obviously both operations I1, I2 are involutions: I2

1 =
I2
2 = E, where E is identical transformation.
Define the transformation S = I2I1 as a product of two successive involutions. Clearly,

S(x0, y0) = (x1, y1) = (−x0 − U1(y1)/U2(y1), −y0 − V1(x0)/V2(x0))

We can repeat this process and obtain a sequence of points (xn, yn) ≡ Sn(x0, y0) belonging
to the curve F (x, y) = 0. We have recurrence relation

(xn+1, yn+1) = (−xn − U1(yn+1)/U2(yn+1), −yn − V1(xn)/V2(xn))

Now we interpret x, y as dynamical variables with the Poisson bracket w = {x, y}, where
w2 = F (x, y).

Proposition 2. Transformation S is an automorphism of the classical AW-algebra. i.e.
{xn, yn} = {x0, y0} = w for n = 1, 2, . . . .



80 A. Korovnichenko & A. Zhedanov

For the proof of this proposition it is sufficient to verify that both involutions I1 and I2

are anti-automorphisms of the AW-algebra (this is obvious from their definition), hence
their product S = I2I1 is an automorphism.

From this proposition it follows that starting from a given CLP (x0, y0) we can construct
a sequence of CLP (xn, yn) with the same algebraic structure, i.e. variables (xn, yn, w)
form classical AW-algebra which commutation relations (2.2) do not depend on n.

Consider a special case of the bi-quadratic polynomial

F (x, y) = ρ2x2y2 − 4(x2 + y2) + 2ρC3xy − 4C1x − 4C2y + 4q (5.1)

(in general situation every bi-quadratic function F (x, y) can be transformed to this form
by an appropriate affine transformation of variables x, y). Then we have, equivalently,
AW-algebra connected with the cubic (2.11). In this case it easily verified that involution
I1 of the bi-quadric curve F (x, y) = 0 is equivalent to the involution Rx for the cubic
surface Φ(x, y, z) = 0. Analogously, involution I2 is equivalent to the involution Ry.
Thus we can present the shift operator S on the bi-quadratic curve a s a product of two
involutions S = RyRx.

Explicit solution for the points (xn, yn) = Sn(x0, y0) can be found in terms of elliptic
functions:

xn = Ξ1(qn + φ1), yn = Ξ2(qn + φ2), (5.2)

where φ1, φ2, q are some parameters and Ξ(z) is an elliptic function of second degree [27]:

Ξ(z) = µ
σ(z − ξ)σ(z + ξ)

σ(z − η)σ(z + η)
. (5.3)

The function σ(z) is the standard Weierstrass zeta-function (with quasi-periods 2ω1, 2ω2

which are not indicated in our notation). Subscripts Ξ1,2 mean that parameters µ, ξ, η
can take different values for xn and yn.

The proof of this proposition is based on the observation that an algorithm of con-
struction of points (xn, yn) on the bi-quadratic curve F (x, y) = 0 is equivalent to famous
Poncelet problem in projective geometry [3]. We refer to the paper [25] for details of this
identification. From this proposition it follows that the set of points (xn, yn) is finite if
the corresponding Poncelet problem has periodic solution ( the so-called Poncelet porism
[3]).

More precisely, the parameter q and periods 2ω1, 2ω2 of the functions Ξ1,2(z) depend
only on parameters of the bi-quadratic curve F (x, y) = 0 (or, equivalently, on parameters
of the AW-algebra). Then periodicity condition (xN , yN) = (x0, y0) means

qN = 2ω1M1 + 2ω2M2, (5.4)

where M1,M2 are some integers. In general, condition (5.4) is rather complicated: there
are no simple explicit formulas allowing to rewrite this condition in terms of the parameters
of the bi-quadratic F (x, y) = 0. The only known tool is so-called Cayley approach: some
determinant relations arising from corresponding Poncelet problem [3].

In special cases, trivial periodicity conditions arise. Consider. e.g. the case when the
function F (x, y) is an even function in y, i.e. F (x, y) = V2(x)y2 + V0(x). In this case it
is almost obvious that the period is 2 for generic initial point: (x2, y2) = (x0, y0). Such
case occurs, e.g. for the Markov cubic (3.1) when C1 = C2 = C3 = 0. In this case
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S(x0, y0) = (−x0,−y0) and action of the shift S is trivial. Thus, non-trivial action of this
transformation occurs only for curves F (x, y) = 0 which are not symmetric with respect
to co-ordinate axis x or y.

In another special case we have C1 = C2 = 0, C3 6= 0 in (5.1). Corresponding bi-
quadratic curve

F (x, y) = ρ2x2y2 − 4(x2 + y2) + 2ρC3xy + 4q = 0 (5.5)

is called the Euler-Baxter curve. It appeared first in Euler’s work on addition theorem
for elliptic sine function (in modern terms, of course). Equation (5.5) appeared also
in Baxter’s approach to solve the so-called 8-vertex model [2]. Baxter showed that the
transformation S in this case admits a simple solution in terms of elliptic sine function:

xn = µ sn(qn + φ1), yn = µ sn(q(n + 1/2) + φ1), (5.6)

with some parameters µ, q, φ1. Periodicity condition in this case can be presented as

qN = 4K(k)M,

where K(k) is complete elliptic integral of the first kind.
There is also an interesting relation with the so-called John algorithm in theory of

two-dimensional wave equation [12]. Consider a generic closed curve Γ such that any
vertical and horizontal line intersects Γ in no more than two points. Then it is possible to
construct two involutions I1, I2 in exactly the same manner as our involutions described
above. Corresponding operator S = I2I1 generates a shift (xn, yn) = Sn(x0, y0) on the
curve Γ, where (x0, y0) is an arbitrary initial point on Γ. John showed [12] that the
Dirichlet problem for the wave equation ψxy = 0 on Γ has unique solutions only if operator
S has no finite orbits, i.e. (xn, yn) 6= (x0, y0) for any n and any initial point (x0, y0). In our
case the curve Γ is a bi-quadric curve F (x, y) = 0. From the Poncelet porism it follows
that periodicity property (xN , yN) = (x0, y0) for some N depends only on parameters
of the bi-quadratic curve and does not depend on initial point (this is the famous big
Poncelet theorem [3]). This means, in particular, that the periodicity property for the AW-
automorphisms under transformation S is determined only by the value of the parameters
of the AW-algebra.

For details concerning relations between the Dirichlet problem for the wave equation,
John algorithm and the Poncelet problem see, e.g. [4].

Thus a set of automorphisms (xn, yn) = Sn(x0, y0) of the classical AW-algebra is equiv-
alent to the Poncelet problem and to the John algorithm in theory of differential equations
[12].

Now we identify involutions I1, I2 with involutions Rx, Ry introduced in Section 3.
Indeed, involution Rx defined by (3.10) leads to anti-automorphism

(x̃, ỹ, z̃) = (x,−y +
2(2C2 − ρC3x)

ρ2x2 − 4
,−z +

2(2C3 − ρC2x)

ρ2x2 − 4
)

of the Poisson algebra (2.9). Introduce the variable

w̃ = {x̃, ỹ} = −{x, y} = −w
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We see that variables (x̃, ỹ) form a new CLP with new variable w = −w which is
equivalent to involution I1 on the bi-quadric F (x, y) = w2 = const. Similarly, involution
Ry is equivalent to involution I2 on the same bi-quadric.

We thus conclude that involutions Rx, Ry on cubic surface (2.7) are equivalent to invo-
lutions I1, I2 on the bi-quadric F (x, y) = const

It would be interesting to obtain similar geometrical meaning of involutions Px, Py.

6. Quantum case

In this section we briefly describe situation in the quantum case, when x, y, z are non-
commuting variables satisfying AW-algebra [11]

xy − qyx = z + C1, yz − qzy = x + C1, zx − qxz = y + C2, (6.1)

where q 6= ±1 is a fixed real parameter. We see that the algebra (6.1) has almost the
same structure as classical AW-algebra (2.12) with replacing of Poisson brackets {, } by
commutators [, ].

It is interesting to note that algebra of type (6.1) appeared in the list of so-called 3-
dimensional skew-polynomial algebras introduced by Bell and Smith [24], [20]. Recently
the algebra (6.1) was studied by Rosengren and Terwilliger [21] in connection with Leonard
triples on the space of finite-dimensional matrices.

First, we establish existence of the Casimir operator for the algebra (6.1) which has the
form coinciding with classical one (2.5).

Proposition 3. The Casimir operator Q commuting with all the elements x, y, z has the
expression

Q = (q2 − 1)xyz + x2 + z2 + q2y2 + (q + 1)(C1x + C3z + qC2y) (6.2)

Proof of this proposition is direct verification of relations [Q, x] = [Q, y] = [Q, z] = 0
using commutation relations (6.1).

The main difference with respect to classical case is sensibility of the expression for
Q on order of elements x, y, z. There are 6 = 3! possibilities of choice of elements in
the product xyz. However, it is a nice property of the algebra (6.1) that for all such
choices the expression for Q will have similar form with the possible change of value of
coefficients in front of the quadratic and linear terms. Indeed, consider, e.g. permutation
of the elements x and y in cubic term in (6.2):

xyz = (qyx + z + C3)z = qyxz + z2 + C3z

(where we use the first of relations (6.1)). Thus we have instead of (6.2)

Q = q(q2 − 1)yxz + x2 + q2y2 + q2z2 + (q + 1)(C1x + qC2y + qC3z) (6.3)

Similarly, for all 6 possible choices of the cubic term in Q we obtain expressions similar
to (6.2) and (6.3).

It is interesting to investigate possible automorphisms of the ”quantum” polynomial
Q similar to classical involutions T, P, R. For generic values of parameters C1, C2, C3 we
have a quantum analogue of the involution Tx of the form:

Tx : (x, y, z) → (−x + (1 − q2)yz − (q + 1)C1, y/q, zq) (6.4)
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It is easily verified that the polynomial Q(x, y, z) remains unchanged under transforma-
tion.

We mention here two essential points concerning ”quantum” transformation (6.4):
(i) this transformation changes variables y, z;
(ii) this transformation leads to a new algebra for variables x̃, ỹ, z̃:

ỹx̃ − qx̃ỹ = q−1z̃ + C3

z̃ỹ − qỹz̃ = q−1x̃ + C1

x̃z̃ − qz̃x̃ = q3ỹ + C2q
2 (6.5)

New variables x̃, ỹ, z̃ satisfy AW -relations and hence form a ”quantum” Leonard triple.
It would be interesting to investigate other automorphisms of the ”quantum cubic”.
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