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Abstract

Certain aspects of the integrability/solvability of the Calogero-Sutherland-Moser
systems and the Ruijsenaars-Schneider-van Diejen systems with rational and trigono-
metric potentials are reviewed. The equilibrium positions of classical multi-particle
systems and the eigenfunctions of single-particle quantum mechanics are described
by the same orthogonal polynomials: the Hermite, Laguerre, Jacobi, continuous
Hahn, Wilson and Askey-Wilson polynomials. The Hamiltonians of these single-
particle quantum mechanical systems have two remarkable properties, factorization
and shape invariance.

1 Introduction

Exactly solvable or quasi-exactly solvable multi-particle quantum mechanical systems have
many remarkable properties. Especially, those of the Calogero-Sutherland-Moser(CSM)
systems[1, 2, 3] and their integrable deformation called the Ruijsenaars-Schneider-van
Diejen (RSvD) systems [4, 5] have been well studied. For example, the spectral curves
of the classical elliptic CSM systems appear in the Seiberg-Witten theory of the super-
symmetric gauge theory [6], and the relation between the eigenstates of the quantum
Sutherland system and those of the Ruijsenaars-Schneider system has led to the discov-
ery of the deformed Virasoro and WN algebras [7].

The equilibrium positions of the Calogero-Sutherland systems are described by the
zeros of the classical orthogonal polynomials; the Hermite, Laguerre and Jacobi (Cheby-
shev, Legendre, Gegenbauer) polynomials [8, 9, 10, 11]. Motivated by the simple reasoning
illustrated in the following diagram (a similar idea has led to the deformed Virasoro and
WN algebras),

Calogero-Sutherland

systems
equilibrium positions−−−−−−−−−−−−−−−−−−→

classical
orthogonal polynomials

y‘good’ deformation

y
‘good’ deformation

expected

Ruijsenaars-Schneider

-van Diejen systems
equilibrium positions−−−−−−−−−−−−−−−−−−→

deformed classical
orthogonal polynomials

we studied the equilibrium positions of the RSvD systems with rational and trigono-
metric potentials by using numerical analysis, functional equation and three-term recur-
rence. This program worked well and we obtained the deformed polynomials [12, 13]

∗Based on the talk “Equilibria of ‘Discrete’ Integrable Systems and Deformations of Classical Orthog-
onal Polynomials” at the RIMS workshop “Elliptic Integrable Systems”, 8–11 November 2004.
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(see also [14, 15, 16]), which fitted in the Askey-scheme of the hypergeometric orthogonal
polynomials [17, 18, 19]: deformation of the Hermite polynomial ⇒ special cases of the
Meixner-Pollaczek polynomial and the continuous Hahn polynomial; deformation of the
Laguerre polynomial ⇒ the continuous dual Hahn polynomial and the Wilson polynomial;
deformation of the Jacobi polynomial ⇒ the Askey-Wilson polynomial.

The Hermite, Laguerre and Jacobi polynomials, which describe the equilibrium po-
sitions of the classical multi-particle CS systems, also describe the eigenfunctions of the
corresponding single-particle quantum CS systems. This interesting property is inher-
ited by the deformed ones. The continuous Hahn, Wilson and Askey-Wilson polynomials,
which describe the equilibrium positions of the classical multi-particle RSvD systems, also
describe the eigenfunctions of the corresponding single-particle quantum RSvD systems.
The Hamiltonians for single-particle quantum CS and RSvD systems have two remarkable
properties, factorization and shape invariance [20, 21, 22, 23, 24]. Shape invariance is an
important ingredient of many exactly solvable quantum mechanics. In our case the shape
invariance determines the eigenfunctions and spectrum from the data of the ground state
wavefunction and the energy of the first excited state [25, 13].

The aim of this note is to give a comprehensive review of the above facts; (a) equi-
librium positions and single-particle eigenfunctions of the CS and RSvD systems with
rational and trigonometric potentials are described by the same orthogonal polynomials,
(b) Hamiltonians for quantum single-particle CS and RSvD systems with rational and
trigonometric potentials have two properties, factorization and shape invariance.

This note is organized as follows. In section 2 we recapitulate the essence of the
models, CS and RSvD systems with rational and trigonometric potentials. The relation-
ship between CS and RSvD systems is discussed, and the equations for the equilibrium
positions are given. In sections 3–6 we demonstrate that the same polynomials appear
in the equilibrium positions and single-particle eigenfunctions. We emphasize the shape
invariance of the single-particle Hamiltonian along the idea of Crum[21]. In section 3
the CS and RSvD systems with rational A-type potentials are discussed and the relevant
polynomials are the Hermite and the continuous Hahn polynomials. In section 4 ratio-
nal BC-type potentials are discussed and the Laguerre and Wilson polynomials play the
role. Section 5 is for the trigonometric A-type potentials. In section 6 the trigonometric
BC-type potentials are discussed and the Jacobi and Askey-Wilson polynomials appear.
Section 7 is for summary and comments.

2 Models

We recapitulate the basics of the models and present the equations for their equilibrium
positions. A multi-particle quantum (or classical) mechanics governed by a Hamiltonian
H(p, q) (or classical one Hclass(p, q)) is considered. The dynamical variables are real-valued
coordinates q = t(q1, · · · , qn) and their canonically conjugate momenta p = t(p1, · · · , pn).
For quantum case we have pj = −i~ ∂

∂qj
. We keep dimensionful parameters, e.g. mass,

angular frequency, the Planck constant, etc. The coordinate qj has dimension of length.
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2.1 Calogero-Sutherland Systems

The Hamiltonian of the Calogero-Sutherland (CS) systems is

HCS(p, q) =
n∑

j=1

1

2m
p2

j + VCS(q) , (1)

where the potential VCS(q) can be written in terms of the prepotential W (q),

VCS(q) =
n∑

j=1

1

2m

((∂W (q)

∂qj

)2

+ ~
∂2W (q)

∂q2
j

)
. (2)

The explicit forms of the potential VCS(q) and the prepotential W (q) are as follows:
(i) rational An−1 :

VCS(q) =
n∑

j=1

1

2
mω2q2

j +
~2

2m

n∑

j,k=1
j 6=k

g(g − 1)

(qj − qk)2
− 1

2
~ωn

(
1 + g(n − 1)

)
, (3)

W (q) = −
n∑

j=1

1

2
mωq2

j +
∑

1≤j<k≤n

g~ log
√

mω
~

∣∣qj − qk

∣∣ , (4)

(ii) rational1 BCn :

VCS(q) =
n∑

j=1

(
1

2
mω2q2

j +
~2

2m

(gS + gL)(gS + gL − 1)

q2
j

)

+
~2

2m

n∑

j,k=1
j 6=k

(
gM(gM − 1)

(qj − qk)2
+

gM(gM − 1)

(qj + qk)2

)
− ~ωn

(
gS + gL + 1

2
+ gM(n − 1)

)
,

(5)

W (q) = −
n∑

j=1

1

2
mωq2

j +
∑

1≤j<k≤n

gM~
(
log

√
mω
~

∣∣qj − qk

∣∣ + log
√

mω
~

∣∣qj + qk

∣∣
)

+
n∑

j=1

(
gS~ log

√
mω
~

∣∣qj

∣∣ + gL~ log
√

mω
~

∣∣2qj

∣∣
)

, (6)

(iii) trigonometric An−1 :

VCS(q) =
~2π2

2mL2

n∑

j,k=1
j 6=k

g(g − 1)

sin2 π
L
(qj − qk)

− ~2π2

2mL2
g2 1

3
n(n2 − 1) , (7)

W (q) =
∑

1≤j<k≤n

g~ log
∣∣sin π

L
(qj − qk)

∣∣ , (8)

1Since the independent coupling constants are gM and gS + gL, this BCn model is equivalent to Bn

or Cn model.
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(iv) trigonometric BCn :

VCS(q) =
~2π2

2mL2

n∑

j=1

(
(gS + gL)(gS + gL − 1)

sin2 π
L
qj

+
gL(gL − 1)

cos2 π
L
qj

)

+
~2π2

2mL2

n∑

j,k=1
j 6=k

(
gM(gM − 1)

sin2 π
L
(qj − qk)

+
gM(gM − 1)

sin2 π
L
(qj + qk)

)

− ~2π2

2mL2
n
((

gS + 2gL + gM(n − 1)
)2

+ g2
M

1
3
(n2 − 1)

)
, (9)

W (q) =
∑

1≤j<k≤n

gM~
(
log

∣∣sin π
L
(qj − qk)

∣∣ + log
∣∣sin π

L
(qj + qk)

∣∣
)

+
n∑

j=1

(
gS~ log

∣∣sin π
L
qj

∣∣ + gL~ log
∣∣sin π

L
2qj

∣∣
)

. (10)

The constant terms in VCS(q) are the consequences of the expression (2) in terms of the
prepotential. A constant shift of W (q) does not affect (2). In those formulas g, gS, gM

and gL are dimensionless coupling constants and we assume they are positive. The other
notation is conventional; m is the mass of particles, ω is the angular frequency, ~ is the
Planck constant (divided by 2π) and L is the circumference. All these parameters are
positive.

2.2 Ruijsenaars-Schneider-van Diejen Systems

The Ruijsenaars-Schneider-van Diejen (RSvD) systems are deformation of the Calogero-
Sutherland-Moser systems. The Hamiltonian of RSvD systems is

H(p, q) =
1

2
mc2

n∑

j=1

(√
Vj(q) e

1
mc

pj

√
Vj(q)

∗ +
√

Vj(q)
∗ e−

1
mc

pj

√
Vj(q) − Vj(q) − Vj(q)

∗
)

,

(11)
where Vj(q) are

Vj(q) = w(qj)
n∏

k=1
k 6=j

v(qj − qk) ×

{
1 for An−1

v(qj + qk) for BCn .
(12)

Since operators e±
1

mc
pj = e

∓i ~
mc

∂
∂qj cause finite shifts of the wavefunction in the imaginary

direction (e±
1

mc
pjf(q) = f(q1, · · · , qj ∓ i ~

mc
, · · · , qn)), we call these systems ‘discrete’ dy-

namical systems.2 The basic potential functions v(x) and w(x) are given by as follows:
(i) rational An−1 :

v(x) = 1 − i
~

mc

g

x
, (13)

w(x) =
(
1 + i

ω1

c
x
)(

1 + i
ω2

c
x
)

, (14)

2Sometimes they are misleadingly called ‘relativistic’ version of the CSM. See [26] for comments on
this point.
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(ii) rational BCn :

v(x) = 1 − i
~

mc

g0

x
, (15)

w(x) =
(
1 + i

ω1

c
x
)(

1 + i
ω2

c
x
)(

1 − i
~

mc

g1

x

)(
1 − i

~
mc

g2

x − i ~
2mc

)
, (16)

(iii) trigonometric An−1 :

v(x) =
sin π

L
(x − i ~

mc
g)

sin π
L
x

, (17)

w(x) = 1 , (18)

(iv) trigonometric BCn :

v(x) =
sin π

L
(x − i ~

mc
g0)

sin π
L
x

, (19)

w(x) =
sin π

L
(x − i ~

mc
g1)

sin π
L
x

sin π
L
(x − i ~

2mc
− i ~

mc
g2)

sin π
L
(x − i ~

2mc
)

×
cos π

L
(x − i ~

mc
g′
1)

cos π
L
x

cos π
L
(x − i ~

2mc
− i ~

mc
g′
2)

cos π
L
(x − i ~

2mc
)

. (20)

Here g, g0, g1, g2, g
′
1 and g′

2 are dimensionless coupling constants and c is the (fictitious)
speed of light. We assume they are all positive.

Let us consider c → ∞ limit, in which RSvD systems reduce to CS systems. Since
v(x) and w(x) contains c and i as a combination i

c
, we can expand them as follows:

v(x) = 1 + i
c
v1(x) + ( i

c
)2v2(x) + O( 1

c3
) , (21)

w(x) = 1 + i
c
w1(x) + ( i

c
)2w2(x) + O( 1

c3
) . (22)

Here v1(x) and w1(x) are odd real functions and v2(x) and w2(x) are even real functions
because of v(x)∗ = v(−x) and w(x)∗ = w(−x). Then the Hamiltonian (11) has the
expansion,

H(p, q) =
n∑

j=1

1

2m
p2

j +
n∑

j=1

(m

2
w1(qj)

2 − ~
2
w′

1(qj)
)

+
n∑

j,k=1
j 6=k

(m

2
v1(qj − qk)

2 − ~
2
v′

1(qj − qk) +
m

2
v1(qj + qk)

2 − ~
2
v′

1(qj + qk)

+ mw1(qj)
(
v1(qj − qk) + v1(qj + qk)

))

+
n∑

j,k,l=1
j 6=k 6=l6=j

m

2

(
v1(qj − qk) + v1(qj + qk)

)(
v1(qj − ql) + v1(qj + ql)

)
+ O

(1

c

)
,

(23)
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where the prime stands for the derivative. (For An−1 type systems, the terms containing
v1(qj + qk) and v′

1(qj + qk) should be omitted.) By explicit calculation, we obtain

lim
c→∞

H(p, q) = HCS(p, q), (24)

where the correspondence of parameters are

(i) ω1 + ω2 = ω, g = g, (25)

(ii) ω1 + ω2 = ω, g0 = gM , g1 + g2 = gS + gL, (26)

(iii) g = g, (27)

(iv) g0 = gM , g1 + g2 = gS + gL, g′
1 + g′

2 = gL . (28)

2.3 Equilibrium Positions

The classical Hamiltonian Hclass(p, q) is obtained from the quantum one H(p, q) by the fol-
lowing procedure; (a) regard pj is a c-number, (b) after expressing dimensionless coupling
constants g, g1, g2, · · · by dimensionful coupling constants ḡ = g~, ḡ1 = g1~, ḡ2 = g2~, · · · ,
assume ḡ, ḡ1, ḡ2, · · · are independent of ~, (c) take ~ → 0 limit. In the same way, V class(q),
W class(q), V class

j (q), vclass(x) and wclass(x) are also obtained.
The canonical equations of motion of the classical systems are

dqj

dt
=

∂Hclass(p, q)

∂pj

,
dpj

dt
= −∂Hclass(p, q)

∂qj

. (29)

The equilibrium positions are the stationary solution

p = 0 , q = q̄ , (30)

in which q̄ satisfies

∂Hclass(0, q)

∂qj

∣∣∣∣∣
q=q̄

= 0 (j = 1, . . . , n). (31)

For CS system, (31) becomes
∂V class

CS (q)

∂qj

∣∣∣
q=q̄

= 0 and it is equivalent to the condition [27]

∂W class(q)

∂qj

∣∣∣∣∣
q=q̄

= 0 (j = 1, . . . , n). (32)

For RSvD system, (31) is equivalent to the condition [14]

V class
j (q̄) = V class

j (q̄)∗ > 0 (j = 1, . . . , n). (33)

This equation without inequality is rewritten in a Bethe ansatz like equation

n∏

k=1
k 6=j

vclass(q̄j − q̄k) vclass(q̄j + q̄k)

vclass(q̄j − q̄k)∗ vclass(q̄j + q̄k)∗
=

wclass(q̄j)
∗

wclass(q̄j)
(j = 1, . . . , n). (34)

(For An−1 type systems, vclass(q̄j + q̄k) and vclass(q̄j + q̄k)
∗ should be omitted.)
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3 Rational A Types

In this section we consider CS and RSvD systems with rational A type potentials. Relevant
polynomials are the Hermite polynomial and the continuous Hahn polynomial.

3.1 Calogero Systems

The Hamiltonian is (1) with the potential (3)–(4).

3.1.1 Equilibrium positions of n-particle classical systems

For the n-particle prepotential (4), the equation for the equilibrium positions (32) was
studied by Stieltjes in a slightly different context more than a century ago [9]. Let us con-

sider a polynomial whose zeros give the equilibrium positions, f(y) =
∏n

j=1(y−
√

mω
ḡ

q̄j).

Then (32) can be converted to a differential equation for f(y), which is the determining
equation for the Hermite polynomial. Therefore we obtain the result [8],

n∏

j=1

(
y −

√
mω

ḡ
q̄j

)
= Hmonic

n (y) , (35)

where Hn(y) = 2nHmonic
n (y) is the Hermite polynomial [18].

3.1.2 Eigenfunctions of single-particle quantum mechanics

Let us consider single-particle case (n = 1) and write x = q1. The Hamiltonian (1)
describes the harmonic oscillator with the constant energy shift

H = − ~2

2m

d2

dx2
+

1

2
mω2x2 − 1

2
~ω . (36)

The eigenfunctions of this Hamiltonian are well-known, but we describe it in detail in
order to illustrate the idea of Crum[21], construction of isospectral Hamiltonians (see
Figure 1). By introducing a dimensionless variable y,

y =

√
mω

~
x, (37)

H can be written as

H = ~ωH , H = −1

2

d2

dy2
+

1

2
y2 − 1

2
. (38)

Instead of Hφn = Enφn, let us consider a rescaled one Hφn(y) = Enφn(y) (n = 0, 1, 2, . . .),
where energies are related as En = ~ωEn.

Let us develop the factorization method in its fullest generality. Let us assume that a
single-particle Hamiltonian H depends on a set of parameters to be represented collectively
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as λ. The present Hamiltonian H (38) contains no parameter, though. The Hamiltonian
H, defined in terms of the prepotential, is factorizable:

H = H(y ; λ) = A(y ; λ)†A(y ; λ) =
1

2

(
− d2

dy2
+

(dW(y ; λ)

dy

)2

+
d2W(y ; λ)

dy2

)
, (39)

A = A(y ; λ)
def
=

1√
2

(
−i

d

dy
+ i

dW(y ; λ)

dy

)
, (40)

A† = A(y ; λ)†
def
=

1√
2

(
−i

d

dy
− i

dW(y ; λ)

dy

)
, (41)

where W(y ; λ) is a prepotential. The ground state of H is annihilated by A (see Remark
in §4.1.2) and it is expressed by W ,

φ0(y ; λ) ∝ eW(y ;λ), E0(λ) = 0. (42)

In the present case we have

W(y) = −1

2
y2, φ0(y) ∝ e−

1
2
y2

, (43)

which is obviously square-integrable.
This Hamiltonian has a good property, shape invariance. Its key identity is

A(y ; λ)A(y ; λ)† = A(y ; λ + δ)†A(y ; λ + δ) + E1(λ) , (44)

where δ stands for a set of constants. In the present case we have

E1 = 1 , (45)

and there is no δ because of no λ. Starting from A0 = A, H0 = H and φ0,n = φn, let us
define As, Hs and φs,n (n ≥ s ≥ 0) recursively:

As+1(y ; λ)
def
= As(y ; λ + δ) , (46)

Hs+1(y ; λ)
def
= As(y ; λ)As(y ; λ)† + Es(λ) , (47)

φs+1,n(y ; λ)
def
= As(y ; λ)φs,n(y ; λ) . (48)

As a consequence of the shape invariance (44), we obtain for n ≥ s ≥ 0,

As(y ; λ) = A(y ; λ + sδ) , (49)

Hs(y ; λ) = As(y ; λ)†As(y ; λ) + Es(λ) = H(y ; λ + sδ) + Es(λ) , (50)

Es+1(λ) = Es(λ) + E1(λ + sδ) , (51)

Hs(y ; λ)φs,n(y ; λ) = En(λ)φs,n(y ; λ) , (52)

As(y ; λ)φs,s(y ; λ) = 0 , (53)

As(y ; λ)†φs+1,n(y ; λ) =
(
En(λ) − Es(λ)

)
φs,n(y ; λ) . (54)
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U

U

U
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A†
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†
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†
1

A1

A
†
1

A2

A
†
2

A2

A
†
2

A3

A
†
3

ã†ã

ã†ã

ã†ã

ã†ã

ã = U−1A

ã† = A† U

E0

E1

E2

E3

...

φ1

φ2

φ3

φ0

φ1,1

φ2,2

φ3,3

H0 H1 H2 H3
. . .

λ λ + δ λ + 2δ λ + 3δ . . .

Figure 1: A schematic diagram of the energy levels and the associated Hamiltonian sys-
tems together with the definition of the A and A† operators and the ‘creation’ (ã†) and
‘annihilation’ (ã) operators. The parameter set is indicated below each Hamiltonian.

From (48) and (54) we obtain formulas relating the wavefunctions along the horizontal
line (the isospectral line) of Fig.1,

φs,n(y ; λ) = As−1(y ; λ) · · · A1(y ; λ)A0(y ; λ)φn(y ; λ) , (55)

φn(y ; λ) =
A0(y ; λ)†

En(λ) − E0(λ)

A1(y ; λ)†

En(λ) − E1(λ)
· · · An−1(y ; λ)†

En(λ) − En−1(λ)
φn,n(y ; λ) , (56)

and from (50) we have

φn,n(y ; λ) ∝ φ0(y ; λ + nδ). (57)

It should be emphasized that all the operators A and A† in the above formulas are
explicitly known thanks to the shape-invariance. The latter formula (56) with (57) can
be understood as the Rodrigues-type formula. The relation (51) means that {En(λ)}n≥0

is calculable from E1(λ), namely the spectrum is determined by the shape invariance. In
the present case we obtain

En = n. (58)

As seen above, the operators A and A† act isospectrally, that is horizontally. On the
other hand, the annihilation and creation operators map from one eigenstate to another,
i.e. vertically, of a given Hamiltonian. In order to define the annihilation and creation
operators, let us introduce normalized basis {φ̂s,n}n≥s for each Hamiltonian Hs and unitary

operators Us = Us(λ) mapping the s-th orthonormal basis {φ̂s,n}n≥s to the (s + 1)-th

{φ̂s+1,n}n≥s+1 (see Fig.1 and for example [23, 28]):

Us(λ)φ̂s,n(y ; λ) = φ̂s+1,n+1(y ; λ), Us(λ)†φ̂s+1,n+1(y ; λ) = φ̂s,n(y ; λ). (59)
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We denote U0 = U . Roughly speaking U increases the parameters from λ to λ + δ. Then
an annihilation ã and a creation operator ã† for the Hamiltonian H are introduced as
follows:

ã = ã(y ; λ)
def
= U †(λ)A(y ; λ), ã† = ã(y ; λ)†

def
= A(y ; λ)†U(λ). (60)

It is straightforward to derive

H(y ; λ) = ã(y ; λ)†ã(y ; λ), (61)
[
ã(y ; λ), ã(y ; λ)†

]
φ̂n(y ; λ) = (En+1(λ) − En(λ))φ̂n(y ; λ). (62)

In the present case U is an identity map and we recover the well-known result. This
scheme is illustrated in Figure 1.

The above Rodrigues-type formula (56)–(57) gives φn(y) ∝ Hn(y)φ0(y). This can be
also understood in the following manner. By similarity transformation in terms of the
ground state wavefunction, let us define H̃,

H̃ = φ0(y ; λ)−1 ◦ H ◦ φ0(y ; λ) = −1

2

d2

dy2
− dW(y ; λ)

dy

d

dy
, (63)

= BC, B = −i
(

d
dy

+ 2dW(y ;λ)
dy

)
, C = − i

2
d
dy

, (64)

and consider higher eigenfunctions in a product form φn(y ; λ) = Pn(y ; λ)φ0(y ; λ), where
Pn(y ; λ) satisfies

H̃(y ; λ)Pn(y ; λ) = En(λ)Pn(y ; λ). (65)

In the present case we have

H̃ = −1

2

d2

dy2
+ y

d

dy
. (66)

Since the Hermite polynomial satisfies

( d2

dy2
− 2y

d

dy
+ 2n

)
Hn(y) = 0, (67)

we obtain

Pn(y) ∝ Hn(y), En = n. (68)

The energy of H is

En = ~ωn . (69)

3.2 Ruijsenaars-Schneider-van Diejen Systems

The Hamiltonian is (11) with the potential (13)–(14).

3.2.1 Equilibrium positions of n-particle classical systems

Let us consider a polynomial whose zeros give the equilibrium positions, f(y) =
∏n

j=1(y−√
mω1

ḡ
q̄j). Then (34) can be converted to a functional equation for f(y). We can show that



Shape Invariant (‘Discrete’) Quantum Mechanics 95

the solutions of this functional equation satisfy the three-term recurrence which agrees
with that of the continuous Hahn polynomials of specific parameters. The result is [12]

n∏

j=1

(
y −

√
mω1

ḡ
q̄j

)
= pmonic

n

(√
mc2

ω1ḡ
y ;

mc2

ω1ḡ
,
mc2

ω2ḡ
,
mc2

ω1ḡ
,
mc2

ω2ḡ

)
, (70)

where pn(y; a1, a2, b1, b2) = 1
n!

(n + a1 + a2 + b1 + b2 − 1)n pmonic
n (y; a1, a2, b1, b2) is the

continuous Hahn polynomial [18].

3.2.2 Eigenfunctions of single-particle quantum mechanics

Let us consider single-particle case (n = 1). The potential V1(q) is simply V1(q) = w(q1).
Let us write x = q1. The Hamiltonian (11) becomes

H =
mc2

2

(√
w(x) e−i ~

mc
d

dx

√
w(x)∗ +

√
w(x)∗ ei ~

mc
d

dx

√
w(x) − w(x) − w(x)∗

)
. (71)

By introducing a dimensionless variable3 y and a rescaled potential V (y),

y =
mc

~
x , (72)

V (y) = V
(
y ; (a1, a2)

)
= (a1 + iy)(a2 + iy) , (73)

w(x) and H are expressed as

w(x) =
~ω1

mc2

~ω2

mc2
V

(
y ;

(mc2

~ω1

,
mc2

~ω2

))
, (74)

H = mc2 ~ω1

mc2

~ω2

mc2
H . (75)

Here H is defined by

H =
1

2

(√
V (y) e−i d

dy

√
V (y)∗ +

√
V (y)∗ ei d

dy

√
V (y) − V (y) − V (y)∗

)
, (76)

where V (y) is V (y; λ) (73) with λ = (a1, a2) = (mc2

~ω1
, mc2

~ω2
). In the following we will

consider arbitrary positive parameters a1 and a2. Instead of Hφn = Enφn, let us consider
a rescaled equation Hφn(y) = Enφn(y) (n = 0, 1, 2, . . .), where energies are related as

En = ~2ω1ω2

mc2
En.

The Hamiltonian H is factorizable:

H = H(y ; λ) = A(y ; λ)†A(y ; λ) , (77)

A = A(y ; λ)
def
=

1√
2

(
e−

i
2

d
dy

√
V (y ; λ)∗ − e

i
2

d
dy

√
V (y ; λ)

)
, (78)

A† = A(y ; λ)†
def
=

1√
2

(√
V (y ; λ) e−

i
2

d
dy −

√
V (y ; λ)∗ e

i
2

d
dy

)
. (79)

3Since qj and pj are same in both hand sides of (24), y here and y in (37) are different: y in (37)
y in (72) =√

~ω
mc2 . In order to take c → ∞ limit we should rescale y here c-dependently.
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The ground state of H is annihilated by A,

φ0(y ; λ) ∝
∣∣Γ(a1 + iy)Γ(a2 + iy)

∣∣ , E0(λ) = 0. (80)

It is easy to verify that the Hamiltonian H is shape invariant (44) with

δ = (1
2
, 1

2
) , E1(λ) = a1 + a2 . (81)

Like in §3.1.2, let us define As, Hs and φs,n (n ≥ s ≥ 0) by (46)–(48). Then for n ≥ s ≥ 0
we obtain (49)–(54) and (55)–(57). From (51) and (81) we get

En(λ) = 1
2
n(n + 2a1 + 2a2 − 1). (82)

By similarity transformation in terms of the ground state wavefunction, we define H̃,

H̃ = φ0(y ; λ)−1 ◦ H ◦ φ0(y ; λ) =
1

2

(
V (y)e−i d

dy + V (y)∗ei d
dy − V (y) − V (y)∗

)
, (83)

= BC, B = −i
(
V (y)e−

i
2

d
dy − V (y)∗e

i
2

d
dy

)
, C = i

2

(
e−

i
2

d
dy − e

i
2

d
dy

)
, (84)

and consider φn(y ; λ) = Pn(y ; λ)φ0(y ; λ), where Pn(y ; λ) satisfies (65). This means that
Pn(y ; λ) is a special case of the continuous Hahn polynomial

Pn(y; λ) ∝ pn(y ; a1, a2, a1, a2), En(λ) = 1
2
n(n + 2a1 + 2a2 − 1). (85)

The energy of H is

En = ~(ω1 + ω2)n +
~2ω1ω2

2mc2
n(n − 1). (86)

In the c → ∞ limit we have lim
c→∞

En = ~(ω1 + ω2)n and this is consistent with (24), (25)

and (69).

4 Rational BC Types

In this section we consider CS and RSvD systems with rational BC type potentials.
Relevant polynomials are the Laguerre polynomial and the Wilson polynomial.

4.1 Calogero Systems

The Hamiltonian is (1) with the potential (5)–(6).

4.1.1 Equilibrium positions of n-particle classical systems

Let us consider a polynomial whose zeros give the equilibrium positions, f(y) =
∏n

j=1(y
2−

mω
ḡM

q̄2
j ). Then (32) can be converted to a differential equation for f(y), which is the

differential equation for the Laguerre polynomial. The result is

n∏

j=1

(
y2 − mω

ḡM

q̄2
j

)
= L(α)monic

n (y2) , α =
ḡS + ḡL

ḡM

− 1 , (87)

where L
(α)
n (y2) = (−1)n

n!
L

(α)monic
n (y2) is the Laguerre polynomial [18].
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4.1.2 Eigenfunctions of single-particle quantum mechanics

Let us consider the single-particle case (n = 1) and write x = q1 and g = gS + gL. The
Hamiltonian (1) describes the harmonic oscillator with a centrifugal barrier and a constant
energy shift

H = − ~2

2m

d2

dx2
+

1

2
mω2x2 +

~2

2m

g(g − 1)

x2
− ~ω

(
g +

1

2

)
. (88)

By introducing a dimensionless variable y (37), H can be written as

H = ~ωH , H = −1

2

d2

dy2
+

1

2
y2 +

g(g − 1)

2y2
− g − 1

2
. (89)

This H has a parameter g and we will write λ = g. Instead of Hφn = Enφn, let us
consider a rescaled equation Hφn(y) = Enφn(y) (n = 0, 1, 2, . . .), where energies are
related as En = ~ωEn.

Like in §3.1.2, H is factorizable (39)–(41), where the prepotential with parameter
λ = g is

W(y ; λ) = −1
2
y2 + g log y. (90)

The ground state wavefunction of H is (42),

φ0(y ; λ) ∝ yge−
1
2
y2

, E0(λ) = 0. (91)

The Hamiltonian H is shape invariant (44) with

δ = 1, E1(λ) = 2. (92)

Let us define As, Hs and φs,n (n ≥ s ≥ 0) by (46)–(48). Then for n ≥ s ≥ 0 we arrive at
the consequence of the shape-invariance (49)–(54) and (55)–(57). From (51) and (92) we
find the energy spectrum

En(λ) = 2n. (93)

The Rodrigues-type formula (56)–(57) gives φn(y ; g) ∝ L
(g− 1

2
)

n (y2)φ0(y ; g). This can
be also understood as (63)–(65),

H̃ = −1

2

d2

dy2
+

(
y − g

y

) d

dy
= 2

(
−η

d2

dη2
+ (η − g − 1

2
)

d

dη

)
, (η = y2). (94)

Since the Laguerre polynomial satisfies

(
η

d2

dη2
+ (α + 1 − η)

d

dη
+ n

)
L(α)

n (η) = 0, (95)

we obtain
Pn(y ; g) ∝ L

(g− 1
2
)

n (y2), En(g) = 2n. (96)

The energy of H is
En(g) = ~ω2n. (97)

Remark: For the given potential VCS(x), the prepotential W (x) is obtained by solving
the Riccati equation VCS(x) = 1

2m
(W ′(x)2 + ~W ′′(x)) + constant. The above prepotential
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(90) is one solution. Since the Hamiltonian(except for the constant term) contains g as
the combination g(g − 1), we have another solution W̌ ,

W̌(y ; g) = W(y ; 1 − g), (98)

and the corresponding Hamiltonian Ȟ is

Ȟ(y ; g) = Ǎ(y ; g)†Ǎ(y ; g) = H(y ; g) + 2g − 1. (99)

The ground state wavefunction of Ȟ (the state annihilated by Ǎ(y ; g)) is

φ̌0(y ; g) ∝ eW̌(y ;g) = y1−ge−
1
2
y2

, Ě0(g) = 0, (100)

which is square integrable for g < 3
2
. Note that φ0(y ; g) (91) is square integrable for

g > −1
2
. These two ‘ground’ states define two sectors of this system. Usually we consider

only one of them. Note that A(y ; g)φ̌0(y ; g) is square integrable for g ≤ 1
2
. From the

Rodrigues-type formula and the recurrence relation of the energy, we obtain

φ̌n(y ; g) ∝ L
( 1
2
−g)

n (y2)φ̌0(y ; g), Ěn(g) = 2n. (101)

The corresponding energy of H is

Ěn(g) = ~ω(2n + 1 − 2g). (102)

Therefore, for g < 3
2

(g 6= 1
2
), we have another sector of the system, (101) with (102). The

order of En(g) (97) and Ěn(g) (102) is

E0(g) < Ě0(g) < E1(g) < Ě1(g) < E2(g) < Ě2(g) < · · · for − 1
2

< g < 1
2
, (103)

Ě0(g) < E0(g) < Ě1(g) < E1(g) < Ě2(g) < E2(g) < · · · for 1
2

< g < 3
2
. (104)

Thus the lowest energy state of H is φ0(y ; g) for g ≥ 3
2

or −1
2

< g ≤ 1
2

(which cover all

values of g(g − 1) ≥ −1
4
), and φ̌0(y ; g) for 1

2
< g < 3

2
. In the g → 0(or 1) limit, both

sectors contribute and these eigenfunctions reduce to those in §3.1.2 due to the identities,

φn(y ; g → 0) ∝ L
(− 1

2
)

n (y2) e−
1
2
y2 ∝ H2n(y) e−

1
2
y2

, (105)

φ̌n(y ; g → 0) ∝ L
( 1
2
)

n (y2) y e−
1
2
y2 ∝ H2n+1(y) e−

1
2
y2

. (106)

4.2 Ruijsenaars-Schneider-van Diejen Systems

The Hamiltonian is (11) with the potential (15)–(16).

4.2.1 Equilibrium positions of n-particle classical systems

Let us consider a polynomial whose zeros give the equilibrium positions, f(y) =
∏n

j=1(y
2−

mω1

ḡ0
q̄2
j ). Then (34) can be converted to a functional equation for f(y). We can show that

the solutions of this functional equation satisfy the three-term recurrence which agrees
with that of the Wilson polynomials. The result is [12]

n∏

j=1

(
y2 − mω1

ḡ0

q̄2
j

)
= Wmonic

n

( mc2

ω1ḡ0

y2;
mc2

ω1ḡ0

,
mc2

ω2ḡ0

,
ḡ1

ḡ0

,
ḡ2

ḡ0

)
, (107)

where Wn(y2; a1, a2, a3, a4) = (−1)n(n + a1 + a2 + a3 + a4 − 1)n Wmonic
n (y2; a1, a2, a3, a4) is

the Wilson polynomial [18].
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4.2.2 Eigenfunctions of single-particle quantum mechanics

Let us consider the single-particle case (n = 1). The potential V1(q) is V1(q) = w(q1). Let
us write x = q1. The Hamiltonian (11) becomes (71) with w(x) in (16). By introducing
a dimensionless variable y (72) and a rescaled potential V (y),

V (y) = V
(
y ; (a1, a2, a3, a4)

)
=

(a1 + iy)(a2 + iy)(a3 + iy)(a4 + iy)

2iy(2iy + 1)
, (108)

w(x) and H are expressed as

w(x) = 4
~ω1

mc2

~ω2

mc2
V

(
y ;

(mc2

~ω1

,
mc2

~ω2

, g1, g2 + 1
2

))
, (109)

H = 4mc2 ~ω1

mc2

~ω2

mc2
H . (110)

Here rescaled Hamiltonian H is defined by (76), where V (y) is V (y; λ) (108) with λ =
(a1, a2, a3, a4) = (mc2

~ω1
, mc2

~ω2
, g1, g2 + 1

2
). In the following we will consider arbitrary positive

parameters a1, a2, a3, a4. Instead of Hφn = Enφn, let us consider the rescaled equation
Hφn(y) = Enφn(y) (n = 0, 1, 2, . . .), where energies are related as En = 4~2ω1ω2

mc2
En.

Like in §3.2.2, H is factorizable (77)–(79). The ground state of H is annihilated by A,

φ0(y ; λ) ∝
∣∣∣∣
Γ(a1 + iy)Γ(a2 + iy)Γ(a3 + iy)Γ(a4 + iy)

Γ(2iy)

∣∣∣∣ . (111)

The Hamiltonian H is shape invariant (44) with

δ = (1
2
, 1

2
, 1

2
, 1

2
), E1(λ) = 1

2
(a1 + a2 + a3 + a4). (112)

The third and fourth components of δ are consistent with δ in (92) because of (24) and
(26). Let us define As, Hs and φs,n (n ≥ s ≥ 0) by (46)–(48). Then for n ≥ s ≥ 0 we
obtain the consequences of the shape-invariance (49)–(54) and (55)–(57). From (51) and
(112) we obtain the energy spectrum

En(λ) =
1

2
n(n + a1 + a2 + a3 + a4 − 1). (113)

By similarity transformation in terms of the ground state wavefunction, (83)–(84) and
(65) imply that Pn(y ; λ) is the Wilson polynomial

Pn(y ; λ) ∝ Wn(y2; λ), En(λ) =
1

2
n(n + a1 + a2 + a3 + a4 − 1). (114)

The energy of H is

En = ~(ω1 + ω2)2n +
~2ω1ω2

mc2
2n(n + g1 + g2 − 1). (115)

In the c → ∞ limit we have lim
c→∞

En = ~(ω1 + ω2)2n and this is consistent with (24), (26)

and (97).
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5 Trigonometric A Types

In this section we consider the CS and RSvD systems with the trigonometric A type
potentials. The single-particle quantum mechanics is free theory and cosine (or sine)
functions are the eigenfunctions.

5.1 Sutherland Systems

The Hamiltonian is (1) with the potential (7)–(8).

5.1.1 Equilibrium positions of n-particle classical systems

The equation for the equilibrium positions (32) is easily solved,

π

L
q̄j =

π

n
(n + 1 − j) + α (j = 1, . . . , n), (116)

where α is an arbitrary real number which is a consequence of the translational invariance.
The rescaled equilibrium positions π

L
q̄j are zeros of cos n(θ − α′) (α′ = α − π

2n
), which is

equal to
Tn

(
cos(θ − α′)

)
. (117)

Here Tn(cos ϕ) = cos nϕ is the Chebyshev polynomial of the first kind [18].

5.1.2 Eigenfunctions of single-particle quantum mechanics

Let us consider the single-particle case (n = 1) and write x = q1. We impose the periodic
boundary condition on the wave function φ(x), φ(x + L) = φ(x). The Hamiltonian (11)
is a free one

H = − ~2

2m

d2

dx2
. (118)

By introducing a dimensionless variable y,

y =
π

L
x, (119)

H can be written as

H =
~2π2

mL2
H , H = −1

2

d2

dy2
. (120)

Moreover in terms of another dimensionless variable z,

z = e2iy = e2πi x
L , (121)

H becomes

H = 2D2
z , Dz

def
= z

d

dz
. (122)

The eigenfunctions of H (with periodic boundary condition in x) are easily obtained: zn

(n ∈ Z). Except for the ground state, eigenstates are doubly degenerated,

φ0(z) ∝ 1, φn(z) ∝ c1z
n + c2z

−n ∝ cos n(2y − α′) = Tn(cos(2y − α′)) (n ≥ 1), (123)

En = 2n2 (n ≥ 0), (124)
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where c1, c2, α
′ are arbitrary numbers. The variable 2y should be identified with θ in

§5.1.1 (see §6.1.2). The energy spectrum of H is

En =
~2π2

mL2
2n2 . (125)

5.2 Ruijsenaars-Schneider Systems

The Hamiltonian is (11) with the potential (17)–(18).

5.2.1 Equilibrium positions of n-particle classical systems

The equation for the equilibrium positions (33) is easily solved and the equilibrium posi-
tions are the same as those given in §5.1.1, (116).

5.2.2 Eigenfunctions of single-particle quantum mechanics

Let us consider the single-particle case (n = 1). The potential V1(q) is trivial V1(q) =
w(q1) = 1. Let us write x = q1. We impose the periodic boundary condition φ(x + L) =
φ(x), too. The Hamiltonian (11) becomes

H =
mc2

2

(
e−i ~

mc
d

dx + ei ~
mc

d
dx − 2

)
. (126)

By introducing a dimensionless variable y (119) and z (121), H can be written as

H = mc2H , H = 1
2

(
e−i d

dy + ei d
dy − 2

)
= 1

2

(
q−Dz + qDz − 2

)
, (127)

where we have introduced a dimensionless parameter4 q,

q = e−
2π~
mcL , 0 < q < 1. (128)

The operator qDz causes a q-shift, qDzf(z) = f(qz). Again this is a free theory and
the eigenfunctions of H (with periodic boundary condition in x) are easily obtained: zn

(n ∈ Z). Except for the ground state, eigenstates are doubly degenerate: (123) and

En = 2 sinh2 ~πn

mcL
(n ≥ 0). (129)

The energy spectrum of H is

En = 2mc2 sinh2 ~πn

mcL
. (130)

In the c → ∞ limit we have lim
c→∞

En = ~2π2

mL2 2n2 and this is consistent with (24), (27) and

(125).

4Here we adopt the standard notation for the modulus q. There should not be any confusion with the
coordinate q.
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6 Trigonometric BC Types

In this section we consider the CS and RSvD systems with the trigonometric BC type
potentials. The Jacobi polynomial and the Askey-Wilson polynomial play the role.

6.1 Sutherland Systems

The Hamiltonian is (1) with the potential (9)–(10).

6.1.1 Equilibrium positions of n-particle classical systems

Let us consider a polynomial whose zeros give the equilibrium positions, f(ξ) =
∏n

j=1

(
ξ−

cos
(
2 π

L
q̄j

))
. Then (32) can be converted to a differential equation for f(y), which deter-

mines the Jacobi polynomial. The result is

n∏

j=1

(
ξ − cos

(
2 π

L
q̄j

))
= P (α,β)monic

n (ξ) , α =
ḡS + ḡL

ḡM

− 1 , β =
ḡL

ḡM

− 1 , (131)

where P
(α,β)
n (ξ) = 2−n

(
α+β+2n

n

)
P

(α,β) monic
n (ξ) is the Jacobi polynomial [18].

6.1.2 Eigenfunctions of single-particle quantum mechanics

Let us consider the single-particle case (n = 1) and write x = q1 and g = gS +gL, g′ = gL.
The Hamiltonian (1) has the Pöschl-Teller potential [29] with a constant energy shift

H = − ~2

2m

d2

dx2
+

~2π2

2mL2

(g(g − 1)

sin2 π
L
x

+
g′(g′ − 1)

cos2 π
L
x

)
− ~2π2

2mL2
(g + g′)2 . (132)

By introducing a dimensionless variable y (119), H can be written as

H =
~2π2

mL2
H , H =

1

2

(
− d2

dy2
+

g(g − 1)

sin2 y
+

g′(g′ − 1)

cos2 y
− (g + g′)2

)
. (133)

This H has parameters g and g′ and we will denote λ = (g, g′). In the following we will
consider arbitrary positive parameters g and g′. Instead of Hφn = Enφn, let us consider
Hφn(y) = Enφn(y) (n = 0, 1, 2, . . .), where energies are related as En = ~2π2

mL2 En.
Like in §3.1.2, H is factorizable (39)–(41), where the prepotential with parameters

λ = (g, g′) is
W(y ; λ) = g log sin y + g′ log cos y. (134)

The ground state wavefunction of H is (42),

φ0(y ; λ) ∝ (sin y)g(cos y)g′ , E0(λ) = 0. (135)

The Hamiltonian H is shape invariant (44) with

δ = (1, 1), E1(λ) = 2(g + g′ + 1). (136)
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Let us define As, Hs and φs,n (n ≥ s ≥ 0) by (46)–(48). Then for n ≥ s ≥ 0 we obtain
the consequence of the shape-invariance (49)–(54) and (55)–(57). From (51) and (136)
we obtain

En(λ) = 2n(n + g + g′). (137)

The Rodrigues-type formula (56)–(57) gives φn(y) ∝ P
(g− 1

2
,g′− 1

2
)

n (cos 2y)φ0(y). This
can be also understood as (63)–(65),

H̃ = −1

2

d2

dy2
−

(
g cot y − g′ tan y

) d

dy

= −2
(
(1 − ξ2)

d2

dξ2
−

(
g − g′ + (g + g′ + 1)ξ

) d

dξ

)
, (ξ = Rez = cos 2y). (138)

Since the Jacobi polynomial satisfies
(
(1 − ξ2)

d2

dξ2
−

(
α − β + (α + β + 2)ξ

) d

dξ
+ n(n + α + β + 1)

)
P (α,β)

n (ξ) = 0, (139)

we obtain
Pn(z ; λ) ∝ P

(g− 1
2
,g′− 1

2
)

n (ξ), En(λ) = 2n(n + g + g′). (140)

The energy spectrum of H is

En(λ) =
~2π2

mL2
2n(n + g + g′) =

~2π2

2mL2

(
(2n + g + g′)2 − (g + g′)2

)
. (141)

Remark: Similarly to Remark in §4.1.2, we have three other prepotentials W̌ [1], W̌ [2],
W̌ [3],

W̌ [1]
(
y ; (g, g′)

)
= W

(
y ; (1 − g, g′)

)
,

W̌ [2]
(
y ; (g, g′)

)
= W

(
y ; (g, 1 − g′)

)
, (142)

W̌ [3]
(
y ; (g, g′)

)
= W

(
y ; (1 − g, 1 − g′)

)
,

together with the corresponding Hamiltonians Ȟ:

Ȟ[1](y ; λ) = Ǎ[1](y ; λ)†Ǎ[1](y ; λ) = H(y ; λ) + 2(g − 1
2
)(g′ + 1

2
),

Ȟ[2](y ; λ) = Ǎ[2](y ; λ)†Ǎ[2](y ; λ) = H(y ; λ) + 2(g + 1
2
)(g′ − 1

2
), (143)

Ȟ[3](y ; λ) = Ǎ[3](y ; λ)†Ǎ[3](y ; λ) = H(y ; λ) + 2(g + g′ − 1).

The ‘ground’ state of Ȟ[a] (a = 1, 2, 3) is φ̌
[a]
0 (y ; λ) ∝ eW̌

[a](y ;λ) and they are square
integrable for g < 3

2
and/or g′ < 3

2
. Note that φ0(y ; λ) (135) is square integrable for

g, g′ > −1
2
. These four ‘ground’ states define four sectors of this system. Usually we

consider only one of them. Note that A(y ; g)φ̌
[a]
0 (y ; g) is square integrable for g ≤ 1

2

and/or g′ ≤ 1
2
. From the Rodrigues-type formula and the recurrence relation of the

energy, we obtain

φ̌[1]
n (y ; λ) ∝ P

( 1
2
−g,g′− 1

2
)

n (cos 2y)φ̌
[1]
0 (y ; λ), Ě [1]

n (λ) = 2n(n + 1 − g + g′),

φ̌[2]
n (y ; λ) ∝ P

(g− 1
2
, 1
2
−g′)

n (cos 2y)φ̌
[2]
0 (y ; λ), Ě [2]

n (λ) = 2n(n + 1 + g − g′), (144)

φ̌[3]
n (y ; λ) ∝ P

( 1
2
−g, 1

2
−g′)

n (cos 2y)φ̌
[3]
0 (y ; λ), Ě [3]

n (λ) = 2n(n + 2 − g − g′).
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The corresponding energy spectra of H are

Ě[1]
n (λ) =

~2π2

2mL2

(
(2n + 1 − g + g′)2 − (g + g′)2

)
,

Ě[2]
n (λ) =

~2π2

2mL2

(
(2n + 1 + g − g′)2 − (g + g′)2

)
, (145)

Ě[3]
n (λ) =

~2π2

2mL2

(
(2n + 2 − g − g′)2 − (g + g′)2

)
.

Therefore, for g < 3
2

and/or g′ < 3
2
, we have these sectors. φ0(y ; λ) is the lowest energy

state of H for g, g′ ≥ 3
2

or −1
2

< g, g′ ≤ 1
2
. In the g, g′ → 0 (or 1) limit, all of these sectors

contribute and these eigenfunctions reduce to those in §5.1.2 due to the identities,

φn

(
y ; (g → 0, g′ → 0)

)
∝ P

(− 1
2
,− 1

2
)

n (cos 2y) ∝ cos 2ny, (146)

φ̌[1]
n

(
y ; (g → 0, g′ → 0)

)
∝ P

( 1
2
,− 1

2
)

n (cos 2y) sin y ∝ sin(2n + 1)y, (147)

φ̌[2]
n

(
y ; (g → 0, g′ → 0)

)
∝ P

(− 1
2
, 1
2
)

n (cos 2y) cos y ∝ cos(2n + 1)y, (148)

φ̌[3]
n

(
y ; (g → 0, g′ → 0)

)
∝ P

( 1
2
, 1
2
)

n (cos 2y) sin y cos y ∝ sin 2(n + 1)y. (149)

(The two sets (147) and (148) are excluded by the periodic boundary condition in x.)

6.2 Ruijsenaars-Schneider-van Diejen Systems

The Hamiltonian is (11) with the potential (19)–(20).

6.2.1 Equilibrium positions of n-particle classical systems

Let us consider a polynomial whose zeros give the equilibrium positions, f(ξ) =
∏n

j=1

(
ξ−

cos
(
2 π

L
q̄j

))
. Then (34) can be converted to a functional equation for f(y). We can show

that the solutions of this functional equation satisfy the three-term recurrence which
agrees with that of the Wilson polynomials. The result is [12, 15, 13](see also [16])

n∏

j=1

(
ξ − cos

(
2 π

L
q̄j

))
= pmonic

n

(
ξ ; e−

2πḡ1
mcL , e−

2πḡ2
mcL ,−e−

2πḡ′1
mcL ,−e−

2πḡ′2
mcL

∣∣ e−
2πḡ0
mcL

)
, (150)

where pn(ξ ; a1, a2, a3, a4|q) = 2n(a1a2a3a4q
n−1; q)n pmonic

n (ξ ; a1, a2, a3, a4|q) is the Askey -

Wilson polynomial [18]. Note that e−
2πḡ0
mcL etc. are formally expressed as e−

2π~g0
mcL = qg0 etc.

by using q in (128).

6.2.2 Eigenfunctions of single-particle quantum mechanics

Let us consider the single-particle case (n = 1). The potential V1(q) is V1(q) = w(q1). Let
us write x = q1. The Hamiltonian (11) becomes (71) with w(x) in (20). By using y (119),
discussion goes parallel to that in §4.2.2, but the variable z (121) is more suitable. So we
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will reformulate by using z and q (128). By introducing a dimensionless variable z (121)
and a rescaled potential V (z),

V
(
z ; (a1, a2, a3, a4), q

)
=

(1 − a1z)(1 − a2z)(1 − a3z)(1 − a4z)

(1 − z2)(1 − qz2)
, (151)

w(x) and H are expressed as

w(x)∗ = q−
1
2
(g1+g2+g′1+g′2)V (z ; (qg1 , qg2+ 1

2 ,−qg′1 ,−qg′2+ 1
2 ), q), (152)

H = mc2q−
1
2
(g1+g2+g′1+g′2)H. (153)

Here H is defined by

H =
1

2

(√
V (z) qDz

√
V (z)∗ +

√
V (z)∗ q−Dz

√
V (z) − V (z) − V (z)∗

)
, (154)

where V (z) is V (z; λ, q) (151) with λ = (a1, a2, a3, a4) = (qg1 , qg2+ 1
2 ,−qg′1 ,−qg′2+ 1

2 ). In the
following we will consider the parameters in the range −1 < a1, a2, a3, a4 < 1 and 0 <
q < 1. Instead of Hφn = Enφn, let us consider the rescaled equation Hφn(z) = Enφn(z)

(n = 0, 1, 2, . . .), where energies are related as En = mc2q−
1
2
(g1+g2+g′1+g′2)En.

Like in §4.2.2, H is factorizable:

H = H(z ; λ, q) = A(z ; λ, q)†A(z ; λ, q) , (155)

A = A(z ; λ, q)
def
=

1√
2

(
q

1
2
Dz

√
V (z ; λ, q)∗ − q−

1
2
Dz

√
V (z ; λ, q)

)
, (156)

A† = A(z ; λ, q)†
def
=

1√
2

(√
V (z ; λ, q) q

1
2
Dz −

√
V (z ; λ, q)∗ q−

1
2
Dz

)
. (157)

The ground state of H is annihilated by A,

φ0(z) ∝
∣∣∣∣

(z2; q)∞
(a1z, a2z, a3z, a4z; q)∞

∣∣∣∣ . (158)

The Hamiltonian H is shape invariant but slightly different from the previous form (44)

A(z ; λ, q)A(z ; λ, q)† = q2δ′A(z ; qδλ, q)†A(z ; qδλ, q) + E1(λ, q) , (159)

with5

δ =
1

2
, δ′ = −1

2
, E1(λ, q) = 1

2
(q−1 − 1)(1 − a1a2a3a4) . (160)

This δ is consistent with δ in (136) because of (24) and (28).
Starting from A0 = A, H0 = H and φ0,n = φn, let us define As, Hs and φs,n (n ≥ s ≥ 0)

recursively:

As+1(z ; λ, q)
def
= qδ′As(z ; qδλ, q) , (161)

Hs+1(z ; λ, q)
def
= As(z ; λ, q)As(z ; λ, q)† + Es(λ, q) , (162)

φs+1,n(z ; λ, q)
def
= As(z ; λ, q)φs,n(z ; λ, q) . (163)

5If we include a factor (a1a2a3a4)−
1
2 into V (z) (namely w(x)∗), then δ′ becomes 0.



106 S. Odake & R. Sasaki

As a consequence of the shape invariance (159), we obtain for n ≥ s ≥ 0,

As(z ; λ, q) = qsδ′A(z ; qsδλ, q) , (164)

Hs(z ; λ, q) = As(z ; λ, q)†As(z ; λ, q) + Es(λ, q) = q2sδ′H(z ; qsδλ, q) + Es(λ, q) , (165)

Es+1(λ, q) = Es(λ, q) + q2sδ′E1(q
sδλ, q) , (166)

Hs(z ; λ, q)φs,n(z ; λ, q) = En(λ, q)φs,n(z ; λ, q) , (167)

As(z ; λ, q)φs,s(z ; λ, q) = 0 , (168)

As(z ; λ, q)†φs+1,n(z ; λ, q) =
(
En(λ, q) − Es(λ, q)

)
φs,n(z ; λ, q) . (169)

From (163) and (169) we obtain formulas,

φs,n(z ; λ, q) = As−1(z ; λ, q) · · · A1(z ; λ, q)A0(z ; λ, q)φn(z ; λ, q) , (170)

φn(z ; λ, q) =
A0(z ; λ, q)†

En(λ, q) − E0(λ, q)

A1(z ; λ, q)†

En(λ, q) − E1(λ, q)
· · · An−1(z ; λ, q)†

En(λ, q) − En−1(λ, q)
φn,n(z ; λ, q) ,

(171)

and from (165) we have
φn,n(z ; λ, q) ∝ φ0(z ; qnδλ, q). (172)

From (166) and (160), we obtain

En(λ, q) = 1
2
(q−n − 1)(1 − a1a2a3a4q

n−1). (173)

By similarity transformation in terms of the ground state wavefunction, let us define
H̃,

H̃ = φ0(z ; λ, q)−1 ◦ H ◦ φ0(z ; λ, q) =
1

2

(
V (z)qDz + V (z)∗q−Dz − V (z) − V (z)∗

)
, (174)

= BC, B = V (z)q
1
2
Dz − V (z)∗q−

1
2
Dz , C = 1

2

(
q

1
2
Dz − q−

1
2
Dz

)
, (175)

and consider φn(z ; λ, q) = Pn(z ; λ, q)φ0(z ; λ, q), where Pn(z ; λ, q) satisfies

H̃(z ; λ, q)Pn(z ; λ, q) = En(λ, q)Pn(z ; λ, q). (176)

This means that Pn(z ; λ, q) is the Askey-Wilson polynomial

Pn(z; λ, q) ∝ pn(Rez ; a1, a2, a3, a4|q), En(λ, q) = 1
2
(q−n − 1)(1 − a1a2a3a4q

n−1). (177)

The energy spectrum of H is

En = mc2q−
1
2
(g1+g2+g′1+g′2) 1

2
(q−n − 1)(1 − qn+g1+g2+g′1+g′2)

= 2mc2 sinh
~πn

mcL
sinh

~π(n + g1 + g2 + g′
1 + g′

2)

mcL
. (178)

In the c → ∞ limit we have lim
c→∞

En =
~2π2

mL2
2n(n+ g1 + g2 + g′

1 + g′
2) and this is consistent

with (24), (28) and (141).
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7 Summary and Comments

We have reviewed some interesting properties of the Calogero-Sutherland-Moser systems
and the Ruijsenaars-Schneider-van Diejen systems with the rational and trigonometric
potentials. The equilibrium positions of classical multi-particle systems and the eigen-
functions of single-particle quantum mechanics are described by the same orthogonal
polynomials: the Hermite, Laguerre, Jacobi, continuous Hahn, Wilson and Askey-Wilson
polynomials. This interesting property was obtained as a result of explicit computation
and we do not know any deeper reason or meaning behind it. The CSM and RSvD sys-
tems admit elliptic potentials and finding eigenfunctions of such elliptic systems is a good
challenge. If this property is inherited by the elliptic cases, study of classical equilibrium
positions may shed light on the quantum problem of finding eigenfunctions, which is quite
non-trivial.

When we discuss the Hamiltonians of these single-particle quantum mechanics, we have
emphasized factorization, shape invariance and construction of the isospectral Hamiltoni-
ans. Although the examples given in this note are rational and trigonometric potentials,
this method and idea could be applied to a wider class of potentials, e.g. elliptic poten-
tial. In ordinary quantum mechanics there is the Crum’s theorem [21], which states a
construction of the associated isospectral Hamiltonians Hs and their eigenfunctions φs,n

for general systems without shape invariance. The construction of Hs and φs,n given in
this note for ‘discrete’ cases needs shape invariance. A ‘discrete’ analogue of the Crum’s
theorem, namely similar construction without shape invariance, would be very helpful, if
it exists.

It should be mentioned that in the discussion of various ‘eigenfunctions’, the function
theory aspects are more emphasized than the ordinary quantum mechanical considerations
in §4.1.2, §5.1.2 and §6.1.2.
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