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Abstract

We review a recent result on a formula of the generalized elliptic 6j-symbols
expressed in terms of the fusion of the vertex-face intertwining vectors. The formula
is derived by identifying the k£ fusion intertwining vectors with the change of base
matrix elements from Sklyanin’s standard base to Rosengren’s natural base in the
space of even theta functions of order 2k. We also give a list of explicit expressions
of the elliptic 6j-symbols for k = 1, 2.

1 Introduction

Recently, Spiridonov and Zhedanov succeeded to give a proper elliptic analogue ,, 3V, 5 of
the very-well-poised basic hypergeometric series ;. 1¢, based on the theory of biorthogonal
rational functions[1, 2]. This yielded a generalization of the elliptic 6j-symbols introduced
by Frenkel and Turaev[3]. At the same time, they reached a relevant scheme for dealing
with a family of biorthogonal rational functions as the generalized eigenvalue problem
(GEVP) associated with two Jacobi matrices.

Concerning a generalisation of the elliptic 6j-symbols, Rosengren found a relevant
GEVP recently[4, 5]. It is deeply related with the representation theory of the Sklyanin
algebra on the space of theta functions ©4[6]. He found a natural basis of the space as a
set of solutions of the GEVP and identified a change of base matrix elements between the
two natural bases depending on a different parameters with the generalized elliptic 67-
symbols. He then succeeded to derive an expression of the generalised elliptic 6;j-symbols
in terms of 12V71.

His natural basis turned out to be equivalent to a fusion of the vertex-face intertwining
vectors realised as the vectors in the space of theta functions O[7]. However in a context
of the solvable lattice models, it is standard to take intertwining vectors as the elements of
the vector space V', on which tensor product V @V the fusion of the R-matrix acts. They
map a fusion of the elliptic R-matrix to a fusion of the face weight of the SOS model[8, 9].

In this paper, according to [10], we investigate a connection between these two reali-
sations of the intertwining vectors, one in ©; and the other in V. We then derive a new
formula which makes an exact relation between the generalised elliptic 6j-symbols and the
fusion of the standard intertwining vectors. The new formula allows a simple derivation
of various properties of the elliptic 6j-symbols such as addition formula, biorthogonality
property, fusion formula and Yang-Baxter relation. We give a summary of them.

1.1 Notations

oK’ TA TAU . .
Let p=e""% ,q= —e2c and ( = e 2x. We introduce x, 7 and r by x = —q, 7 = 211(—],{
2mi

and r = KT/ Then p = e~ = = 2?". The parameter r plays a role of restriction height in
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the restricted SOS models. Through this paper, we assume Im7 > 0. Let p = *™". We
use the theta functions

V1 (ulr) = 2p1/8(p D)oo SIHWUH (1 — 2p™ cos 2mu + p*"),

n=1

doulr) = —iem 7Ny (- Z|r)

1
9o (ul) = 01 (u + 5\7) ,

: 1
Vg(u|r) = e™ /Ay, (u + T; ‘7) .

We also use the symbol [u] defined by

[u] = Cy (E ) C=qgie ir2
r
The elliptic shifted factorials are defined by
n—1
[u]n = H[u + J]
j=0

with the convention

2 Vertex-Face Correspondence and Fusion

2.1 R-matrix, face weight and intertwining vectors

The vertex-face correspondence is a relationship between Baxter’s R-matrix R(u) and the

: . a; a .
eight-vertex SOS face weight W ( al a2 u) These are given as follows.
4 a3
ai a2
€1
ap Qo
. €1€2 5 9 W( U) — u
R(u v)s,lg,2 =V 2 as; as
/
& a as
» 4
Fig.1: The vertex model weight Fig.2: The SOS model face weight

Let V = Cu,, ® Cuv.,. We define R(u) € End(V ® V) as follows|[8].

6162
R( U)Vg, 0%y Vey = Z R e /Ugl & UE/Q

€1.€h
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with
a(u) d(u)
R(u) = Ro(u) iEZ; ggzg , (2.1)
d(u) a(u)
where z = (? = 2% and
r1 (p222; 2%, ) so (222 2%, ) oo () 2 24, ) oo (21 25 2%, D) 0o

(22/2; 2%, D)oo (P23 T4, D)oo (2425 2%, P) o

)
)% (5:]5)

pr/Z;x‘l,p)oo
o) = DelzlD (D) ) el
(u) Ua (03) 92 (124 3)° (u) 5 (01 2) 0: (e[ 2)
= el B () g 0l p) B
REICHENC RN CH I C S

On the other hand, the face weight W < Zl 22
4 a3

W (ks uk|v) =R,
a azxl [a F ul[1]
a azxl B [a + 1][u]
(a1 o[ - mo

Here we allow only the configurations satisfying the so-called the admissibility condition
la; — a| =1 for any two adjacent local heights a; and a.

Then the vertex-face correspondence is stated as follows[8]. Let us define the inter-
twining vectors ¥ (u)¢ (la —b| = 1) by

Y(u)y =+ (u)y vy +Y_(u)y v- €V, (2.3)
m(@%%(% g) w_<u)g:ﬁ3(% %)

Then we have the following identity.

el el / a b
Z R(U - U)z—:isg ¢€1 ¢€2 Z ¢€2 b’¢61 < Ve

el,eh VeZ

(a) (b)

Fig.3: (a) The intertwining vector ; (b) the dual intertwining vector
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a b a b c £1 c €1

f—

E9 E9 €2 €2

€1 i81 b a b a
U U

() (b)
Fig.4 The vertex-face correspondence: (a) via the intertwining vector ; (b) via the dual intertwining

vector

In addition, due to the crossing symmetry properties of R and W, we have the following
relation.

ZR 8182 * aw52 Zwag / ( ZC) l;l U—’U) , (25)

61 52 SEZL

where we defined the dual intertwining vectors *(u)f € V* by

Y (u)y ve = @b:(u)gv ve €V, (2.6)
V2] = —egmrenCP U (u— 1)

By a direct calculation, we have the following inversion relations.

Zw = Gae, (2.7)
}:w ) = 6. (2.8)

a=b=x1

2.2 Fusion

Fusion of the vertex-face correspondence relationship was considered systematically in [9]
( see also [12] for the 2 x 2 fusion case). Let V},V; be copies of V. Let us define the
operator II;..; € End(V®* @ V) by

M., = Py+- 4P +1)--- (Pis+ Pos+1)(Pa+ 1),

k:‘<
where P;(ve, ® v.,) = Ve, @ v, is the transposition between the vectors in the ith and
jth vector space. This yields the projection on the space V) of the symmetric tensors
in V& We define

Ry, ? (u) = Mg Ryj(u+k — 1) - Rp_yj(u+ 1) Ry (v) € End(VH @ V5).

Then we obtain the k x [ fusion R-matrix R*"(u) as follows.

(w—1)---R™) (u—1+1). (2.9)

1k, 1

RO () = T RS () R

1k, k-1
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This is an operator in End(V® @ V). It satisfies the Yang-Baxter equation (YBE) on
VR @ Vh g Vim),

RED (4 — v) R&™ () RE™ (v) = RE™ (1) R&™ (1) R* (y — ).

The k x [ fusion of the face weight W*! is obtained similarly. We first define

(k,1) a b
e (G el)
a ap a; b ar—1 b
= > W u+k—1|W u+k—2)---W ul.
d p d d1 d1 C dk—l C
15-0k—1
en the is independent of the choice of aq, .., ax_1 provided |a — aq| = |a; — as| =
Th he RHS d d f the ch f ded
-+« = |ag—1 — b| = 1. Then we have
(k1) a b
v ()
= Z kD (9 b w—l+1 Wk (@ b w—1+42) Wk (41 by u .
a; by ap by d c
a1,..,ap—1

(2.10)

The RHS is independent of the choice of by, ..,b;_1 provided |b — by| = |by —bs| = --- =
b1 —c| = 1. In W®D  the dynamical variables satisfy the extended admissible condition
a—b € {—k,—k+2,..,k} for any two horizontally adjacent local heights a,b, while
a—d € {-=l,—1+2,.,1} for any two vertically adjacent local heights a,d. The k x I
fusion face weight W *! satisfies the face type YBE.

u— v)

b f g b ¢

W kD ( a u) W (km) ( U) W (msD) <
%; I g e d g d
=St (49 ) e ol Y wekn (9 ¢
f e g c e d

9
Next let us consider the fusion of the vertex-face relationships (2.4), (2.5). We define
the k fusion of the intertwining vectors by|[9]

u).@lh

PP )y =T Plu+k— 12 @Pu+k—2)2 @ @)  (2.12)

Here the RHS is independent of the choice of ¢y, .., cx_1 provided |[a—ci| = |1 —co| = -+ =
lck—1 — b] = 1. The local heights a and b now satisfy the extended admissible condition

a—be{-k, —k+2 .. k}. For k> 1, the basis {vﬁk)}uz_ky_kﬁmk of V¥ is given by a
fusion of the basis vectors v, (¢; = %) of V.

1
k
U/S) = Z Veyny @ Veyq) @+ 7+ @ Vg, (2.13)

’ og€ESy,
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where Sy being the symmetric group and we set u = Zle g;. Substituting (2.3) to (2.12),
we obtain

PPy = > PPy,
pef{—k,—k+2,...k}

YO = 3" e (k= D)8+ k= 2)% g, (W) (2.14)

€1 Ep="1,—
sk .
l’f*ijl €5

From (2.4), (2.9), and (2.10), it follows that the fused intertwining vectors satisfy the k x
fusion vertex-face correspondence relations.
u— v) :

K, (k (l) k,l a b
> RO — vyt o) L= 3o )W”(b,c
(2.15)

JTANT VeZ

Similarly, the dual intertwining vectors can be fused k times in the following way[11].

VP = Y Wlutk=1F @ (utk-2)2 @09 (), (2.16)

C1;-+,Ck—1

with the property

Hl‘..k @D*(k)(U)Z = @/)*(k)(u)g Hlk

As above, it follows immediately from (2.5), (2.9) and (2.10), that we have

*( a 1.x(1) / C b/
> R (u— o oD @i o = > v o) <)bW(kl(b g ”‘“>~
L bez
(2.17)
Finally, using (2.7) and (2.8), the following inversion relations hold.
Y. PPl = b (2.18)
pe{—k,—k+2,--k}
*(k a
> @ Wi = G (2.19)

a€{b—kb—k-+2,..b+k}

3 The Elliptic 6j-symbols

Through this section, we use the abbreviation

[u+ 2] = [u+ z][u— z],
Uolu £ 2|7) = Jo(u + 2|7)0a(u — z|7) a=0,1,2,3.
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3.1 The natural basis

Let Oy be the space of even theta functions of order 2k with quasi-period (1, 7) and zero
characteristics.

O = {f(z) centire | f(z+1) = f(2), f(z+7) = e’Q”ik(QerT)f(z), f(=2) = f(z)} )

This space forms a k 4 1 dimensional vector space.
Let us consider the vectors of ©, given by

e (zia,0) = [axr2],[BE72]een (n=0,1,..,k). (3.1)
These vectors are linearly independent, if «, 3 satisfy the following conditions[4].

O‘_—Mgz+72, j=1-k2—Fk . k-1,

BT g =01, k1.

Hence a system of vectors {e*(z; a, 3)}F_, forms a basis of Oy, and is called the natural
basis.
Rosengren showed that the change of base coefficients R («, 3,7, 6; k; q,p) in

"z, B) = ZR’" 8,7, 6: k3 4, p)er, (237, 6) (32)

can be regarded as a generalisation of the elliptic 6j-symbols. In fact, the vectors
ek (z;a, B) are natural elliptic analogue of the product h,(z; a)hy_,(z; 3) of the Askey-
Wilson monomials h,(x;a) = (a&;q)n(aé™;q),. Here x = &+ &1 and (2;¢9), =
(1 —2)(1 —2q) -+ (1 — 2z¢™'). For generic «, 3, the set {h,(z;a)hg_,(x;B3)}F_, forms
a basis of the space of polynomials of degree < k. Then the trigonometric coefficients
Ry, B,7,0;k; q) in

k
ho(; @) hin(; B) = D R (@, 8,75, 65 k; @) (237 i (5 9)
m=0

gives a biorthogonal function generalization of g-Racah polynomials[4].
Furthermore he found an expression of the coefficients R}'(«, 3,7, 6; k; g, p) in terms of
the elliptic analogue of the very-well-poised balanced basic hypergeometric series, 15V11.

Theorem 3.1 [4]
R (o, 8,7,0;k;q,p)

_ mk [ﬂ_5?ﬁ+5_1+k]n[0‘_Vaa+7]n[ﬁ_'Yaﬁ‘F'Y]kfn[ﬂ_ﬁY]k—
[ [1]— [y =0+m—k,B+7n[6 —v—mlp—m[d + 7,8 —

XIQ‘/Il(V_ﬂ_ku_na_m?a_ﬁ—i_n_k77_5+m_k77+57a_ﬁ+1_k77_6+1)

(3.3)
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Here 4,1V is defined by|[2]

o0 s—4
UQ+2]
5+1V9(UQ;U1,"‘ Us—4 :Z UO HU0+1—U]
]: ’LZO '

with the balancing condition

3.2 Relation with the intertwining vectors

We next consider the standard basis of ©, introduced by Sklyanin[6] and make a connec-
tion between R™(a, 3,7,0;k;q,p) and the vertex-face intertwining vectors. For k = 1,
the following two vectors form a basis of ©;.

vy(2) =05 (22]21) — 99 (22| 27),
v_(2) = U3 (22] 27) + U9 (22| 27) .

For £ > 1, we obtain the basis {v&k)(z)}uz_k7_k+2,_.7k of © by fusing the basis vectors
ve(2) (e = %) of Oy.

1
U2 = 5 D ey (Ve (2) 1 0y (2), (3.4)

) ocESk

with u = Z?Zl £;.
Now let us consider the intertwining vectors in the standard basis.

).

PP (us ) =g b (u+k —152)% @Y(u+k—22)2 @ @ (u; 2)) "

B = Buluwg = os (22 EZ 0

e==+

Fusion of the intertwining vectors 1 (u; z)§ are then given by

Y™ (u)¢ is independent of the choice of cy, .., cx_1 and a, b satisfy the admissible condition
a—be {—k,—-k+2, .k} Letusseta—b=Fk—2n(n=0,1,2,..,k). Evaluating
Y ® (u; 2)¢ in two ways, we found the following formula[10].

VO (u;2)f = Yo v ()

ue{_kv_k+217k}

_ (_)kefm'k(%Jer) kaefl

+7'+1 —-u+a—k+1 —u—a—k+1
5 )
2 7 2 ’ 2 ’

(3.5)

where z/;,(ﬁ)( )¢ is given in (2.14). In the derivation of the second line we took a choice
cipm=cj+l,co=aforj=0,1,2,..,nand ¢jy; =c;—1,¢, =bfor j=n,n+1,.. k—1[7].
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C'is a constant given in §1.1. This formula indicates that the components w,(ﬁ)( ) of the
vertex—face intertwining vector play the role of the change of base matrix elements from
{v '(2)} to {ek(z; =uta= kil —u—achtl)} in ©y. This role is similar to the one of the
generalized group elements (= Babelon’s vertex-IRF transformations|[14] ) in the theory
of ¢-6j symbols studied by Rosengren|[15].

Using (3.5), we obtain from (3.2)

k
PP () =S R, 8,7, 0; k; 4, p)v P (w)5,
m=0

fora—b=k—2n,c—d=k—2mand o = =wtehktl g — —umachil ) — —ubeohil 5 —

2
%‘kﬂ. Then the inversion relation (2.18) yields the following formula for R".

Theorem 3.2 [10]

RMou B,y 0kiqp) = Y. B ()P (w). (3.6)

pe{—k,—k+2,. .k}

Note that Rosengren derived a similar scalar product expression for R ((11.2) in [5]),
where the scaler product is defined by Sklyanin’s invariant metric on Oy.

It turns out that the expression appeared in the RHS of (3.6) is nothing but a matrix
L™ introduced by Lashkevich and Pugai[13] for & = 1 and extended to higher k by
Kojima, Weston and the present author [11]. Namely,

(k) a b
L (c d

u)z S @B ) = RN, 8,7,k 0,p).
pe{—k,—k+2,...k}

(3.7)

Combining (3.7) and (3.3), we obtain a full expression of L*) (Z b

u> for arbitrary

Corollary 3.3 Fora—b=k —2n,c—d =k — 2m,

(k) a b
v af)
B “T“]m[—%“]k_m[% e [~ —u— 55—k 1,
k- m[c+m—k, —u— 2 —k+ ] (¢ — Ml m|—u— k + 1, —%5¢],
min(n,m) [GT—FC —k+2j] [QTM —k:,—n, —m,a—i—n—k]j

X

j=0 [%ﬂ_k] [17%6+1+n—kaa7+6+1+m—k,—%+l—n]j
lc+m—Fk,—u—k+1u+k—1,%¢+1];

X :
(456 +1—mu+ 9 —u+ 94+ 1 — k,—k];
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In [11], some of the L(*)-matrix elements were calculated by fusion. In the below we give
a list of them. They agree with this formula. In some cases, one need to apply elliptic
Jackson’s summation formula (See for example [10]).

The k=1 full expressions:

L(l)(z e ‘u) - .[“i[;T“c]][C*T“],
(3 ) -

The k=2 full expressions:

(1253 - I e
Lm( c o “) === u[:jﬁ[:]ﬁﬁu =
L@)( : Z;; u) o] a+[i]f;]r[iic]+[a]][u+c+a],
L(Q)(Z " “): c—l cglﬁ]iuﬁr[i]m’
(0]
[ = 1[F[5F% + lu+ 1+ F2[u — S + [e + 1][F] [ — 1[u+ 1 — F2][u + 5]

[w -+ 1[u][e = 1[d]fe + 1]
o — 1[92 + 1[u+ 1+ 59— 2] + e+ 1[52[%52 — [u+ 1 — =2+ =]
[u + 1)[u][c = 1][c][c + 1] ’

o a a2 Y _ [5 + 5l — 90

. < c ) e Dt Jut U
o (@ a+2| Y _ [505 — ut 1 - ege]fu — ebe)
. (<:c—2 ) e~ [+ ) ’
o o | \_ [l -5t 152
D RS TR .
[ee)fete — 1)fu+ 1 — S2[u— 5]

[ ]

)

L® a a+k—2j w _ [H_Ta"_k_l"'j]k—j[%_l""j]j
C c+k [C—f-k}—l]k

(2) a (1—2
L (c c—2

The k € Z-, partial results:

¢ — 1][c][u + 1][u
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[Tut 5% = gl — 5+ — K

X
[—ulk ’
L® ( a a+k—2j ‘u) _ 55k
c c—k ]k
ot lelut St AT K
[—ulk '

Using the formula (3.6), we can derive various properties of the elliptic 6j-symbols
R™(«, 8,7, 6; k; q,p)[10]. They are summarized as follows.
Addition formula :

k
Ry (a, 8,7, 6 k;¢,p) = > Ry, B, p, 05 k; ¢, p) Ri"(p, 0,7, 65 k3 ¢, p)-
=0
Biorthogonality property :
k
> RIMa, 8,7, 6 ki q,p) Ry, (7, 6, 0, B ki 4, p) = Gy
m=0

Fusion formula ( combinatorial formula [4]):

R’y (a, 8,7,6; k54, p)
= ) RMo,on,7m g p) Ry (an, a2, 72 1¢,p) - - Rt (e, 8,91, 0 150, p),

OSmjgl

E?:l m;=m
Yang-Baxter relation :
Z kD ( a b u— U) L") (
- d c f
_ ZL(k) a b u L(l) b C
y g d d e

S8

Fig.5: The Yang-Baxter equation for the elliptic 6j-symbol.
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