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Abstract

We review several determinant and Pfaffian identities, which generalize the
evaluation formulae of Cauchy’s determinant det (1/(xi + yj)) and Schur’s Pfaffian
Pf ((xj − xi)/(xj + xi)). As a multi-variable generalization, we consider Cauchy-
type determinants and Schur-type Pfaffians of matrices with entries involving some
generalized Vandermonde determinants. Also we give an elliptic generalization of
Schur’s Pfaffian identity, which is a Pfaffian counterpart of Frobenius’ identity.

1 Introduction

Identities for determinants and Pfaffians are of great interest in many branches of mathe-
matics and mathematical physics. Some people need relations among minors or subPfaf-
fians of a general matrix (e.g., Plücker relations), others have to evaluate special determi-
nants or Pfaffians (e.g, Vandermonde determinant). In combinatorics and representation
theory, an important role is played by Cauchy’s determinant identity [3]

det

(
1

xi + yj

)

1≤i,j≤n

=

∏
1≤i<j≤n(xj − xi)(yj − yi)∏n

i,j=1(xi + yj)
, (1.1)

or its equivalent form

det

(
1

1 − xiyj

)

1≤i,j≤n

=

∏
1≤i<j≤n(xj − xi)(yj − yi)∏n

i,j=1(1 − xiyj)
. (1.2)

And Schur’s Pfaffian identity [22]

Pf

(
xj − xi

xj + xi

)

1≤i,j≤2n

=
∏

1≤i<j≤2n

xj − xi

xj + xi

, (1.3)

and its variation (given in [14] and [24])

Pf

(
xj − xi

1 − xjxi

)

1≤i,j≤2n

=
∏

1≤i<j≤2n

xj − xi

1 − xixj

(1.4)

are of similar importance when we are working with Pfaffians. Here Pf X denotes the
Pfaffian of a skew-symmetric matrix X. Since 19th century, many generalizations or
variations of these determinant and Pfaffian identities have appeared in the literature.
Besides, C. Krattenthaler [12], [13] has given a comprehensive survey of determinant
evaluations.

In this article, we are interested in the following three types of generalizations or
variations. The first type is a multi-variable generalization. The above identities contain
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only one (or two) set of variables, so it is natural to generalize these identities so that more
sets of variables are involved. In this direction, the author [17], [18] and T. Sundquist [25]
gave evaluation formulae for two-variable (or three-variable) Cauchy’s determinants and
Schur’s Pfaffians such as

det

(
bj − ai

yj − xi

)

1≤i,j≤n

, Pf

(
(aj − ai)(bj − bi)

xj − xi

)

1≤i,j≤2n

, Pf

(
aj − ai

1 + xixj

)

1≤i,j≤2n

.

And their identities have remarkable applications in theory of symmetric functions, rep-
resentation theory of classical groups, and enumerative combinatorics. One of our main
results (Theorem 2.1) of this article provides a multi-variable generalization of their iden-
tities.

The second type is an elliptic generalization. G. Frobenius [4] gave the following
determinant identity:

det

(
σ(z + xi + yj)

σ(z)σ(xi + yj)

)

1≤i,j≤n

=

∏
1≤i<j≤n σ(xj − xi)σ(yj − yi)∏n

i,j=1 σ(xi + yj)
·
σ(z +

∑n
i=1 xi +

∑n
j=1 yj)

σ(z)
,

(1.5)
where σ(x) is the Weierstrass sigma function. Note that, if we take the limit z → ∞ in the
rational case of this identity, we obtain Cauchy’s determinant identity (1.1). Hence (1.5)
can be regarded as an elliptic generalization of (1.1). Recently, in the study of elliptic
hypergeometric series, Frobenius’ identity plays a key role in proving their transformations
(see [10], [21]), and several elliptic determinant and Pfaffian identities are discovered. In
this article, we give an elliptic generalization of Schur’s Pfaffian identity (Theorem 4.1).
We expect that our elliptic generalization provides another tool in the theory of special
functions.

The third type is a little different from the above two types. C. W. Borchardt [1] gave
the following variation of Cauchy’s determinant identities:

det

(
1

(xi + yj)2

)

1≤i,j≤n

=

∏
1≤i<j≤n(xj − xi)(yj − yi)∏n

i,j=1(xi + yj)
· perm

(
1

xi + yj

)

1≤i,j≤n

, (1.6)

det

(
1

(1 − xiyj)2

)

1≤i,j≤n

=

∏
1≤i<j≤n(xj − xi)(yj − yi)∏n

i,j=1(1 − xiyj)
· perm

(
1

1 − xiyj

)

1≤i,j≤n

, (1.7)

where perm X is the permanent of a square matrix X. We present a Borchardt-type
variation of Schur’s Pfaffian identities in Theorem 5.1. These Borchardt-type variations
are used in [18] to evaluate the determinants and Pfaffians appearing in the 0-enumeration
of symmetry classes of alternating sign matrices.

This paper is organized as follows. In Section 2, we review multi-variable general-
izations of Cauchy’s determinant identity and Schur’s Pfaffian identity, and Section 3 is
devoted to a survey of their specializations and applications. An elliptic generalization
and a Borchardt-type variation of Schur’s Pfaffian identity are given in Section 4 and 5
respectively.

The author expresses his gratitude to Professors M. Ishikawa, H. Kawamuko, H. Tagawa
and J. Zeng for collaboration and discussions.
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Notations: In this article, the bold-faced letters x etc. represent vectors of variables.
We denote the all-one vector (1, 1, · · · , 1) by 1. For two vectors x = (x1, · · · , xn) and
y = (y1, · · · , yn), we use the following notations:

x + y = (x1 + y1, . . . , xn + yn), xy = (x1y1, . . . , xnyn), xk = (xk
1, . . . , x

k
n).

And we write ax for (ax1, · · · , axn).

2 Multi-variable generalization

In this section, we present several identities of Cauchy-type determinants and Schur-type
Pfaffians involving generalized Vandermonde determinants. Let x = (x1, · · · , xn) and
a = (a1, · · · , an) be two vectors of variables of length n. For nonnegative integers p and
q with p + q = n, we define a generalized Vandermonde matrix V p,q(x; a) to be the n× n
matrix with ith row

(1, xi, · · · , xp−1
i , ai, aixi, · · · , aix

q−1
i ).

If q = 0, then V n,0(x; a) =
(
xj−1

i

)
1≤i,j≤n

and its determinant det V n,0(x; a) =
∏

1≤i<j≤n(xj−
xi) is the usual Vandermonde determinant. We introduce another generalized Vander-
monde matrix W n(x; a) as the n × n matrix with ith row

(1 + aix
n−1
i , xi + aix

n−2
i , · · · , xn−1

i + ai).

If a = −xn, −xn+1, or xn−1, then the determinants det W n(x; a) are factorized as follows:

det W n(x;−xn) =
n∏

i=1

(1 − xi)
∏

1≤i<j≤n

(xj − xi)(1 − xixj),

det W n(x;−xn+1) =
n∏

i=1

(1 − x2
i )

∏

1≤i<j≤n

(xj − xi)(1 − xixj),

det W n(x; xn−1) = 2
∏

1≤i<j≤n

(xj − xi)(1 − xixj),

These are the Weyl’s denominator formulae for type Bn, Cn and Dn.
One of our main results is the following theorem, which was conjectured by the author

[19] and then proven in [7] with full generality.

Theorem 2.1. ([7, Theorem 1.1])
(a) Let n be a positive integer and let p and q be nonnegative integers. For six vectors

of variables

x = (x1, · · · , xn), y = (y1, · · · , yn), a = (a1, · · · , an), b = (b1, · · · , bn),

z = (z1, · · · , zp+q), c = (c1, · · · , cp+q),

we have

det

(
det V p+1,q+1(xi, yj,z; ai, bj, c)

yj − xi

)

1≤i,j≤n

=
(−1)n(n−1)/2

∏n
i,j=1(yj − xi)

det V p,q(z; c)n−1 det V n+p,n+q(x, y,z; a, b, c). (2.1)
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(b) Let n be a positive integer and let p, q, r, s be nonnegative integers. For seven
vectors of variables

x = (x1, · · · , x2n), a = (a1, · · · , a2n), b = (b1, · · · , b2n),

z = (z1, · · · , zp+q), c = (c1, · · · , cp+q),

w = (w1, · · · , wr+s), d = (d1, · · · , dr+s),

we have

Pf

(
det V p+1,q+1(xi, xj,z; ai, aj, c) det V r+1,s+1(xi, xj,w; bi, bj,d)

xj − xi

)

1≤i,j≤2n

=
1∏

1≤i<j≤2n(xj − xi)
det V p,q(z; c)n−1 det V r,s(w; d)n−1

× det V n+p,n+q(x, z; a, c) det V n+r,n+s(x, w; b, d). (2.2)

(c) Let n be a positive integer and let p be a nonnegative integer. For six vectors of
variables

x = (x1, · · · , xn), y = (y1, · · · , yn), a = (a1, · · · , an), b = (b1, · · · , bn),

z = (z1, · · · , zp), c = (c1, · · · , cp),

we have

det

(
det W p+2(xi, yj,z; ai, bj, c)

(yj − xi)(1 − xiyj)

)

1≤i,j≤n

=
1∏n

i,j=1(yj − xi)(1 − xiyj)
det W p(z; c)n−1 det W 2n+p(x, y,z; a, b, c). (2.3)

(d) Let n be a positive integer and let p and q be nonnegative integers. For seven
vectors of variables

x = (x1, · · · , x2n), a = (a1, · · · , a2n), b = (b1, · · · , b2n),

z = (z1, · · · , zp), c = (c1, · · · , cp),

w = (w1, · · · , wq), d = (d1, · · · , dq),

we have

Pf

(
det W p+2(xi, xj,z; ai, aj, c) det W q+2(xi, xj,w; bi, bj, d)

(xj − xi)(1 − xixj)

)

1≤i,j≤2n

=
1∏

1≤i<j≤2n(xj − xi)(1 − xixj)
det W p(z; c)n−1 det W q(w; d)n−1

× det W 2n+p(x,z; a, c) det W 2n+q(x, w; b, d). (2.4)

We can unify the identities (2.1) and (2.3) (resp. (2.2) and (2.4)) by introducing a
homogeneous version of the matrix V p,q(x; a). For vectors x, y, a, b of length n and
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nonnegative integers p, q with p+ q = n, we set Up,q

(
x a
y b

)
to be the n×n matrix with

ith row

(aix
p−1
i , aix

p−2
i yi, · · · , aiy

p−1
i , bix

q−1
i , bix

q−2
i yi, · · · , biy

q−1
i ).

Then we have

Theorem 2.2. [7, Theorem 3.2, Corollary 3.3]

(a) Let n be a positive integer and let p and q be fixed nonnegative integers. For vectors
x, y, z, w, a, b, c, d of length n, and vectors ξ, η, α, β of length p + q, we have

det




det Up+1,q+1

(
xi, zj, ξ ai, cj,α
yi, wj,η bi, dj,β

)

det

(
xi zj

yi wj

)




1≤i,j≤n

=
(−1)n(n−1)/2

n∏

i,j=1

det

(
xi zj

yi wj

) det Up,q

(
ξ α
η β

)n−1

det Un+p,n+q

(
x, z, ξ a, c,α
y,w,η b,d, β

)
. (2.5)

(b) Let n be a positive integer and let p, q, r and s be nonnegative integers. Suppose
that the vectors x, y, a, b, c, d have length 2n, the vectors ξ, η, α, β have length
p + q, and the vectors ζ, ω, γ, δ have length r + s. Then we have

Pf




det Up+1,q+1

(
xi, xj, ξ ai, aj, α
yi, yj,η bi, bj,β

)
det U r+1,s+1

(
xi, xj, ζ ci, cj,γ
yi, yj,ω di, dj, δ

)

det

(
xi xj

yi yj

)




1≤i<j≤2n

=
1

∏

1≤i<j≤2n

det

(
xi xj

yi yj

) det Up,q

(
ξ α
η β

)n−1

det U r,s

(
ζ γ
ω δ

)n−1

× det Un+p,n+q

(
x, ξ a, α
y,η b, β

)
det Un+r,n+s

(
x, ζ c,γ
y,ω d, δ

)
. (2.6)

We give an outline of the proof of Theorems 2.1 and 2.2. (The details can be found
in [7].) The proof consists of two parts: the first part is to reduce the proof of the six
identities in these Theorems to that of one identity (2.2), and the second part is to prove
(2.2) by using the Desnanot–Jacobi formula for Pfaffians and induction.

For the first part, we note the following relations among determinants of Up,q, V p,q

and W n.



138 S. Okada

Lemma 2.3.

Up,q

(
x a
y b

)
=

p+q∏

k=1

akx
p−1
k · V p,q

(
x−1y; a−1bxq−p

)
,

V p,q(x; a) = Up,q

(
1 1
x a

)
,

det Un,n

(
x 1 + ax

1 + x2 x + a

)
= (−1)n(n−1)/2 det W 2n(x; a),

det Un,n+1

(
x 1 + ax2

1 + x2 1 + a

)
= (−1)n(n−1)/2 det W 2n+1(x; a).

¿From these relations, we see that
(a) (2.1) is equivalent to (2.5),
(c) (2.2) is equivalent to (2.6),
(b) (2.3) follows from (2.5),
(d) (2.4) follows from (2.6).

And we can deduce (2.5) from (2.6), by taking r = s = 0 and

c1 = · · · = cn = 1, cn+1 = · · · = c2n = 0,

d1 = · · · = dn = 0, dn+1 = · · · = d2n = 1.

and using the following general relation between determinants and Pfaffians.

Lemma 2.4. If A is any m × (2n − m) matrix, then we have

Pf

(
O A
−tA O

)
=

{
(−1)n(n−1)/2 det A if m = n,

0 if m 6= n.

Next we prove the identity (2.2). A tool in this step is an Pfaffian analogue of the
Desnanot–Jacobi formula, which is given in [11] (see also [9]).

Lemma 2.5. Given a square matrix A and indices i1, · · · , ir, j1, · · · , jr, we denote by
Ai1,··· ,ir

j1,··· ,jr
the matrix obtained by removing the rows i1, · · · , ir and the columns j1, · · · , jr

of A. If A is a skew-symmetric matrix, then we have

Pf A1,2
1,2 · Pf A3,4

3,4 − Pf A1,3
1,3 · Pf A2,4

2,4 + Pf A1,4
1,4 · Pf A2,3

2,3 = Pf A · Pf A1,2,3,4
1,2,3,4.

By applying this Desnanot–Jacobi formula for Pfaffians to the skew-symmetric matrix
on the left hand side of (2.2) and using the induction on n, we can see that the desired
equality is equivalent to the case n = 2 with z, c, w, d replaced by

z ← (x(1,2,3,4), z), c ← (a(1,2,3,4), c), w ← (x(1,2,3,4),w), d ← (b(1,2,3,4),d),

respectively, where x(1,2,3,4) denotes the vector obtained by removing x1, x2, x3, x4 from x.
Then the identity (2.2) in the case n = 2 can be proven by the induction on p + q + r + s
with the help of the following relations between det V p,q and det V p−1,q (or det V q,p).
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Lemma 2.6. (1) If p ≥ q and p ≥ 1, then we have

det V p,q(x; a) =

p+q−1∏

i=1

(xp+q − xi) · det V p−1,q(x1, · · · , xp+q−1; a
′
1, · · · , a′

p+q−1),

where we put

a′
i =

ai − ap+q

xi − xp+q

(1 ≤ i ≤ p + q − 1).

(2) For nonnegative integers p and q, we have

det V p,q(x; a) = (−1)pq

p+q∏

i=1

ai · det V q,p(x; a−1),

where a−1 = (a−1
1 , · · · , a−1

p+q).

3 Specializations and applications

In this section, we give several specializations of the identities in Theorem 2.1 and 2.2,
and review their applications.

3.1 Simplest case

First we consider the special case of (2.1) (resp. (2.2)) where p = q = 0 (resp. p = q =
r = s = 0). Then the identities read

det

(
bj − ai

yj − xi

)

1≤i,j≤n

=
(−1)n(n−1)/2

∏n
i,j=1(yj − xi)

det V n,n(x, y; a, b), (3.1)

Pf

(
(aj − ai)(bj − bi)

xj − xi

)

1≤i,j≤2n

=
1∏

1≤i<j≤2n(xj − xi)
det V n,n(x; a) det V n,n(x; b).

(3.2)

These identities were first given by the author [17, Theorems 4.2, 4.7].
Substituting

xi ← x2
i , yi ← y2

i , ai ← xi, bi ← yi in (3.1),

xi ← x2
i , ai ← xi, bi ← xi in (3.2),

and using

det V n,n(x2 : x) = (−1)n(n−1)/2
∏

1≤i<j≤2n

(xj − xi),

we can recover Cauchy’s determinant identity (1.1) from (3.1) and Schur’s Pfaffian identity
(1.3) from (3.2).

If we take another substitution

xi ← x3
i , yi ← y3

i , ai ← xi, bi ← yi
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in (3.1), we have

det

(
1

x2
i + xiyj + y2

i

)

1≤i,j≤n

=

∏
1≤i<j≤n(xj − xi)(yj − yi)∏n

i,j=1(x
2
i + xiyj + y2

j )
·sδ(n−1,n−1)(x1, · · · , xn, y1, · · · , yn),

where δ(n−1, n−1) = δ(n−1)∪δ(n−1) = (n−1, n−1, n−2, n−2, · · · , 2, 2, 1, 1, 0, 0). This
identity perfectly fits the Izergin–Korepin determinant formula for the partition function
of the square ice model with domain wall boundary condition, and we can obtain the
enumeration of alternating sign matrices. Recall that an alternating sign matrix (or ASM
for short) is a square matrix satisfying the following three conditions :

(a) All entries are 1, −1 or 0.
(b) Every row and column have sum 1.
(c) In every row and column, the nonzero entries alternate in sign.

Proposition 3.1. The number of n × n alternating sign matrices is given by

1

3n(n−1)/2
sδ(n−1,n−1)(12n),

where 12n denotes the all-one vector of length 2n.

In a similar way, we can use suitable specializations of the identities in Theorem 2.1
to evaluate the determinants and Pfaffians in the partition functions of square ice models
associated to several symmetry classes of alternating sign matrices. For example, the
special case of the Pfaffian identity (2.3) with p = 1 enables us to enumerate the vertically
and horizontally symmetric alternating sign matrices. See [18]. And the interested reader
is referred to [2] for some stories about alternating sign matrices and plane partitions.

3.2 Identities of Sundquist and Ishikawa

Next we consider the special case of (2.5) (resp. (2.6)) where p = q = 0 (resp. p = q =
r = s = 0). Then the identities are

det




det

(
ai cj

bi dj

)

det

(
xi zj

yi wj

)




1≤i,j≤n

=
(−1)n(n−1)/2

n∏

i,j=1

det

(
xi zj

yi wj

) det Un,n

(
x,z a, c
y,w b,d

)
,

(3.3)

Pf




det

(
ai aj

bi bj

)
det

(
ci cj

di dj

)

det

(
xi xj

yi yj

)




1≤i,j≤2n

=
1

∏

1≤i<j≤2n

det

(
xi xj

yi yj

)

× det Un,n

(
x a
y b

)
det Un,n

(
x c
y d

)
.

(3.4)



Generalizations of Cauchy’s Determinant Identity and Schur’s Pfaffian Identity 141

This equation (3.4) is given by Ishikawa [5, Theorem 3.1], and proven there by using
complex analysis.

If we substitute in Ishikawa’s identity (3.4)

xi ← x2
i , yi ← 1, ai ← ai, bi ← 1, ci ← xi, di ← 1, or

xi ← xi, yi ← 1 + x2
i , ai ← ai, bi ← 1, ci ← xi, di ← 1,

and use the factorization

det Un,n

(
x2 x
1 1

)
= det Un,n

(
x x

1 + x2 1

)
= (−1)n(n−1)/2

∏

1≤i<j≤2n

(xi − xj),

then we have

Pf

(
ai − aj

xi + xj

)

1≤i,j≤2n

=
(−1)n(n−1)/2

∏
1≤i<j≤2n(xi + xj)

det Un,n

(
x2 a
1 1

)
,

Pf

(
ai − aj

1 − xixj

)

1≤i,j≤2n

=
1∏

1≤i<j≤2n(1 − xixj)
det Un,n

(
x a

1 + x2 1

)
.

It is not hard to show that these identities are equivalent to the ones obtained by Sundquist
[25, Theorem 2.1]. (See also [7, §4].)

Ishikawa [5] uses the identity (3.4) (and other ingredients) to prove Stanley’s conjecture
[23] on a certain weighted summation of Schur functions.

Theorem 3.2. ([5, Theorem 1.1]) Given a partition λ, define ω(λ) by

ω(λ) = a
P

i≥1dλ2i−1/2eb
P

i≥1bλ2i−1/2cc
P

i≥1dλ2i/2ed
P

i≥1bλ2i/2c,

where a, b, c and d are indeterminates, and dxe (resp. bxc) stands for the smallest (resp.
largest) integer greater (resp. less) than or equal to x for a given real number x. Then
we have

log

(∑

λ

ω(λ)sλ

)
−

∑

n≥1

1

2n
an(bn − cn)p2n −

∑

n≥1

1

4n
anbncndnp2

2n ∈ Q[[p1, p3, p5, . . . ]].

Here λ runs over all partitions and pr =
∑

i≥1 xr
i denotes the rth power sum symmetric

function.

A key to the Ishikawa’s proof is the following expression, which is obtained by using
(3.4) and the minor-summation formula [8].

Proposition 3.3. ([5, Theorem 4.2]) For a vector of variables x = (x1, · · · , x2n), we have

∑

λ

ω(λ)sλ(x1, · · · , x2n)

=
(−1)n(n+1)/2

∏2n
i=1(1 − abx2

i )
∏

1≤i<j≤2n(xj − xi)(1 − abcdx2
i x

2
j)

det Un,n

(
x2 x + ax2

1 + abcdx4 1 − a(b + c)x2 − abcx3

)
.
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3.3 Rectangular Schur functions

In this subsection, we are concerned with identities of Schur functions or relations of
Littlewood–Richardson coefficients involving rectangular Young diagrams. We denote by
LRλ

µ,ν the Littlewood–Richardson coefficient associated to three partitions λ, µ and ν.
(See [16, Chap. I].) Let ¤(a, b) denote the partition whose Young diagram is the rectangle
a × b, i.e.

¤(a, b) = (ba) = (b, . . . , b︸ ︷︷ ︸
a

).

Then we have

1∏
1≤i<j≤n(xj − xi)

det V p,q(x; xk) =

{
s¤(q,k−p)(x) if k ≥ p,

0 if k < p.

Hence, by specializing

ai = xe+p+n
i , bi = ye+p+n

i ci = ze+p+n
i in (2.1),

ai = xe+p+n
i , bi = yf+r+n

i , ci = ze+p+n
i , di = wf+r+n

i in (2.2),

we can derive the following identities for rectangular Schur functions from (2.1) and (2.2).

Proposition 3.4. (a) Let n be a positive integer and let e, p and q be nonnegative
integers. For three vector of variables x = (x1, · · · , xn), y = (y1, · · · , yn) and
z = (z1, · · · , zp+q), we have

1∏
1≤i<j≤n(xj − xi)(yj − yi)

det
(
s¤(q+1,e+n−1)(xi, yj,z)

)
1≤i,j≤n

= (−1)n(n−1)/2s¤(q,e+n)(z)n−1s¤(q+n,e)(x,y,z). (3.5)

(b) Let n be a positive integer and let e, f , p, q, r and s be nonnegative inte-
gers. For three vector of variables x = (x1, · · · , x2n), z = (z1, · · · , zp+q) and
w = (w1, · · · , zr+s), we have

1∏
1≤i<j≤2n(xj − xi)

Pf
(
(xj − xi)s¤(q+1,e+n−1)(xi, xj, z)s¤(s+1,f+n−1)(xi, xj,w)

)
1≤i,j≤2n

= s¤(q,e+n)(z)n−1s¤(s,f+n)(w)n−1s¤(n+q,e)(x,z)s¤(n+s,f)(x,w). (3.6)

Here we note that the identity (3.5) with q = e + n − 1 appears in the context of
orthogonal polynomials [15, Proposition 8.4.3].

In [17], the special cases of the identities (3.5) and (3.6) (i.e., the case of p = q = 0
and p = q = r = s = 0) were used to prove the following proposition. (This proposition
itself can be proven by applying the Littlewood–Richardson rule.)

Proposition 3.5. Let n be positive integer and let e and f be nonnegative integers.
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(a) We have

s¤(n,e)(x,y) =
∑

µ⊂¤(n,e)

sµ(x)sµ†(y),

where µ runs over all partitions whose Young diagrams are contained in the rect-
angle ¤(n, e) and µ† = µ†(n, e) denotes the complementary partition defined by

µ†
i = e − µn+1−i (1 ≤ i ≤ n).

In other words,

LR¤(n,e)
µ,ν =

{
1 if ν = µ†(n, e),

0 otherwise.
(3.7)

(b) We have

s¤(n,e)(x)s¤(n,f)(x) =
∑

λ

sλ(x),

where λ runs over all partitions with length ≤ 2n and satisfying

λi + λ2n+1−i = e + f (1 ≤ i ≤ n), λn+1 ≤ min(e, f).

In terms of Littlewood–Richardson coefficients, we have, for a partition λ with
length ≤ 2n,

LRλ
¤(n,e),¤(n,f) =

{
1 if λn+1 ≤ min(e, f) and λi + λ2n+1−i = e + f (1 ≤ i ≤ n),

0 otherwise.

(3.8)

In [17], the author used the special cases of other identities (2.3) and (2.4) in Theo-
rem 2.1, together with the minor-summation formulae, to obtain irreducible decomposi-
tions of some restrictions and tensor products for rectangular representations of classical
groups.

Considering the more general case where p ≥ n and q = r = s = 0 in (3.6), we can
prove the following theorem, which generalizes (3.8).

Theorem 3.6. ([7, Theorem 7.2]) Let n be a positive integer and let e and f be nonneg-
ative integers. Let λ and µ be partitions such that λ ⊂ ¤(2n, e + f) and µ ⊂ ¤(n, e).
Then we have

(1) LRλ
µ,¤(n,f) = 0 unless

λn ≥ f and λn+1 ≤ min(e, f). (3.9)

(2) If λ satisfies the above condition (3.9) and we define two partitions α and β by

αi = λi − f, βi = e − λ2n+1−i (1 ≤ i ≤ n), (3.10)

then we have
LRλ

µ,¤(n,f) = LRβ
α,µ†(n,e)

.

In particular, LRλ
µ,¤(n,f) = 0 unless α ⊂ β.



144 S. Okada

3.4 Staircase Schur functions

Lastly we consider the specialization which produce identities for the Schur functions
associated to staircase Young diagrams. Let δ(k) be the staircase partition of length k,
i.e.,

δ(k) = (k, k − 1, · · · , 1).

We understand that δ(0) is the empty partition. Then we have

1∏
1≤i<j≤n(xj − xi)

det V p,q(x2; x) =

{
(−1)q(2p−q−1)/2sδ(p−q−1)(x) if p > q,

(−1)p(p−1)/2sδ(q−p)(x) if p ≤ q.

Hence, under the specialization

xi → x2
i , yi → y2

i , zi → z2
i , ai → xi, bi → yi, ci → zi, in (2.1),

xi → x2
i , zi → z2

i , wi → w2
i , ai → xi, bi → xi, ci → zi, di → wi in (2.2),

one can deduce the following identities from (2.1) and (2.2).

Proposition 3.7. Let n be a positive integer and let k, r and s be nonnegative inte-
gers.

(a) For three vectors of variable x = (x1, · · · , xn), y = (y1, · · · , yn), and z = (z1, · · · , zn),
we have

det

(
sδ(k)(xi, yj, z)

xi + yj

)

1≤i,j≤n

=

∏
1≤i<j≤n(xj − xi)(yj − yi)∏n

i,j=1(xi + yj)
sδ(k)(z)n−1sδ(k)(x,y, z).

(3.11)
(b) For three vectors of variable x = (x1, · · · , x2n), z = (z1, · · · , zr), and w = (w1, · · · , ws),

we have

Pf

(
xj − xi

xj + xi

sδ(k)(xi, xjz)sδ(l)(xi, xj, w)

)

1≤i,j≤2n

=
∏

1≤i<j≤2n

xj − xi

xj + xi

sδ(k)(z)n−1sδ(l)(w)n−1sδ(k)(x,z)sδ(l)(x, w). (3.12)

If we take k = 0 in (3.11) and k = l = 0 in (3.12), we recover Cauchy’s determinant
identity (1.1) and Schur’s Pfaffian identity (1.3). Another special case of (3.11) with k = 1
gives the rational case of Frobenius’ identity (4.1):

det

(
1

xi + yj

· z + xi + yj

z

)

1≤i,j≤n

=

∏
1≤i<j≤n(xj − xi)(yj − yi)∏

1≤i,j≤n(xi + yj)
·
z +

∑n
i=1 xi +

∑n
j=1 yj

z
.

On the other hand, if we take k = l = 1 in (3.12), we obtain

Pf

(
xj − xi

xj + xi

· z + xi + xj

z
· w + xi + xj

w

)

1≤i,j≤2n

=
∏

1≤i<j≤2n

xj − xi

xj + xi

·z +
∑2n

i=1 xi

z
·w +

∑2n
i=1 xi

w
.

This identity suggests an elliptic generalization of Schur’s Pfaffian identity. See the next
section.
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4 An elliptic generalization of Schur’s Pfaffian iden-

tity

To deal with elliptic functions and their degeneration simultaneously, we introduce the
following notation. Let [x] denote a nonzero holomorphic function on the complex plane
C in the variable x satisfying the following two conditions:

(i) [x] is an odd function, i.e., [−x] = −[x].
(ii) [x] satisfies the Riemann relation:

[x+y][x−y][u+v][u−v]− [x+u][x−u][y+v][y−v]+[x+v][x−v][y+u][y−u] = 0.

It is known that such a function [x] is obtained from one of the following functions by the
transformation [x] → eax2+b[cx] (see [26, Chap. XX, Misc. Ex. 38]):

(a) (elliptic case) [x] = σ(x) (the Weierstrass sigma function).
(b) (trigonometric case) [x] = ex − e−x.
(c) (rational case) [x] = x.

Then Frobenius’s determinant identity (1.5) takes the form

det

(
[z + xi + yj]

[z][xi + yj]

)

1≤i,j≤n

=

∏
1≤i<j≤n[xj − xi][yj − yi]∏n

i,j=1[xi + yj]
·
[z +

∑n
i=1 xi +

∑n
j=1 yj]

[z]
. (4.1)

The following is our elliptic generalization of Schur’s Pfaffian identity.

Theorem 4.1. ([20]) For complex variables x1, · · · , x2n, z and w, we have

Pf

(
[xj − xi]

[xj + xi]
· [z + xi + xj]

[z]
· [w + xi + xj]

[w]

)

1≤i,j≤2n

=
∏

1≤i<j≤2n

[xj − xi]

[xj + xi]
· [z +

∑2n
i=1 xi]

[z]
· [w +

∑2n
i=1 xi]

[w]
. (4.2)

If we take the limit z → ∞, w → ∞ in the rational case of (4.2), then we recover the
Schur’s Pfaffian identity (1.3).

Once the identity (4.2) is found, it is not hard to prove it. We can use the Desnanot–
Jacobi formula for Pfaffians (Lemma 2.5) to reduce the proof of the general case to that
of the n = 2 case, and can show this case by applying the Riemann relation. (See [20] for
the details.)

5 A Pfaffian–Hafnian analogue of Borchardt’s iden-

tity

In this last section, we give an Borchardt-type variation of Schur’s Pfaffian identity.
Recall the definition of Hafnians. For a symmetric matrix A = (aij)1≤i,j≤2n, the

Hafnian of A is defined by

Hf A =
∑

σ∈F2n

aσ(1)σ(2)aσ(3)σ(4) · · · aσ(2n−1)σ(2n),
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where F2n is the set of all permutations σ satisfying σ(1) < σ(3) < · · · < σ(2n − 1) and
σ(2i − 1) < σ(2i) for 1 ≤ i ≤ n. Then we have

Theorem 5.1. ([6]) Let n be an positive integer. Then we have

Pf

(
xi − xj

(xi + xj)2

)

1≤i,j≤2n

=
∏

1≤i<j≤2n

xi − xj

xi + xj

· Hf

(
1

xi + xj

)

1≤i,j≤2n

, (5.1)

Pf

(
xi − xj

(1 − xixj)2

)

1≤i,j≤2n

=
∏

1≤i<j≤2n

xi − xj

1 − xixj

· Hf

(
1

1 − xixj

)

1≤i,j≤2n

. (5.2)

Here we make a comment on the proof of this theorem. In [6], we prove the identity
(5.2) by regarding the both sides as rational functions in xn and comparing the poles and
the residues. It would be interesting to find an algebraic proof of these identities (5.1)
and (5.2).
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