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Abstract. After reviewing some fundamental facts from the theory of theta hypergeo-
metric series we derive, using indefinite summation, several summation, transformation,
and expansion formulas for multibasic theta hypergeometric series. Some of the identi-
ties presented here generalize corresponding formulas given in Chapter 11 of the Gasper
and Rahman book [Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics
And Its Applications 96, Cambridge University Press, Cambridge, 2004].

1. Introduction

By convention, a series
∑

un is called a hypergeometric series if g(n) = un+1/un is a
rational function of n. It is called a q- (or basic) hypergeometric series if g(n) is a rational
function of qn. More generally, such a series is called an elliptic hypergeometric series if
g(n) is an elliptic (doubly periodic meromorphic) function of n with n considered as a
complex variable. We refer the reader to [8, Ch. 11] for some motivation for considering
these three classes of series and to [8] in general for a treatise on basic hypergeometric
series.

In a path-breaking paper, Frenkel and Turaev [6] in their work on elliptic 6j-symbols
(introduced by Date et al. [5] as elliptic solutions of the Yang-Baxter equation [1, 2]) in-
troduced elliptic analogues of very-well-poised basic hypergeometric series. In particular,
using the tetrahedral symmetry of the elliptic 6j-symbols and the finite dimensionality
of cusp forms, they derived elliptic analogues of Bailey’s transformation formula (cf. [8,
Eq. (2.9.1)]) for terminating 10φ9 series and of Jackson’s 8φ7 summation formula (cf. [8,
Eq. (2.6.2)]). Elliptic hypergeometric series and their extensions to theta hypergeometric
series became an increasingly active area of research (see [8, Sec. 11.1] for some references).
So far, many formulas for very-well-poised basic hypergeometric series have already been
extended to the elliptic setting. Some formulas for multibasic elliptic hypergeometric se-
ries appeared in work of Warnaar [10]. Here we consider yet other identities involving
multiple bases and theta functions, special cases of which have already been presented in
[8].

We start in Section 2 with the elliptic shifted factorials, Spiridonov’s [9] r+1Er theta
hypergeometric series notation and its very-well-poised r+1Vr special case, and then point
out some of their main properties. We also present the Frenkel and Turaev summation
and transformation formulas. In Section 3 we derive theta hypergeometric extensions of
some of the summation and transformation formulas in [8, Secs. 3.6–3.8]. To give just
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one example, here is a transformation formula for a “split-poised” theta hypergeometric

12E11 series
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(1.1)

for n = 0, 1, . . . (see (2.3) for the notation), a recast of (3.24), which extends the transfor-
mation formula for a split-poised 10φ9 series given in [8, Ex. 3.21]. Most of these extensions
have recently been presented in [8, Ch. 11], where reference was made to an earlier (2003)
version of this paper. However, some formulas in [8] (in particular, in Sec. 11.6 and
Exercises 11.25–11.26) have been further generalized in the current version of this paper.
The selection of formulas we give is by no means exhaustive, but they do serve to illus-
trate some of the possibilities for deriving summations, transformations and expansions
for multibasic theta hypergeometric series. We wish to thank Mizan Rahman and Ole
Warnaar for some helpful correspondences.

2. Elliptic and theta hypergeometric series

As in [8] we define a modified Jacobi theta function with argument x and nome p by

θ(x; p) = (x, p/x; p)∞ = (x; p)∞(p/x; p)∞ , θ(x1, . . . , xm; p) =
m∏

k=1

θ(xk; p), (2.1)

where x, x1, . . . , xm 6= 0, |p| < 1, and (x; p)∞ =
∏∞

k=0(1 − xpk). Also, following War-
naar [10], we define an elliptic (or theta) shifted factorial analogue of the q-shifted factorial
by

(a; q, p)n =





∏n−1
k=0 θ(aqk; p), n = 1, 2, . . . ,

1, n = 0,

1/
∏−n−1

k=0 θ(aqn+k; p), n = −1,−2, . . . ,

(2.2)

and let

(a1, a2, . . . , am; q, p)n =
m∏

k=1

(ak; q, p)n,

where a, a1, . . . , am 6= 0. Notice that θ(x; 0) = 1 − x and, hence, (a; q, 0)n = (a; q)n is
a q-shifted factorial in base q. Thus, the parameters q and p in (a; q, p)n are called the
base and nome, respectively, and (a; q, p)n is called the q, p-shifted factorial. A list of
useful identities for manipulating the q, p-shifted factorials (and related objects such as
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q, p-binomial coefficients, or elliptic binomial coefficients, and elliptic gamma functions)
is given in [8, Sec. 11.2].

Following Spiridonov [9], an r+1Er theta hypergeometric series with base q and nome p
is formally defined by

r+1Er(a1, a2, . . . , ar+1; b1, . . . , br; q, p; z)

=
∞∑

n=0

(a1, a2, . . . , ar+1; q, p)n

(q, b1, . . . , br; q, p)n

zn, (2.3)

where, as usual, it is assumed that the parameters are such that each term in the series
is well-defined. If z and the a’s and b’s are independent of p, then it follows that

lim
p→0

r+1Er(a1, . . . , ar+1; b1, . . . , br; q, p; z)

= r+1Er(a1, . . . , ar+1; b1, . . . , br; q, 0; z)

= r+1φr(a1, . . . , ar+1; b1, . . . , br; q, z),

where the limit of the series is a termwise limit. See [8, Sec. 11.2] for more details and a
discussion of convergence of the series in (2.3).

As in [9], a (unilateral or bilateral) series
∑

cn is called an elliptic hypergeometric series
if g(n) = cn+1/cn is an elliptic function of n with n considered as a complex variable; i.e.,
the function g(x) is a doubly periodic meromorphic function of the complex variable x.
For the r+1Er series in (2.3) it is clear that

g(x) = z
r+1∏

k=1

θ(akq
x; p)

θ(bkqx; p)

with br+1 = q. It is not difficult to show (see [8]) that when

a1a2 . . . ar+1 = (b1b2 . . . br)q, (2.4)

g(x) is an elliptic (i.e., doubly periodic meromorphic) function of x. Therefore, (2.4) is
called the elliptic balancing condition, and r+1Er is said to be elliptically balanced (E-
balanced) when (2.4) holds.

Corresponding to the basic hypergeometric special case (cf. [8]), the r+1Er series in
(2.3) is called well-poised if

qa1 = a2b1 = a3b2 = . . . = ar+1br, (2.5)

in which case we find that the elliptic balancing condition (2.4) reduces to

a2
1a

2
2 · · · a2

r+1 = (a1q)
r+1.

Using (2.2) we see that
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which is clearly the very-well-poised part of the very-well-poised basic hypergeometric

r+1Wr series in [8, Eq. (2.1.11)]. Hence, the r+1Er series in (2.3) is called very-well-poised
when it is well-poised, r ≥ 4, and

a2 = qa
1
2
1 , a3 = −qa

1
2
1 , a4 = qa

1
2
1 /p

1
2 , a5 = −qa

1
2
1 p

1
2 . (2.6)

Analogous to Spiridonov [9, Eq. (2.15)], an r+1Vr very-well-poised theta hypergeometric
series is defined by

r+1Vr(a1; a6, a7, . . . , ar+1; q, p; z)

=
∞∑

n=0

θ(a1q
2n; p)

θ(a1; p)

(a1, a6, a7, . . . , ar+1; q, p)n

(q, a1q/a6, a1q/a7, . . . , a1q/ar+1; q, p)n

(qz)n. (2.7)

Thus, if (2.5) and (2.6) hold, then

r+1Vr(a1; a6, a7, . . . , ar+1; q, p; z)

= r+1Er(a1, a2, . . . , ar+1; b1, . . . , br; q, p;−z),

and the r+1Vr series is elliptically balanced if and only if

(a2
6a

2
7 · · · a2

r+1)q
2 = (a1q)

r−5.

If the argument z in the r+1Vr series equals 1, then we suppress it and denote the se-
ries in (2.7) by the simpler notation r+1Vr(a1; a6, a7, . . . , ar+1; q, p). When the parameters
a1, a6, a7, . . . , ar+1 are independent of p,

lim
p→0

r+1Vr(a1; a6, a7, . . . , ar+1; q, p)

= r−1Wr−2(a1; a6, . . . , ar+1; q, q),

from which it follows that there is a shift r → r − 2 when taking the p → 0 limit,
and that the p → 0 limit of a r+1Vr(a1; a6, a7, . . . , ar+1; q, p) series with a1, a6, a7, . . . , ar+1

independent of p is a r−1Wr−2 series.
Frenkel and Turaev [6] showed the following elliptic analogue of Bailey’s 10φ9 transfor-

mation formula [8, Eq. (2.9.1)]

12V11(a; b, c, d, e, f, λaqn+1/ef, q−n; q, p)

=
(aq, aq/ef, λq/e, λq/f ; q, p)n

(aq/e, aq/f, λq/ef, λq; q, p)n

× 12V11(λ; λb/a, λc/a, λd/a, e, f, λaqn+1/ef, q−n; q, p) (2.8)

for n = 0, 1, . . . , provided that the balancing condition

bcdef(λaqn+1/ef)q−nq = (aq)3, (2.9)

which is clearly equivalent to λ = qa2/bcd, holds. Notice that each of the series in (2.8) is
E-balanced when (2.9) holds. If we set λ = a/d in (2.8), then we obtain a summation for-
mula for a 10V9 series which is an elliptic analogue of Jackson’s 8φ7 summation formula [8,
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Eq. (2.6.2)] and of Dougall’s 7F6 summation formula [8, Eq. (2.1.6)]. After a change in
parameters, this summation formula can be written in the form:

10V9(a; b, c, d, e, q−n; q, p) =
(aq, aq/bc, aq/bd, aq/cd; q, p)n

(aq/b, aq/c, aq/d, aq/bcd; q, p)n

(2.10)

for n = 0, 1, . . . , provided that the elliptic balancing condition bcde = a2qn+1, which can
be written in the form

(bcdeq−n)q = (aq)2, (2.11)

holds. It is obvious that if a, b, c, d, e are independent of p, then (2.10) tends to Jackson’s

8φ7 summation formula [8, Eq. (2.6.2)] as p → 0. For a further discussion of (2.8) and
(2.10) including different proofs, see Gasper and Rahman [8, Secs. 11.2, 11.4, 11.5].

3. Multibasic summation and transformation formulas for theta
hypergeometric series

We first observe that if the parameter a in (2.10) is replaced by a/q, then it follows
that the n = 1 case of (2.10) is equivalent to the identity

1 − θ(b, c, d, a2/bcd; p)

θ(a/b, a/c, a/d, bcd/a; p)
=

θ(a, a/bc, a/bd, a/cd; p)

θ(a/bcd, a/d, a/c, a/b; p)
. (3.1)

More generally, by replacing a in (2.8) by a/q it follows that the n = 1 case of (2.8) is
equivalent to the identity

1 − θ(b, c, d, e, f, g; p)

θ(a/b, a/c, a/d, a/e, a/f, a/g; p)

=
θ(a, a/ef, a2/bcde, a2/bcdf ; p)

θ(a2/bcdef, a2/bcd, a/f, a/e; p)

×
[
1 − θ(a/bc, a/bd, a/cd, e, f, g; p)

θ(a/d, a/c, a/b, a2/bcde, a2/bcdf, a2/bcdg; p)

]
(3.2)

with a3 = bcdefg, which is equivalent to the identity in [8, Ex. 5.22]. Next, define

n∏

k=m

ak =





amam+1 · · · an, m ≤ n,

1, m = n + 1,

(an+1an+2 · · · am−1)
−1, m ≥ n + 2,

(3.3)

for n, m = 0, ±1, ±2, . . . , and let

Un =
n−1∏

k=0

θ(bk, ck, dk, ek, fk, gk; p)

θ(ak/bk, ak/ck, ak/dk, ak/ek, ak/fk, ak/gk; p)
(3.4)

where a3
k = bkckdkekfkgk for k = 0, ±1,±2, . . . , and it is assumed that the a’s, b’s, c’s,

d’s, e’s, f ’s, g’s, are complex numbers such that Un is well defined for n = 0,±1,±2, . . . .
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Now use (3.2) with a, b, c, d, e, f , g replaced by ak, bk, ck, dk, ek, fk, gk respectively, to
get the indefinite summation formula

U−m − Un+1 =
n∑

k=−m

(Uk − Uk+1)

=
n∑

k=−m

θ(a2
k/bkckdkfk, a

2
k/bkckdkek, ak, ak/ekfk; p)

θ(ak/ek, ak/fk, a2
k/bkckdkekfk, a2

k/bkckdk; p)
Uk

×
[
1 − θ(ak/ckdk, ak/bkdk, ak/bkck, ek, fk, gk; p)

θ(ak/bk, ak/ck, ak/dk, a2
k/bkckdkek, a2

k/bkckdkfk, a2
k/bkckdkgk; p)

]
(3.5)

for n,m = 0, ±1,±2, . . ., where a3
k = bkckdkekfkgk for k = 0, ±1,±2, . . . . Since U0 = 1 by

(3.3) and θ(ak/ckdk; p) = 0 when ak = ckdk, setting m = 0 and ak = ckdk for k = 0, 1, . . . , n
in (3.5) yields after relabelling the summation formula

n∑

k=0

θ(ak, ak/bkck, ak/bkdk, ak/ckdk; p)

θ(ak/bkckdk, ak/dk, ak/ck, ak/bk; p)

×
k−1∏

j=0

θ(bj, cj, dj, a
2
j/bjcjdj; p)

θ(aj/bj, aj/cj, aj/dj, bjcjdj/aj; p)

= 1 −
n∏

j=0

θ(bj, cj, dj, a
2
j/bjcjdj; p)

θ(aj/bj, aj/cj, aj/dj, bjcjdj/aj; p)
(3.6)

for n = 0, 1, . . . , which is equivalent to Warnaar’s formula [10, Eq. (3.2)]. When p = 0 the
above formula reduces to a summation formula of Macdonald that was first published in
Bhatnagar and Milne [3, Thm. 2.27], and contains the summation formulas by W. Chu [4,
Thms. A, B, C] as special cases.

Observe that in (3.1), (3.2), (3.4), (3.5) and (3.6) the components of each quotient of
products of theta functions have been arranged so that the well-poised property of these
quotients is clearly displayed; e.g., in the second sum in (3.5) the quotient of the theta
functions in front of Uk is arranged so that each product of corresponding numerator and
denominator parameters equals a3

k/bkckdkekfk, and each of the corresponding products in
the quotient of theta functions inside the square bracket equals a2

k/bkckdk.
If we let

ak = awk, bk = bqk, ck = crk, dk = dsk, ek = etk, fk = fuk, gk = gvk,

with a3 = bcdefg and w3 = qrstuv, then the product Un reduces to

Ũn =
(b; q, p)n(c; r, p)n(d; s, p)n

(a/b; w/q, p)n(a/c; w/r, p)n(a/d; w/s, p)n

× (e; t, p)n(f ; u, p)n(g; v, p)n

(a/e; w/t, p)n(a/f ; w/u, p)n(a/g; w/v, p)n

and, by applying (3.5) and some elementary identities for q, p-shifted factorials (listed in [8,
Sec. 11.2]), we obtain the following indefinite multibasic theta hypergeometric summation
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formula
n∑

k=−m

θ(awk, a(w/tu)k/ef, fg(uv/w)k/a, eg(tv/w)k/a; p)

θ(g(v/w)k/a, efg(tuv/w)k/a, a(w/u)k/f, a(w/t)k/e; p)

× (b; q, p)k(c; r, p)k(d; s, p)k

(a/b; w/q, p)k(a/c; w/r, p)k(a/d; w/s, p)k

× (e; t, p)k(f ; u, p)k(g; v, p)k

(a/e; w/t, p)k(a/f ; w/u, p)k(a/g; w/v, p)k

×
[
1 − θ(a(w/rs)k/cd, a(w/qs)k/bd, a(w/qr)k/bc; p)

θ(a(w/q)k/b, a(w/r)k/c, a(w/s)k/d; p)

× θ(etk, fuk, gvk; p)

θ(fg(uv/w)k/a, eg(tv/w)k/a, ef(tu/w)k/a; p)

]

=
(bw/aq; w/q, p)m(cw/ar; w/r, p)m(dw/as; w/s, p)m

(q/b; q, p)m(r/c; r, p)m(s/d; s, p)m

× (ew/at; w/t, p)m(fw/au; w/u, p)m(gw/av; w/v, p)m

(t/e; t, p)m(u/f ; u, p)m(v/g; v, p)m

− (b; q, p)n+1(c; r, p)n+1(d; s, p)n+1

(a/b; w/q, p)n+1(a/c; w/r, p)n+1(a/d; w/s, p)n+1

× (e; t, p)n+1(f ; u, p)n+1(g; v, p)n+1

(a/e; w/t, p)n+1(a/f ; w/u, p)n+1(a/g; w/v, p)n+1

(3.7)

for n, m = 0,±1,±2, . . . , where a3 = bcdefg and w3 = qrstuv.
If we set p = 0 and assume that

max(|q|, |r|, |s|, |t|, |u|, |v|, |w/q|, |w/r|, |w/s|, |w/t|, |w/u|, |w/v|) < 1,

then letting n or m in (3.7) tend to infinity shows that this special case of (3.7) also holds
with n and/or m replaced by ∞, just as in the special case [8, Eq. (3.6.14)]. Thus we
have extended [8, Eq. (3.6.14)] to the bilateral multibasic summation formula

∞∑

k=−∞

(1 − awk)(1 − a(w/tu)k/ef)(1 − fg(uv/w)k/a)(1 − eg(tv/w)k/a)

(1 − g(v/w)k/a)(1 − efg(tuv/w)k/a)(1 − a(w/u)k/f)(1 − a(w/t)k/e)

× (b; q)k(c; r)k(d; s)k(e; t)k(f ; u)k(g; v)k

(a/b; w/q)k(a/c; w/r)k(a/d; w/s)k(a/e; w/t)k(a/f ; w/u)k(a/g; w/v)k

×
[
1 − (1 − a(w/rs)k/cd)(1 − a(w/qs)k/bd)(1 − a(w/qr)k/bc)

(1 − a(w/q)k/b)(1 − a(w/r)k/c)(1 − a(w/s)k/d)

× (1 − etk)(1 − fuk)(1 − gvk)

(1 − fg(uv/w)k/a)(1 − eg(tv/w)k/a)(1 − ef(tu/w)k/a)

]

=
(bw/aq; w/q)∞(cw/ar; w/r)∞(dw/as; w/s)∞

(q/b; q)∞(r/c; r)∞(s/d; s)∞

× (ew/at; w/t)∞(fw/au; w/u)∞(gw/av; w/v)∞
(t/e; t)∞(u/f ; u)∞(v/g; v)∞
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− (b; q)∞(c; r)∞(d; s)∞(e; t)∞(f ; u)∞(g; v)∞
(a/b; w/q)∞(a/c; w/r)∞(a/d; w/s)∞(a/e; w/t)∞(a/f ; w/u)∞(a/g; w/v)∞

, (3.8)

where a3 = bcdefg and w3 = qrstuv, and

max(|q|, |r|, |s|, |t|, |u|, |v|, |w/q|, |w/r|, |w/s|, |w/t|, |w/u|, |w/v|) < 1.

Even though we cannot let n → ∞ or m → ∞ in (3.7) when p 6= 0 to derive summation
formulas for nonterminating theta hypergeometric series (because lima→0 θ(a; p) does not
exist when p 6= 0), it is possible in some special cases to let n → ∞ or m → ∞ in (3.5)
to obtain summation formulas for nonterminating series containing products of certain
theta functions. In particular, if we denote the kth factor in the product representation
(3.4) for Un by

zk =
θ(bk, ck, dk, ek, fk, a

3
k/bkckdkekfk; p)

θ(ak/bk, ak/ck, ak/dk, ak/ek, ak/fk, bkckdkekfk/a2
k; p)

and observe that

lim
b→a

1
2

θ(b; p)

θ(a/b; p)
= 1, |p| < 1,

when a is not an integer power of p, then it follows that there exist bilateral sequences of
the a’s, b’s, c’s, d’s, e’s, and f ’s in (3.5) such that <zk > 0 for integer k and the series

∞∑

k=−∞

log zk converges, (3.9)

where log zk is the principal branch of the logarithm (choose, e.g., bk, ck, dk, ek, and fk so

close to a
1
2
k that | log zk| < 1/k2 for k = ±1,±2, . . . ). Then both of the limits limn→∞ Un

and limm→∞ U−m exist, and we obtain the bilateral summation formula (which extends
[8, Eq. (11.6.8)])

∞∑

k=−∞

θ(ak, ak/ekfk, a
2
k/bkckdkek, a

2
k/bkckdkfk; p)

θ(a2
k/bkckdkekfk, a2

k/bkckdk, ak/fk, ak/ek; p)

×
k−1∏

j=0

θ(bj, cj, dj, ej, fj, a
3
j/bjcjdjejfj; p)

θ(aj/bj, aj/cj, aj/dj, aj/ej, aj/fj, bjcjdjejfj/a2
j ; p)

×
[
1 − θ(ak/bkck, ak/bkdk, ak/ckdk; p)

θ(ak/dk, ak/ck, ak/bk; p)

× θ(ek, fk, gk; p)

θ(a2
k/bkckdkek, a2

k/bkckdkfk, a2
k/bkckdkgk; p)

]

=
−1∏

k=−∞

θ(ak/bk, ak/ck, ak/dk, ak/ek, ak/fk, bkckdkekfk/a
2
k; p)

θ(bk, ck, dk, ek, fk, a3
k/bkckdkekfk; p)

−
∞∏

k=0

θ(bk, ck, dk, ek, fk, a
3
k/bkckdkekfk; p)

θ(ak/bk, ak/ck, ak/dk, ak/ek, ak/fk, bkckdkekfk/a2
k; p)

(3.10)
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with a3
k = bkckdkekfkgk for k = 0,±1,±2, . . ., and ak, bk, ck, dk, ek, fk, gk such that (3.9)

holds.
However, it seems to be more useful to employ the patching

θ(a(w/t)k/e, a(w/u)k/f, g(v/w)k/a; p)(a/e; w/t, p)k(a/f ; w/u, p)k(a/g; w/v, p)k

= θ(a/e, a/f, g/a; p)(aw/et; w/t, p)k(aw/fu; w/u, p)k(aw/gv; w/v, p)k(v/w)k,

to convert the m = 0 case of (3.7) into the form

n∑

k=0

θ(awk, a(w/tu)k/ef, fg(uv/w)k/a, eg(tv/w)k/a, efg/a; p)

θ(a, a/ef, fg/a, eg/a, efg(tuv/w)k/a; p)

× (b; q, p)k(c; r, p)k(d; s, p)k

(a/b; w/q, p)k(a/c; w/r, p)k(a/d; w/s, p)k

× (e; t, p)k(f ; u, p)k(g; v, p)k

(aw/et; w/t, p)k(aw/fu; w/u, p)k(aw/gv; w/v, p)k

(w/v)k

×
[
1 − θ(a(w/rs)k/cd, a(w/qs)k/bd, a(w/qr)k/bc; p)

θ(a(w/q)k/b, a(w/r)k/c, a(w/s)k/d; p)

× θ(etk, fuk, gvk; p)

θ(fg(uv/w)k/a, eg(tv/w)k/a, ef(tu/w)k/a; p)

]

=
θ(a/e, a/f, g/a, efg/a; p)

θ(eg/a, fg/a, a, a/ef ; p)

×
[
1 − (b; q, p)n+1(c; r, p)n+1(d; s, p)n+1

(a/b; w/q, p)n+1(a/c; w/r, p)n+1(a/d; w/s, p)n+1

× (e; t, p)n+1(f ; u, p)n+1(g; v, p)n+1

(a/e; w/t, p)n+1(a/f ; w/u, p)n+1(a/g; w/v, p)n+1

]
(3.11)

where a3 = bcdefg and w3 = qrstuv, and then to let g = v−n to obtain the following
multibasic theta hypergeometric generalization of [8, Eq. (3.6.16)]

n∑

k=0

θ(awk, a(w/tu)k/ef, a2(uv/w)k/bcde, a2(tv/w)k/bcdf, a2/bcd; p)

θ(a, a/ef, a2/bcde, a2/bcdf, a2(tuv/w)k/bcd; p)

× (b; q, p)k(c; r, p)k(d; s, p)k

(a/b; w/q, p)k(a/c; w/r, p)k(a/d; w/s, p)k

× (e; t, p)k(f ; u, p)k(v
−n; v, p)k

(aw/et; w/t, p)k(aw/fu; w/u, p)k(awvn−1; w/v, p)k

(w/v)k

×
[
1 − θ(a(w/rs)k/cd, a(w/qs)k/bd, a(w/qr)k/bc; p)

θ(a(w/q)k/b, a(w/r)k/c, a(w/s)k/d; p)

× θ(etk, fuk, vk−n; p)

θ(f(u/w)kvk−n/a, e(t/w)kvk−n/a, ef(tu/w)k/a; p)

]

=
θ(a/e, a/f, v−n/a, efv−n/a; p)

θ(ev−n/a, fv−n/a, a, a/ef ; p)
, (3.12)
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where a3vn = bcdef and w3 = qrstuv, and n = 0, 1, . . . . By letting f → a in (3.12) we
obtain

n∑

k=0

θ(awk, (w/tu)k/e, v−n(uv/w)k, a(tv/w)k/bcd, a2/bcd; p)

θ(a, 1/e, a2/bcde, a/bcd, a2(tuv/w)k/bcd; p)

× (b; q, p)k(c; r, p)k(d; s, p)k

(a/b; w/q, p)k(a/c; w/r, p)k(a/d; w/s, p)k

× (e; t, p)k(a; u, p)k(v
−n; v, p)k

(aw/et; w/t, p)k(w/u; w/u, p)k(awvn−1; w/v, p)k

(w/v)k

×
[
1 − θ(a(w/rs)k/cd, a(w/qs)k/bd, a(w/qr)k/bc; p)

θ(a(w/q)k/b, a(w/r)k/c, a(w/s)k/d; p)

× θ(etk, auk, vk−n; p)

θ((u/w)kvk−n, e(t/w)kvk−n/a, e(tu/w)k; p)

]

= δn,0 (3.13)

for n = 0, 1, . . . , where a2vn = bcde, w3 = qrstuv, and δn,m is the Kronecker delta function.
Setting w = rs and d = a/c in (3.13), we have e = avn/b and obtain (after doing the

simultaneous replacements q 7→ r, rs 7→ rst/q, u 7→ rst/q2 and v 7→ s) the identity (see
[8, Eq. (11.6.11)])

n∑

k=0

θ(a(rst/q)k, brk/qk, sk−n/qk, asntk/bqk; p)

θ(a, b, s−n, asn/b; p)

× (a; rst/q2, p)k(b; r, p)k(s
−n; s, p)k(asn/b; t, p)k

(q; q, p)k(ast/bq; st/q, p)k(asnrt/q; rt/q, p)k(brs1−n/q; rs/q, p)k

qk

= δn,0, (3.14)

where n = 0, 1, . . . , which generalizes [8, Eq. (3.6.17)]. In particular, if we replace n, a, b,
and k in the s = t = q case of (3.14) by n − m, armqm, brmq−m, and j − m, respectively,
we obtain the orthogonality relation

n∑

j=m

anjbjm = δn,m (3.15)

with

anj =
(−1)n+jθ(arjqj, brjq−j; p)(arqn, brq−n; r, p)n−1

(q; q, p)n−j(arqn, brq−n; r, p)j(bq1−2n/a; q, p)n−j

,

bjm =
(armqm, brmq−m; r, p)j−m

(q, aq1+2m/b; q, p)j−m

(
− a

b
q1+2m

)j−m

q2(j−m
2 ).

This shows that the triangular matrix A = (anj) is the inverse of the triangular matrix
B = (bjm), and yields a theta hypergeometric analogue of [8, Eqs. (3.6.18)–(3.6.20)]. It
should be noted, on the contrary, that by replacing n and k in (3.13) by n−m and j −m
one does not obtain a sum of the form (3.15).
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By proceeding as in the derivation of Eq. (3.6.22) in [8], we find that the latter extends
to the bibasic theta hypergeometric summation formula

θ(a/r, b/r; p)
n∑

k=0

(aqk, bq−k; r, p)n−1θ(aq2k/b; p)

(q; q, p)k(q; q, p)n−k(aqk/b; q, p)n+1

(−1)kq(
k
2) = δn,0 (3.16)

for n = 0, 1, . . . , which when r = q reduces to

8V7(a/b; q/b, aqn−1, q−n, q−2n; q, p) = δn,0.

Special cases of the summation formula (3.12), combined with the argument applied in
[8, Sec. 3.8], can be used to extend equations (3.8.14) and (3.8.15) of [8] to the quadratic
theta hypergeometric transformation formulas

n∑

k=0

θ(acq3k; p)

θ(ac; p)

(a, b, cq/b; q, p)k(f, a2c2q2n+1/f, q−2n; q2, p)k

(cq2, acq2/b, abq; q2, p)k(acq/f, f/acq2n, acq2n+1; q, p)k

qk

=
(acq; q, p)2n(ac2q2/bf, abq/f ; q2, p)n

(acq/f ; q, p)2n(abq, ac2q2/b; q2, p)n

× 12V11(ac2/b; f, ac/b, c, cq/b, cq2/b, a2c2q2n+1/f, q−2n; q2, p) (3.17)

and
2n∑

k=0

θ(acq3k; p)

θ(ac; p)

(d, f, a2c2q/df ; q2, p)k(a, cq2n+1, q−2n; q, p)k

(acq/d, acq/f, df/ac; q, p)k(cq2, aq1−2n, acq2n+2; q2, p)k

qk

=
(acq, acq/df ; q, p)n(acq1−n/d, acq1−n/f ; q2, p)n

(acq/d, acq/f ; q, p)n(acq1−n, acq1−n/df ; q2, p)n

× 12V11(acq−2n−1; c, d, f, a2c2q/df, aq−2n−1, q1−2n, q−2n; q2, p) (3.18)

for n = 0, 1, . . . ; see Thms. 4.2 and 4.7 in Warnaar [10].
Also of interest is the special case of (3.11) that is obtained by setting w 7→ rs, c 7→ a/d,

and f 7→ a/d (hence g → ad/be), which after the simultaneous replacements q 7→ r,
rs 7→ rst/q, u 7→ rst/q2, v 7→ s, a 7→ ad, and e 7→ ad2/bc gives the identity (see also [8,
Eq. (11.6.9)])

n∑

k=0

θ(ad(rst/q)k, brk/dqk, csk/dqk, adtk/bcqk; p)

θ(ad, b/d, c/d, ad/bc; p)

× (a; rst/q2, p)k(b; r, p)k(c; s, p)k(ad2/bc; t, p)k

(dq; q, p)k(adst/bq; st/q, p)k(adrt/cq; rt/q, p)k(bcrs/dq; rs/q, p)k

qk

=
θ(a, b, c, ad2/bc; p)

d θ(ad, b/d, c/d, ad/bc; p)

× (arst/q2; rst/q2, p)n(br; r, p)n(cs; s, p)n(ad2t/bc; t, p)n

(dq; q, p)n(adst/bq; st/q, p)n(adrt/cq; rt/q, p)n(bcrs/dq; rs/q, p)n

− θ(d, ad/b, ad/c, bc/d; p)

d θ(ad, b/d, c/d, ad/bc; p)
. (3.19)



12 G. Gasper & M. Schlosser

Just as in the derivation in Gasper [7] of the quadbasic transformation formula in [8,
Ex. 3.21], one can extend indefinite summation formulas (such as in (3.6) and (3.19)) to
transformation formulas by applying the identity

n∑

k=0

λk

n−k∑

j=0

Λj =
n∑

k=0

Λk

n−k∑

j=0

λj,

which follows by a reversing the order of summation. For example, by taking λk to be the
kth term in the series in (3.6) and Λk to be this term with ak, bk, ck, dk, and p replaced by
Ak, Bk, Ck, Dk, and P , respectively, we obtain the rather general transformation formula

n∑

k=0

θ(ak, ak/bkck, ak/bkdk, ak/ckdk; p)

θ(ak/bkckdk, ak/dk, ak/ck, ak/bk; p)

×
k−1∏

j=0

θ(bj, cj, dj, a
2
j/bjcjdj; p)

θ(aj/bj, aj/cj, aj/dj, bjcjdj/aj; p)

×
{

1 −
n−k∏

j=0

θ(Bj, Cj, Dj, A
2
j/BjCjDj; P )

θ(Aj/Bj, Aj/Cj, Aj/Dj, BjCjDj/Aj; P )

}

=
n∑

k=0

θ(Ak, Ak/BkCk, Ak/BkDk, Ak/CkDk; P )

θ(Ak/BkCkDk, Ak/Dk, Ak/Ck, Ak/Bk; P )

×
k−1∏

j=0

θ(Bj, Cj, Dj, A
2
j/BjCjDj; P )

θ(Aj/Bj, Aj/Cj, Aj/Dj, BjCjDj/Aj; P )

×
{

1 −
n−k∏

j=0

θ(bj, cj, dj, a
2
j/bjcjdj; p)

θ(aj/bj, aj/cj, aj/dj, bjcjdj/aj; p)

}
. (3.20)

The special case of (3.20) that is obtained by using (3.19) instead of (3.6) is

n∑

k=0

θ(ad(rst/q)k, brk/dqk, csk/dqk, adtk/bcqk; p)

θ(ad, b/d, c/d, ad/bc; p)

× (a; rst/q2, p)k(b; r, p)k(c; s, p)k(ad2/bc; t, p)k

(dq; q, p)k(adst/bq; st/q, p)k(adrt/cq; rt/q, p)k(bcrs/dq; rs/q, p)k

qk

×
(

θ(A,B, C, AD2/BC; P )(Q−n/D; Q,P )k(B(Q/ST )n/AD; ST/Q, P )k

D θ(AD,B/D, C/D, AD/BC; P )((Q2/RST )n/A; RST/Q2, P )k

× (C(Q/RT )n/AD; RT/Q, P )k(D(Q/RS)n/BC; RS/Q, P )k

(R−n/B; R,P )k(S−n/C; S, P )k(BCT−n/AD2; T, P )k

− θ(D, AD/B,AD/C, BC/D; P )(DQ; Q,P )n(ADST/BQ; ST/Q, P )n

D θ(AD, B/D,C/D, AD/BC; P )(ARST/Q2; RST/Q2, P )n(BR; R,P )n

× (ADRT/CQ; RT/Q, P )n(BCRS/DQ; RS/Q, P )n

(CS; S, P )n(AD2T/BC; T, P )n

)
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=
(arst/q2; rst/q2, p)n(br; r, p)n(cs; s, p)n(ad2t/bc; t, p)n

(dq; q, p)n(adst/bq; st/q, p)n(adrt/cq; rt/q, p)n(bcrs/dq; rs/q, p)n

× (DQ; Q,P )n(ADST/BQ; ST/Q, P )n

(ARST/Q2; RST/Q2, P )n(BR; R,P )n

× (ADRT/CQ; RT/Q, P )n(BCRS/DQ; RS/Q, P )n

(CS; S, P )n(AD2T/BC; T, P )n

×
n∑

k=0

θ(AD(RST/Q)k, BRk/DQk, CSk/DQk, ADT k/BCQk; P )

θ(AD, B/D, C/D,AD/BC; P )(DQ; Q,P )k

Qk

× (A; RST/Q2, P )k(B; R,P )k(C; S, P )k(AD2/BC; T, P )k

(ADST/BQ; ST/Q, P )k(ADRT/CQ; RT/Q, P )k(BCRS/DQ; RS/Q, P )k

×
(

θ(a, b, c, ad2/bc; p)(q−n/d; q, p)k(b(q/st)
n/ad; st/q, p)k

d θ(ad, b/d, c/d, ad/bc; p)((q2/rst)n/a; rst/q2, p)k(r−n/b; r, p)k

× (c(q/rt)n/ad; rt/q, p)k(d(q/rs)n/bc; rs/q, p)k

(s−n/c; s, p)k(bct−n/ad2; t, p)k

− θ(d, ad/b, ad/c, bc/d; p)(dq; q, p)n(adst/bq; st/q, p)n

d θ(ad, b/d, c/d, ad/bc; p)(arst/q2; rst/q2, p)n(br; r, p)n

× (adrt/cq; rt/q, p)n(bcrs/dq; rs/q, p)n

(cs; s, p)n(ad2t/bc; t, p)n

)
. (3.21)

The d,D → 1 special case of (3.21) is

n∑

k=0

θ(a(rst/q)k, brkq−k, cskq−k, atk/bcqk; p)

θ(a, b, c, a/bc; p)

× (a; rst/q2, p)k(b; r, p)k(c; s, p)k(a/bc; t, p)k

(q; q, p)k(ast/bq; st/q, p)k(art/cq; rt/q, p)k(bcrs/q; rs/q, p)k

× (Q−n; Q,P )k(B(Q/ST )n/A; ST/Q, P )k(C(Q/RT )n/A; RT/Q, P )k

((Q2/RST )n/A; RST/Q2, P )k(R−n/B; R,P )k(S−n/C; S, P )k

× ((Q/RS)n/BC; RS/Q, P )k

(BC/AT n; T, P )k

qk

=
(arst/q2; rst/q2, p)n(br; r, p)n(cs; s, p)n(at/bc; t, p)n

(q; q, p)n(ast/bq; st/q, p)n(art/cq; rt/q, p)n(bcrs/q; rs/q, p)n

× (Q; Q,P )n(AST/BQ; ST/Q, P )n

(ARST/Q2; RST/Q2, P )n(BR; R,P )n

× (ART/CQ; RT/Q, P )n(BCRS/Q; RS/Q, P )n

(CS; S, P )n(AT/BC; T, P )n

×
n∑

k=0

θ(A(RST/Q)k, BRkQ−k, CSkQ−k, AT k/BCQk; P )

θ(A,B,C,A/BC; P )

× (A; RST/Q2, P )k(B; R, P )k

(Q; Q,P )k(AST/BQ; ST/Q, P )k



14 G. Gasper & M. Schlosser

× (C; S, P )k(A/BC; T, P )k

(ART/CQ; RT/Q, P )k(BCRS/Q; RS/Q, P )k

× (q−n; q, p)k(b(q/st)
n/a; st/q, p)k

((q2/rst)n/a; rst/q2, p)k

× (c(q/rt)n/a; rt/q, p)k((q/rs)
n/bc; rs/q, p)k

(r−n/b; r, p)k(s−n/c; s, p)k(bc/atn; t, p)k

Qk, (3.22)

for n = 0, 1, . . . . For s = t = q and S = T = Q this reduces to the elliptic quadbasic
transformation formula

n∑

k=0

θ(arkqk, brkq−k; p)

θ(a, b; p)

(a, b; r, p)k(c, a/bc; q, p)k

(q, aq/b; q, p)k(ar/c, bcr; r, p)k

× (CR−n/A,R−n/BC; R, P )k(Q
−n, BQ−n/A; Q,P )k

(Q−n/C, BCQ−n/A; Q,P )k(R−n/A,R−n/B; R, P )k

qk

=
(ar, br; r, p)n(cq, aq/bc; q, p)n(Q,AQ/B; Q,P )n(AR/C,BCR; R, P )n

(q, aq/b; q, p)n(arc, bc/r; r, p)n(AR, BR; R, P )n(CQ, AQ/BC; Q,P )n

×
n∑

k=0

θ(ARkQk, BRkQ−k; P )

θ(A,B; P )

(A,B; R, P )k(C, A/BC; Q,P )k

(Q,AQ/B; Q, P )k(AR/C,BCR; R, P )k

× (cr−n/a, r−n/bc; r, p)k(q
−n, bq−n/a; q, p)k

(q−n/c, bcq−n/a; q, p)k(r−n/a, r−n/b; r, p)k

Qk, (3.23)

which is an extension of the second identity in [8, Ex. 3.21] (see also [8, Ex. 11.25]). If
we now set R = Q = r = q, we obtain the following transformation formula for a “split-
poised” theta hypergeometric series

n∑

k=0

θ(aq2k; p)

θ(a; p)

(a, b, c, a/bc; q, p)k

(q, aq/b, aq/c, bcq; q, p)k

× (q−n, B/Aqn, C/Aqn, 1/BCqn; q, p)k

(1/Aqn, 1/Bqn, 1/Cqn, BC/Aqn; q, p)k

qk

=
(aq, bq, cq, aq/bc, Aq/B, Aq/C,BCq; q, p)n

(Aq, Bq, Cq,Aq/BC, aq/b, aq/c, bcq; q, p)n

×
n∑

k=0

θ(Aq2k; p)

θ(A; p)

(A,B,C,A/BC; q, p)k

(q, Aq/B,Aq/C,BCq; q, p)k

× (q−n, b/aqn, c/aqn, 1/bcqn; q, p)k

(1/aqn, 1/bqn, 1/cqn, bc/aqn; q, p)k

qk (3.24)

for n = 0, 1, . . . , which is an extension of the transformation formula for a split-poised

10φ9 series given in [8, Ex. 3.21]. This formula may also be written as a transformation
formula for a split-poised 12E11 series, see (1.1).

We will now use (3.14) to derive multibasic extensions of the Fields and Wimp, Verma,
and Gasper expansion formulas in [8, Eqs. (3.7.1)–(3.7.3) & (3.7.6)–(3.7.9)], and multi-
basic theta hypergeometric extensions of [8, Eqs. (3.7.6)–(3.7.8)]. Let a = γ(rst/q)j and
b = σ(r/q)j in (3.14) and replace the summation index k by n − k. For j, n = 0, 1, . . . ,
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we assume that Bn(p) and Cj,n are complex numbers such that Cj,0 = 1 and the sequence{
Bn(p)

}
has finite support when p 6= 0. Then, for j = 0, 1, . . . ,

Bj(p)xj =
∞∑

n=0

θ(γσ−1(st)n+j; p)(γσ−1(st)j; st/q, p)n

θ(γσ−1(st)j; p)(s; s, p)n

× (γrsjtq−1; rt/q, p)j(σrs1−jq−1; rs/q, p)j

(γrsn+jtq−1; rt/q, p)j(σrs1−n−jq−1; rs/q, p)j

× s(
n+1

2 )q−(n+1
2 )−njBj+n(p)Cj,nx

j+nδn,0

=
∞∑

k=0

∞∑

n=j

θ(γ(rst/q)n, σ(r/q)n, γσ−1(st)n+k, γσ−1sn+ktnqj−n, s−kqj−n; p)

θ(sj−n−k; p)(s; s, p)k(q; q, p)n

× (γσ−1(st)n+1qj−n−1; st/q, p)k−1(γσ−1sn+ktj+1; t, p)n−j−1

(γrsn+ktq−1; rt/q, p)n(σrs1−n−kq−1; rs/q, p)n

× (γrsjtq−1; rt/q, p)j(γ(rst)j+1q−j−2; rst/q2, p)n−j−1

× (σrs1−jq−1; rs/q, p)j(σrj+1q−j; r, p)n−j−1(q
−n; q, p)j

× (−1)nBn+k(p)Cj,n+k−jx
n+ks(

k+1
2 )q−(k+1

2 )+(n
2)+n(1+j−n−k) (3.25)

by interchanging sums and setting n 7→ n+k−j (this extension of [8, Eq. (3.7.5)] corrects
[8, Eq. (11.6.20)]).

By multiplying both sides of (3.25) by Ajw
j/(q; q, p)j and summing from j = 0 to ∞

we get that the following multibasic expansion formula (this corrects [8, Eq. (11.6.21)])

∞∑

n=0

AnBn(p)
(xw)n

(q; q, p)n

=
∞∑

n=0

θ(γ(rst/q)n, σ(r/q)n; p)

(q; q, p)n

(−x)nqn+(n
2)

×
∞∑

k=0

θ(γσ−1(st)n+k; p)

(γrsn+ktq−1; rt/q, p)n(σrs1−n−kq−1; rs/q, p)n

Bn+k(p)xk

(s; s, p)k

s(
k+1
2 )q−(k+1

2 )

×
n∑

j=0

θ(γσ−1sn+ktnqj−n, s−kqj−n; p)(q−n; q, p)j

θ(sj−n−k; p)(q; q, p)j

× (γσ−1(st)n+1qj−n−1; st/q, p)k−1(γσ−1sn+ktj+1; t, p)n−j−1

× (γrsjtq−1; rt/q, p)j(γ(rst)j+1q−j−2; rst/q2, p)n−j−1

× (σrs1−jq−1; rs/q, p)j(σrj+1q−j; r, p)n−j−1AjCj,n+k−jw
jqn(j−n−k), (3.26)

which reduces to [8, Eq. (3.7.6)] by letting p = 0 and then setting r = p and s = t = q.
If we set r = s = t = q and Cj,m ≡ 1 in (3.26) we obtain an expansion formula that is

equivalent to the following extension of [8, Eq. (3.7.7)] (which corrects a slight misprint
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in [8, Eq. (11.6.22)])

∞∑

n=0

AnBn(p)
(xw)n

(q; q, p)n

=
∞∑

n=0

(σ, γqn+1/σ, α, β; q, p)n

(q, γqn; q, p)n

(x

σ

)n

×
∞∑

k=0

θ(γq2n+2k/σ; p)(γq2n/σ, σ−1, αqn, βqn; q, p)k

θ(γq2n/σ; p)(q, γq2n+1; q, p)k

Bn+k(p)xk

×
n∑

j=0

(q−n, γqn; q, p)j

(q, γqn+1/σ, q1−n/σ, α, β; q, p)j

Aj(wq)j, (3.27)

where, as previously, it is assumed that
{
Bn(p)

}
has finite support when p 6= 0. Clearly,

one cannot let σ → ∞ in (3.27) to obtain an extension of [8, Eq. (3.7.3)] that holds when
p 6= 0.

Corresponding to the q-analogue of the Fields and Wimp expansion formula displayed
in [8, Eq. (3.7.8)], (3.27) gives the rather general theta hypergeometric expansion formula
(see [8, Eq. (11.6.23)])

∞∑

n=0

(aR, cT ; q, p)n

(q, bS, dU ; q, p)n

AnBn(p)(xw)n

=
∞∑

n=0

(cT , eK , σ, γqn+1/σ; q, p)n

(q, dU , fM , γqn; q, p)n

(x

σ

)n

×
∞∑

k=0

θ(γq2n+2k/σ; p)(γq2n/σ, σ−1, cT qn, eKqn; q, p)k

θ(γq2n/σ; p)(q, γq2n+1, dUqn, fMqn; q, p)k

Bn+k(p)xk

×
n∑

j=0

(q−n, γqn, aR, fM ; q, p)j

(q, γqn+1/σ, q1−n/σ, bS, eK ; q, p)j

Aj(wq)j, (3.28)

where we used the contracted notation that was used in [8, Eq. (3.7.8)], and, in order to
avoid convergence problems, it is assumed that

{
Bn

}
has finite support when p 6= 0.

By using (3.13) instead of its special case (3.14) and proceeding as above, one can
derive even more general extensions of the multibasic Fields and Wimp, Verma, and
Gasper expansions. Since they are rather lengthy and do not seem to be of any particular
interest at this time, we will not give them here.
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