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1. Introduction

1.1. Background. Ω (Omega) surfaces are a part of the study of projective, Möbius
and Lie sphere geometries. Classically, Demoulin and Eisenhart studied Ω surfaces,
with recent renewed interest in them created by F. Burstall, D. Calderbank and U.
Hertrich-Jeromin. These surfaces are a natural generalization of isothermic surfaces.
Isothermic surfaces are those for which there exist conformal curvature line coordi-
nates, and for which we can conclude the existence of useful additional associated
structures. Even though a surface itself might not be isothermic, when some sphere
congruence of the surface has conformal curvature line coordinates, and hence is
isothermic (in a sense to be explained in this text), then we say that the surface is
Ω. There are many more Ω surfaces than there are isothermic surfaces, but much of
the additional associated structure for isothermic surfaces still exists for Ω surfaces
as well.

We now describe two interesting characteristics of Ω surfaces. The first is not
something that we focus on in this text, but is one motivation for the viewpoint
taken here. The second illustrates an important theme in Lie sphere geometry.

(1) Ω surfaces are Legendre immersions, which can be regarded as 2-parameter
families of null planes with certain regularity conditions in a 6-dimensional
vector space with non-positive-definite metric, and as such, we will have a
method to investige them without explicit concern for the singularities that
result when these Ω surfaces are projected to surfaces in 3-dimensional space-
forms. Figure 1.1 shows examples of the singularities that can occur in the
projections. We are interested in these kinds of singularities, but are also
interested in having uniform methods of studying Ω surfaces that put regular
points and singular points in the projections on an equal footing. Singularities
in surfaces play an implicit background role, although they are never explicitly
described here.

(2) A central idea in Lie sphere geometry is that surfaces and sphere congruences
appear as objects of the same type. We will see this in Section 3.5. An example
of an isothermic sphere congruence of an Ω surface is shown in Figure 1.2. In
this figure, although the surface and the sphere congruence appear as very
different types of objects, they will become the same type of object when
lifted to Lie sphere geometry.

1.2. Purpose of this text. Three of the primary purposes of this text are as follows:

(1) Purpose:
To introduce Möbius geometry and Lie sphere geometry.

Of course, Möbius geometry and Lie sphere geometry themselves are clas-
sical fields, and we introduce Möbius geometry in the second chapter and Lie
sphere geometry in the third chapter.

(2) Purpose:
To examine linear Weingarten surfaces.

All linear Weingarten surfaces in any of the 3-dimensional spaceforms are
Ω, but generally are not isothermic. We will study characterizations of these
surfaces in general, and will also study the special cases of constant mean
curvature (CMC) surfaces in all 3-dimensional spaceforms, and also of flat
surfaces in hyperbolic 3-space, in further detail.
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Figure 1.1. A swallowtail singularity on the left, and a more unusual
singularity on the right. In the left-hand figure we see two cuspidal
edge singularities converging to a single swallowtail singularity. This
surface is shown twice, from opposite sides, and it lifts to an Ω surface
in the 6-dimensional space. The right-hand figure shows a surface that
again lifts to an Ω surface, and has four cuspidal edges converging to a
more unusual singularity.

(3) Purpose:
To prepare for a study of discrete surfaces.

Having the additional mathematical structures available for isothermic sur-
faces extended to similar structures for Ω surfaces provides a framework for
considering discrete versions of surfaces in a more general setting, which we in-
tend to do in a separate text. This is the underlying viewpoint we take here.
We will prove preparatory results that are especially useful for considering
discrete surfaces, such as

• Lemmas 2.10, 2.11, 2.13-2.19, 2.27, 2.46, 2.57, 2.61-2.63, 2.73, 2.76, 3.17,
3.19, 3.20, 4.8, 4.13, 4.15, 4.19, 4.25, 4.29, 4.34, 4.57,

• Corollaries 2.29, 4.5, 4.14, 4.31, 4.43, 4.49, 4.60, 4.61, 4.69, and
• Theorems 2.53, 2.54, 2.71, 2.81, 4.42, 4.58, 4.67.
In that subsequent text, we will present an approach to discrete surfaces

originating in significant part from a work of Burstall and Calderbank [20]
for the case of smooth surfaces. For the time being, in this text, we consider
smooth surfaces.

1.3. Organization of this text. This text is arranged as follows:

• In Chapter 2, we give an introduction to Möbius geometry, and a way to repre-
sent 3-dimensional spacefoms via Möbius geometry, and also a way to consider
isothermic surfaces within the context of Möbius geometry. CMC surfaces in
general spaceforms and flat surfaces in hyperbolic 3-space are given particular
attention. Transformations of surfaces are considered as well, such as Christof-
fel transformations, Calapso (T-) transformations, Darboux transformations
and Bäcklund transformations.

• In Chapter 3, we introduce Lie sphere geometry and Lie sphere transforma-
tions – then surfaces in spaceforms are considered in the context of Lie sphere
geometry, and, in particular, lifts of those surfaces to Legendre immersions
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Figure 1.2. A surface of revolution (shown on the left) with a rota-
tionally symmetric isothermic sphere congruence (shown on the right).
The left side shows a surface of revolution with a cone-type singularity
that lies within a fixed outer sphere. On the right side we have inserted
spheres, which are members of the sphere congruence enveloped by both
the surface and the outer fixed sphere. This surface is actually a flat
surface in hyperbolic 3-space, in the Poincare ball model whose ideal
boundary is that outer sphere, and this sphere congruence is isothermic.

in Lie sphere geometry are examined. After looking at the core example of
Dupin cyclides, we describe Lie cyclides. Finally, as a further example, we
describe a representation for flat surfaces in hyperbolic 3-space in terms of the
language just used for Lie cyclides.

• In Chapter 4, we begin our study of Ω surfaces, starting with an explanation
of the normal bundles of Legendre immersions in Lie sphere geometry, which
is necessary for understanding the definition of Ω surfaces. We then look at
other means for determining Ω surfaces:

– Demoulin’s equation,
– existence of Moutard lifts,
– harmonic separation of the principal curvature sphere congruences and
isothermic sphere congurences,

– existence of Christoffel dual lifts (as in Lemma 4.57 here, which is espe-
cially useful for the discretization of the theory).

We also study Calapso transformations of Ω surfaces, and their properties.
As examples of Ω surfaces, we look at Guichard surfaces, and at flat surfaces
in hyperbolic 3-space, and then more generally at linear Weingarten surfaces.
All the while, we compile results that have applications to discrete Ω surfaces
(as noted in Purpose 3 above), as we will see in a subsequent text.

Acknowledgements. The author expresses his gratitute to Fran Burstall, David Calder-
bank, Udo Hertrich-Jeromin, Tim Hoffmann, Masatoshi Kokubu, Mason Pember,
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Yuta Ogata, Masaaki Umehara, Kotaro Yamada and Masashi Yasumoto for discus-
sions that are the basis for the material in this text.
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2. Isothermic and CMC surfaces, and their transformations

We begin by describing the 3-dimensional spaceforms using the 5-dimensional
Minkowski space R4,1.

2.1. Minkowski 5-space.

(2.1) R4,1 =

X =


x1
x2
x3
x4
x5


∣∣∣∣∣∣∣∣∣∣
xj ∈ R


with Minkowski metric of signature (+,+,+,+,−), that is, for

X =


x1
x2
x3
x4
x5

 , Y =


y1
y2
y3
y4
y5


in R4,1,

⟨X, Y ⟩ = x1y1 + x2y2 + x3y3 + x4y4 − x5y5 ,

and ||X||2 denotes ⟨X,X⟩. The 4-dimensional light cone is

L4 = {X ∈ R4,1 | ||X||2 = 0} .
We can make the 3-dimensional spaceforms as follows: A spaceformMκ is (see Figure
2.1)

(2.2) Mκ = {X ∈ L4 | ⟨X,QMκ⟩ = −1}
for any nonzero QMκ ∈ R4,1. It will turn out (see the upcoming Lemma 2.5) that Mκ

has constant sectional curvature κ, where κ = −|QMκ |2, so without loss of generality
we can obtain any spaceform by choosing

(2.3) QMκ =


0
0
0

1
2
(1− κ)

1
2
(1 + κ)

 .

Remark 2.1. There is no real computational advantage to restricting to the form in
(2.3). However, we frequently do this, as it gives us a convenient way to explicitly
separate out 3-dimensional spaceforms, surfaces, normal vector fields, and such.

Letting R3 ∪ {∞} denote the one point compactification of

R3 = {x = (x1, x2, x3) | xj ∈ R} ,
with |x|2 = x21 + x22 + x23, we can write

(2.4) Mκ =

X =
1

1 + κ|x|2
·

 2xt

|x|2 − 1
|x|2 + 1

∣∣∣∣∣∣ x ∈ R3 ∪ {∞} , |x|2 ̸= −1
κ

 ,
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Figure 2.1. The Möbius geometric model for 3-dimensional space-
forms Mκ =M3

q

which is in 1-1 correspondence with

R = {(x1, x2, x3) ∈ R3 ∪ {∞} ||x|2 ̸= −κ−1} .
The form in (2.4) follows from this:

Lemma 2.2. Any point X ∈ L4 such that ⟨X,QMκ⟩ = −1 can be written as

X =
1

1 + κ|x|2
·

 2xt

|x|2 − 1
|x|2 + 1


for some x ∈ R.

Proof. Write

X =

yty4
y5


with y = (y1, y2, y3).
Suppose that y5 ̸= y4. Setting x = (y5 − y4)

−1y, one can confirm that

(1 + κ|x|2)−1 ·

 2xt

|x|2 − 1
|x|2 + 1

 =

yty4
y5

 ,

since QMκ is as in (2.3) and ⟨X,X⟩ = 0 and ⟨X,QMκ⟩ = −1, giving us the equations

κ(y5 + y4) = 2− (y5 − y4) ,

2(y5 − y4) = (y5 − y4)
2 + κ|y|2 when κ ̸= 0 ,

2(y5 + y4) = |y|2 when κ = 0 .
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Figure 2.2. Physical models of lightcone cuts, representing Euclidean
space on the left, spherical space in the middle, and hyperbolic space
on the right (owned by the geometry group at the Technical University
of Vienna)

If y5 = y4, then ||X||2 = 0 gives y = (0, 0, 0), and then ⟨X,QMκ⟩ = −1 gives

y5 = y4 = κ−1 ,

so x = ∞ works when κ ̸= 0, and the case κ = 0 does not occur. �
When κ < 0,Mκ becomes two copies of hyperbolic 3-space with sectional curvature

κ. Also, note that

1 + κ|x|2 is never zero for points in Mκ.

Mκ is called a quadric, because it is determined by a quadratic equation (for the light
cone L4) and a linear equation (⟨X,QMκ⟩ = −1). (We sometimes abbreviate Mκ to
just M .)

Remark 2.3. We will often regard X as living in the projectivized light cone PL4, so
X can be equivalently considered as α ·X for any nonzero real scalar α.

The tangent space of Mκ at X is

TXMκ =

Ta =
2

(1 + κ|x|2)2

at + κ|x|2at − 2κ(x · a)xt
(1 + κ)(x · a)
(1− κ)(x · a)

 ,

for a = (a1, a2, a3) ∈ R3, where x · a is the standard R3 inner product. When X =
X(t) ∈M is a smooth function of a real variable t, and when ′ denotes differentiation
with respect to t, we have

X ′ = Tx′ .

A computation gives

(2.5) ⟨Ta, Tb⟩ =
4

(1 + κ|x|2)2
(a · b) ,

||Ta|| = 1 ⇔ |a| = 1
2
|1 + κ|x|2| .

Remark 2.4. Note that the R4,1 metric ⟨Ta, Tb⟩ is 4 times the usual R3 metric a · b of
a and b, when κ = 0. We distinguish between these two metrics by using ⟨, ⟩ in the
first case, and a dot · in the second case. We denote norm squared of a vector with
respect to the R4,1 metric with a pair of doubled lines as in ||Ta||2, and norm squared
of a vector with respect to the usual R3 metric with a pair of single lines as in |a|2.

We tolerate this difference by a factor of 4 in order to conform with the usual
expression of the metric in the cases when κ ̸= 0.
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Also,

(2.6) X ′′ = T−4κ(x·x′)
1+κ|x|2 ·x′+x′′

− 4|x′|2

(1 + κ|x|2)2

 κxt
1
2
(−1− κ)

1
2
(−1 + κ)

 .

Note that generally X ′′ is not contained in TXMκ.
The following lemma follows from (2.5).

Lemma 2.5. Mκ as determined by QMκ in (2.3) has constant sectional curvature κ.

Proof. We can make the standard computations (see [94], for example): Take

D∂i∂j =
∑
k

Γk
ij∂k ,

where
Γk
ij =

1
2
Σmg

km(∂igjm + ∂jgim − ∂mgij)

with
gij = 4δij(1 + κ|x|2)−2 ,

and
[Dv, Dw] = DvDw −DwDv , [∂i, ∂j] = 0 .

We can then compute the sectional curvature via

K(v, w) =
−⟨D[v,w]v + [Dv, Dw]v, w⟩
⟨v, v⟩⟨w,w⟩ − ⟨v, w⟩2

.

�
Remark 2.6. To avoid the somewhat long computations in the above proof of Lemma
2.5, we could instead do the following:
When we have a vector space V with metric ⟨·, ·⟩ given by (gij) = (±δij) with

respect to some rectangular coordinates (x1, ..., xn) of V determined by some choice
of orthonormal basis, and a quadric (a submanifold) {σ ∈ V | |σ|2 = c0}, one can
compute the sectional curvature of the quadric without using Christoffel symbols. In
our case, V will be R4 when κ > 0, and will be R3,1 with signature (−,+,+,+) when
κ < 0.
For example, take

M = H3 = {σ ∈ R3,1 | |σ|2 = −1} ⊂ R3,1 .

Take independent U ,V ∈ TσM and a local coordinate chart

ϕ : (u, v, w) → H3

in a neighborhood of σ = σ0 = ϕ(u0, v0, w0) ∈ M so that U = ∂u and V = ∂v at
(u0, v0, w0). We then have U identified with σu = dϕ(U), and V with σv = dϕ(V), at
the point σ0. Then, for the connection ∇ induced by the metric of H3 ⊂ R3,1,

∇U∇VU −∇V∇UU =

∇∂udϕ
−1(σuv −

⟨σuv, n⟩
⟨n, n⟩

n)−∇∂vdϕ
−1(σuu −

⟨σuu, n⟩
⟨n, n⟩

n) ,

where n = σ ⊥ TσM . Thus

∇U∇VU −∇V∇UU =
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∇∂udϕ
−1(σuv + ⟨σuv, σ⟩σ)−∇∂vdϕ

−1(σuu + ⟨σuu, σ⟩σ) =
dϕ−1(A−B − (part of A normal to H3) + (part of B normal to H3)) ,

where
A = σuvu + ⟨σuvu, σ⟩σ + ⟨σuv, σu⟩σ + ⟨σuv, σ⟩σu

and
B = σuuv + ⟨σuuv, σ⟩σ + ⟨σuu, σv⟩σ + ⟨σuu, σ⟩σv .

Since the normal direction to M is σ, we have

∇U∇VU −∇V∇UU = dϕ−1(−⟨σu, σv⟩σu + ⟨σu, σu⟩σv)
and then

⟨dϕ(∇U∇VU −∇V∇UU), dϕ(V)⟩ = ⟨σu, σu⟩⟨σv, σv⟩ − ⟨σu, σv⟩2 .
This implies the sectional curvature of M is constantly −1, justifying our naming H3

for M .
In this way, we now know that

H3 = {σ ∈ R3,1 | |σ|2 = −1}
has constant sectional curvature κ = −1, and similarly that

S3 = {σ ∈ R4 | |σ|2 = 1}
has constant sectional curvature κ = 1. H3 can be inserted into R4,1 with signature
(+,+,+,+,−) by replacing σ = (σ0, σ1, σ2, σ3) with (σ1, σ2, σ3,−1, σ0)

t. Similarly, S3

can be inserted into R4,1 by replacing σ = (σ1, σ2, σ3, σ4) with (σ1, σ2, σ3, σ4, 1)
t.

General values κ for the sectional curvature can be dealt with in the same way.

We see from (2.5) that the collection of Mκ given by the above choice (2.3) for Q,
for various κ, are all conformally equivalent (or Möbius equivalent). In fact, the map
Mκ ∋ X → x ∈ R is stereographic projection when κ ̸= 0.

2.2. Surfaces in spaceforms. We now consider surfaces in the spaceforms. Let

x = (x1(u, v), x2(u, v), x3(u, v)) ↔ X = X(u, v) ∈Mκ

be a surface in Mκ without umbilic points. Assume x has conformal curvature-line
coordinates (u, v). We call such coordinates isothermic coordinates. Thus x is an
isothermic surface (where ”isothermic surface” means any surface for which isothermic
coordinates exist).

Note that the surface x can be defined before the space form Mκ is chosen, and
only once Mκ is chosen do we know the form of X as in (2.4).

Notation: With QMκ as in (2.3), we let n denote the unit normal vector for x,
onceMκ is chosen. n0 denotes the unit normal with respect to Euclidean 3-spaceM0.
We sometimes write Hκ for the mean curvature of the surface x with respect to the
spaceform Mκ, because the mean curvature depends on the choice of κ.

Lemma 2.7. The mean curvature Hκ of x with respect to the space form Mκ given
by QMκ as in (2.3), with △x = ∂u∂ux+ ∂v∂vx, is

Hκ = 1
2
|xu|−2(△x · n) + 2

κ

1 + κ|x|2
(x · n) =

= 1
2
(1 + κ|x|2)|xu|−2(△x · n0) + 2κ(x · n0) =

(1 + κ|x|2)H0 + 2κ(x · n0) .
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Then Hκ is constant exactly when ∂uHκ = ∂vHκ = 0, which is equivalent to

(2.7) (∂uH0) · (1 + κ|x|2) = κk1−k2
2
∂u(|x|2) , (∂vH0) · (1 + κ|x|2) = κk2−k1

2
∂v(|x|2) ,

where the kj ∈ R are the principal curvatures with respect to the Euclidean spaceform
M0, i.e. ∂un0 = −k1∂ux and ∂vn0 = −k2∂vx. Furthermore, the Gaussian curvature
of x with respect to the spaceform Mκ is

Kκ = (1 + κ|x|2)2K0 + 4H0κ(x · n0) + 4κ2(x · n0)
2 .

Proof. Letting x1u denote d
du
(x1), and similarly taking other notations, the unit nor-

mal vector to the surface is Tn, where n = (1 + κ|x|2)n0 and

n0 =
1

2
· (x2ux3v − x3ux2v, x3ux1v − x1ux3v, x1ux2v − x2ux1v)√

(x2ux3v − x3ux2v)2 + (x3ux1v − x1ux3v)2 + (x1ux2v − x2ux1v)2
.

The first fundamental form (gij) satisfies ⟨Txu , Txv⟩ = 0 = g12 = g21, and

g11 = ⟨Txu , Txu⟩ =
4|xu|2

(1 + κ|x|2)2
=

4|xv|2

(1 + κ|x|2)2
= ⟨Txv , Txv⟩ = g22 .

Then using (2.6), with the symbol ′ denoting either ∂u or ∂v, we have (where the
superscript ”T” denotes the perpendicular projection to a vector tangent to Mκ, i.e
in TXMκ)

b11 = ⟨XT
uu, Tn⟩ = ⟨Xuu, Tn⟩ =

4

(1 + κ|x|2)2
(xuu · n) +

8κ|xu|2

(1 + κ|x|2)3
(x · n) ,

b12 = b21 = ⟨XT
uv, Tn⟩ = ⟨Xuv, Tn⟩ = 0 ,

b22 = ⟨XT
vv, Tn⟩ = ⟨Xvv, Tn⟩ =

4

(1 + κ|x|2)2
(xvv · n) +

8κ|xv|2

(1 + κ|x|2)3
(x · n) .

The result about Hκ follows, using H0 = (k1 + k2)/2. The form of Kκ is similarly
obtained. �

2.3. Möbius transformations. The Möbius transformations are the maps from S3

to S3 that take 2-spheres to 2-spheres, and they are equivalent to the orthogonal
transformations O4,1 of R4,1. We will not prove that here, and instead just give
some examples. Identifying S3 with R3 ∪ {∞}, the group of Möbius transformations
(including orientation reversing maps), i.e. the group of maps that preserve the
collection of spheres and planes in R3 ∪ {∞}, is generated (via repeated composition
of maps) by:

(y1, y2, y3) → (ry1, ry2, ry3) ,

(y1, y2, y3) → (y1, y2, y3) + (y0,1, y0,2, y0,3) ,

(y1, y2, y3) → (−y1, y2, y3) ,
(y1, y2, y3) → (y1 cos θ − y2 sin θ, y1 sin θ + y2 cos θ, y3) ,

(y1, y2, y3) → (y1 cos θ − y3 sin θ, y2, y1 sin θ + y3 cos θ) ,

(y1, y2, y3) → (y1, y2 cos θ − y3 sin θ, y2 sin θ + y3 cos θ) ,

(y1, y2, y3) → (y1, y2, y3)/(y
2
1 + y22 + y23) ,

where θ, r, y0,1, y0,2, y0,3 are any real constants. These seven maps are a dilation, a
translation, a reflection, three rotations, and an inversion, respectively.
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The Möbius transformations are given by the application of O4,1 matrices to the
vectors X in (2.4). The identity map (a Möbius transformation of course) is given by
left multiplication to X by the identity matrix in O4,1. The map

(y1, y2, y3) → (−y1, y2, y3)

is similarly given by the diagonal matrix
−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

The map

(y1, y2, y3) → (y1, y2, y3)/(y
2
1 + y22 + y23)

is given by the diagonal matrix
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

 ,

after invoking Remark 2.3. The map

(y1, y2, y3) → (ry1, ry2, ry3)

for positive constants r is given by
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 cosh θ sinh θ
0 0 0 sinh θ cosh θ

 ,

where θ satisfies cosh θ + sinh θ = r, again invoking Remark 2.3. The map

(y1, y2, y3) → (y1, y2, y3) + (y0,1, y0,2, y0,3)

is given by 
1 0 0 −y0,1 y0,1
0 1 0 −y0,2 y0,2
0 0 1 −y0,3 y0,3
y0,1 y0,2 y0,3 1− 1

2
|y0|2 1

2
|y0|2

y0,1 y0,2 y0,3 −1
2
|y0|2 1 + 1

2
|y0|2

 ,

where |y0|2 = y20,1 + y20,2 + y20,3, once again using Remark 2.3. The map

(y1, y2, y3) → (y1 cos θ − y2 sin θ, y1 sin θ + y2 cos θ, y3)
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is given by 
cos θ − sin θ 0 0 0
sin θ cos θ 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

When κ ̸= 0, i.e. when Q as in (2.3) is not null, Mκ has a particular Möbius
transformation called the antipodal map, which we now describe: A point X in Mκ

can be decomposed as
X = A+ κ−1Q ,

where A ⊥ Q. The antipodal map is

A+ κ−1Q→ −A+ κ−1Q ,

that is, we are moving the point X to another point in Mκ that is on the opposite
side of Q. In detail, X as in (2.4) is

1

1 + κ|x|2

 2xt
1
2
(κ−1 + 1)(κ|x|2 − 1)

1
2
(κ−1 − 1)(κ|x|2 − 1)

+ κ−1Q

and is mapped to

−1

1 + κ|x|2

 2xt
1
2
(κ−1 + 1)(κ|x|2 − 1)

1
2
(κ−1 − 1)(κ|x|2 − 1)

+ κ−1Q =
1

1 + κ|y|2

 2yt

|y|2 − 1
|y|2 + 1

 ,

where y = −x/(κ|x|2). Hence this map is represented by

x→ −x/(κ|x|2) .

Remark 2.8. Möbius transformations of the ambient space preserve the conformal
structure of the space, so will preserve the conformal structure of any surface inside
the space as well. Furthermore, Möbius transformations will preserve contact orders
of any spheres tangent to the surface, and so will preserve the principal curvature
spheres. It follows that if x(u, v) is an isothermic parametrization of a surface, it will
remain an isothermic parametrization even after a Möbius transformation is applied.
Furthermore, an umbilic point of x will remain an umbilic point after the Möbius
transformation is applied.

2.4. Cross ratios. There is no evidently simple geometric interpretation for the cross
ratio, but it is still very useful. It is an invariant of projective geometry. (See [124],
for example.) We use cross ratios in this text, and they will be vital to understanding
discrete Ω surfaces (in a subsequent text).

Definition 2.9. The cross ratio of four points xp, xq, xr and xs in R3 is

crxpxqxrxs =
(zp − zq)(zr − zs)

(zq − zr)(zs − zp)
=

det

(
zp zq
1 1

)
det

(
zr zs
1 1

)
det

(
zq zr
1 1

)
det

(
zs zp
1 1

) ,

where the points zp, zq, zr and zs are complex numbers whose real and imaginary parts
are given by the first two coordinates in R3 of the four image points of xp, xq, xr and
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xs under a Möbius transformation of R3 ∪ {∞} that takes all four points xp, xq, xr
and xs to points with third coordinate zero in R3.

Lemma 2.10. The cross ratio given in Definition 2.9 is well defined up to complex
conjugation.

Proving Lemma 2.10 amounts to showing that the resulting value for crxpxqxrxs will
be the same, up to complex conjugation, regardless of which Möbius transformation
we choose. Lemma 2.10 follows because any two choices of Möbius transformation in
Definition 2.9 will differ, when restricted to

{y3 ≡ 0} ∩ {R3 ∪ {∞}} ,
by a Möbius transformation of the complex plane in which zp, zq, zr and zs lie.

For xβ, xγ ∈ R3, taking corresponding Xβ, Xγ ∈Mκ as in (2.4), we have

(2.8) ⟨Xβ, Xγ⟩R4,1 =
−2|xβ − xγ|2

(1 + κ|xβ|2)(1 + κ|xγ|2)
.

As in Remark 2.3, we can freely scale Xβ and Xγ to αβXβ and αγXγ, and then
⟨Xβ, Xγ⟩ will scale to αβαγ⟨Xβ, Xγ⟩. However, writing the cross ratio in terms of
such inner products, we find it is invariant under such scalings, because, using the
fact that Möbius transformations can be represented by matrices in O4,1, and using
(2.8), a direct computation gives:

Lemma 2.11. For xp, xq, xr, xs ∈ R3, we have

crxpxqxrxs =
spqsrs − sprsqs + spssqr ±

√
E

2spssqr
,

where
sβγ := ⟨Xβ, Xγ⟩

and

E = s2pqs
2
rs + s2prs

2
qs + s2pss

2
qr − 2sprspssqrsqs − 2spqspssqrsrs − 2spqsprsqssrs ≤ 0 .

Remark 2.12. Because the Xp, Xq, Xr, Xs all lie in the light cone, the induced metric
on the subspace span{Xp, Xq, Xr, Xs} is not positive definite. Therefore, we can
choose a basis e1, e2, e3, e4 of this subspace so that

||e1||2 = ||e2||2 = ||e3||2 = −||e4||2 = 1 and ⟨ei, ej⟩ = 0 (i ̸= j) .

Writing Xβ = a1βe1 + a2βe2 + a3βe3 + a4βe4 in terms of the basis e1, e2, e3, e4, we have

E = det(⟨Xβ, Xγ⟩β,γ=p,q,r,s) =

= det



a1p a1q a1r a1s
a2p a2q a2r a2s
a3p a3q a3r a3s
a4p a4q a4r a4s


t

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



a1p a1q a1r a1s
a2p a2q a2r a2s
a3p a3q a3r a3s
a4p a4q a4r a4s


 .

This provides a reason why E ≤ 0.

We finish this section with some further comments on how we can interpret cross
ratios:

Comment 1: Given four points p1 < p2 < p3 < p4 along the real line R in the
complex plane C, we can consider the two half circles from p1 to p3 and from p2 to
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Figure 2.3. The situation in Comment 1

p4, respectively, in the upper half plane Ci+ = {x + iy | y > 0}. These are images
of geodesics (straight lines, and “diagonals” of the “quadrilateral” {p1, p2, p3, p4}) in
Ci+ when Ci+ is given the hyperbolic metric. At the point where these two circles
intersect, we can consider the angle θ between the two circles with respect to the
uppermost adjacent region. This angle θ can be regarded as a geometric quantity,
since it is a notion that is invariant under Möbius transformations of C ∪ {∞} that
preserve the set R ∪ {∞}. See Figure 2.3. Let

(2.9) cr =
p2 − p1
p3 − p2

· p4 − p3
p1 − p4

be the cross ratio of p1, p2, p3 and p4. Here we determine the precise relationship
between θ and cr, thus giving cr also a geometric meaning.

Lemma 2.13. For four points p1 < p2 < p3 < p4 in the real line R in C, and for θ
and cr as defined above,

cr =
cos θ + 1

cos θ − 1
= − cot2 θ

2
.

Proof. Without loss of generality, applying a Möbius transformation fixing R ∪ {∞}
as a set if necessary, we may assume that

p4 = ∞ , p1 = 1 > p2 > p3 = −1 .

Then one half-circle is

{eit | t ∈ [0, π]}
and the other is the half-line

{p2 + it | t ≥ 0} .
Then θ is the angle between these two half-circles with respect to the adjacent region
to the upper right. It can be immediately checked that cos θ = −p2 and that

cr =
p2 − 1

−1− p2
· ∞ − (−1)

1−∞
=
p2 − 1

p2 + 1
.

The result follows. �
Comment 2: Consider R2,1 = {(x1, x2, x0) | xj ∈ R} with metric of signature

(+,+,−) and with 2-dimensional light cone L2. Let ℓ1, ℓ2, ℓ3, ℓ4 be four lines in L2

that are pairwise nonparallel.
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Let P be a plane in R2,1 that does not contain the origin. Then C = L2 ∩P will be
a conic section. There will be four intersection points yj = ℓj ∩ C (possibly including
one or two points at infinity of the conic section C). Let L be a line in P and Y
a line in L2. Then one can stereographically project yj within P though the point
Y ∩ P ∈ C to a point pj ∈ L. See Figure 2.4. We have the following fact:

Lemma 2.14. Regarding L as the real line, and then computing the cross ratio cr of
the four points p1, p2, p3, p4 as in (2.9), the value of cr is independent of the choices
of P and Y and L.

Proof. We first show that cr is independent of choice of P . Suppose we have chosen
one line Y in L2 and have made two different choices P1 and P2 for the plane. Choosing
the line L to be L = P1 ∩ P2, stereographic projection of either

ℓj ∩ P1 to L though Y ∩ P1 within P1

or

ℓj ∩ P2 to L though Y ∩ P2 within P2

will produce the same four points pj in L, and so cr does not depend on whether P1

or P2 was used.
Thus, without loss of generality, we may fix one choice of P . Then elementary

calculations will show that cr also does not depend on the choices of Y and L. �
Comment 3: When the plane P in Comment 2 is chosen to be

P = {(x1, x2, 1) |x1, x2 ∈ R} ,
clearly P can be regarded as a plane in the standard Euclidean R3, and it follows
that cr ∈ R can be computed using the formula in Lemma 2.11, with Xβ replaced by
yj. More explicitly, we could consider

yj = (y1,j, y2,j, 1) ∈ L2

and translate these points to (y1,j, y2,j, 0) ∈ R3 with y21,j + y22,j = 1, which would then
lift to

Yj =


2y1,j
2y2,j
0
0
2


via the L4 representation in (2.4). We already know we can insert Yj into the formula
in Lemma 2.11 to determine the cross ratio. However, Yj ≈ 2yj, so we know it is
legitimate to use yj in the formula in Lemma 2.11 as well.

By the homogeneous nature of the formula in Lemma 2.11, we know that formula
applies regardless of which points

ŷj = rjyj (rj ∈ R \ {0})
in ℓj are chosen.

Comment 4: When the plane P in Comment 2 is again chosen as in Comment 3,
the points yj can be regarded as unitary complex numbers

ŷj := y1,j + iy2,j = eiθj
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Figure 2.4. The situation in Comment 2

for θj ∈ R, and then

(2.10) cr =
ŷ2 − ŷ1
ŷ3 − ŷ2

· ŷ4 − ŷ3
ŷ1 − ŷ4

=
eiθ2 − eiθ1

eiθ3 − eiθ2
· e

iθ4 − eiθ3

eiθ1 − eiθ4

will give the same value for cr.
Comment 5: Here we give a way to compute cr using matrices in the Lie algebra

su1,1. Identifying R2,1 with su1,1 via

xβ = (x1, x2, x0) ↔
(

ix0 x1 + ix2
x1 − ix2 −ix0

)
=: Xβ ,

and then taking Xp, Xq, Xr, Xs ∈ su1,1 ≈ R2,1, let us denote the eigenvalues of

(2.11) (Xp −Xq)(Xq −Xr)
−1(Xr −Xs)(Xs −Xp)

−1

by λ1, λ2.

Lemma 2.15. λ1, λ2 are invariant under isometries and homotheties of R2,1.

Proof. It is evident that a homothety Xβ → rXβ for some r ∈ R\{0} will not change
λ1, λ2.
A rotation of R2,1 is represented by

su1,1 ∋ X → FXF−1 ∈ su1,1

for some F ∈ SU1,1. This transformation also will not change λ1, λ2. �

One can also check the following:
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Lemma 2.16. The λ1 and λ2 in Lemma 2.15 are either real or complex conjugate,
that is,

λ1, λ2 ∈ R or λ1 = λ2 .

Furthermore, when Xβ ∈ L2, i.e. when detXβ = 0 for β = p, q, r, s, then

λ := λ1 = λ2 ∈ R .

Lemma 2.17. When x0 has the same value for all four points Xp, Xq, Xr, Xs ∈ L2,
then λ is equal to crxpxqxrxs.

Proof. Setting X1 = Xp, X2 = Xq, X3 = Xr and X4 = Xs and rewriting correspond-
ing xj as (x1,j, x2,j, x0), and noting that x0 is independent of j, we have

(X1 −X2)(X2 −X3)
−1(X3 −X4)(X4 −X1)

−1 =

4∏
j=1

(
0 x1,1j − x1,j+1 + i(x2,j − x2,j+1)

x1,j − x1,j+1 − i(x2,j − x2,j+1) 0

)j+1

=

(
cr 0
0 cr

)
,

where

cr =
x1,1 − x1,2 + i(x2,1 − x2,2)

x1,2 − x1,3 + i(x2,2 − x2,3)
· x1,3 − x1,4 + i(x2,3 − x2,4)

x1,4 − x1,1 + i(x2,4 − x2,1)
.

Applying Comment 4, it follows that λ = cr. �

A computation shows:

Lemma 2.18. When

X1 = Xp, X2 = Xq, X3 = Xr, X4 = Xs ∈ L2 ,

then, for any rj ∈ R \ {0},

(r1X1 − r2X2)(r2X2 − r3X3)
−1(r3X3 − r4X4)(r4X4 − r1X1)

−1

and (2.11) will have the same eigenvalue λ = crxpxqxrxs.

We conclude that cr will be the eigenvalue of (2.11), regardless of how the Xj are
scaled, when Xj ∈ L2.

Comment 6: Similarly to Comment 5, we can use the Lie algebra su2 to compute
the cross ratio cr in the case of four points (x1,j, x2,j, x3,j) ∈ R3 (j = 1, ..., 4). We
identify R3 with su2 via

(x1, x2, x3) ↔
(

ix3 x1 + ix2
−x1 + ix2 −ix3

)
=: X .

Then cr will again be the eigenvalues of (2.11), with the Xj now in su2. The analog
of Lemma 2.15 will still hold. However, there will be no analog of Lemma 2.18 here,
as R3 has no comparable light cone, so we will not be free to scale the Xj in this case.
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Figure 2.5. A physical model of an ellipsoid in R3, with curvature
lines carved into it (owned by the geometry group at the Technical
University of Vienna)

2.5. Isothermicity. Take a smooth surface x in R3 with unit normal n0. Away from
umbilics, there exist curvature line coordinates (u, v) of x = x(u, v), i.e.

xu ⊥ xv and (n0)u||xu , (n0)v||xv .

Then the first and second fundamental forms are, like in the proof of Lemma 2.7 with
κ = 0,

I =

(
g11 0
0 g22

)
, II =

(
b11 0
0 b22

)
.

One can always stretch the coordinates, so that x = x(u, v) = x(ũ(u), ṽ(v)) for any
strictly monotonic functions ũ depending only on u, and ṽ depending only on v. Note
that xũ · xṽ = 0, and xũṽ = xuv

du
dũ

dv
dṽ

implies xũṽ · n0 = 0, so (ũ, ṽ) are also curvature
line coordinates. The surface is then isothermic if and only if there exist ũ, ṽ such
that the metric becomes conformal, i.e. xũ · xũ = xṽ · xṽ, and this is equivalent to

g11
g22

=
a(u)

b(v)
,

where the function a depends only on u, and b depends only on v.
Now consider the cross ratio crϵ of the four points x(u, v), x(u+ ϵ, v), x(u+ ϵ, v+ ϵ)

and x(u, v + ϵ). A computation gives

(2.12) lim
ϵ→0

crϵ = −g11
g22

.

So x is isothermic if and only if

(2.13) lim
ϵ→0

crϵ = −a(u)
b(v)

.

This description of isothermicity does not involve any stretching by ũ or ṽ, which
we would not be able to do in the case of discrete surfaces anyways, and discrete
surfaces, as noted in the introduction, are one of our primary motivations here. The
corresponding statement for discrete surfaces, where stretching of coordinates is no
longer possible, is that the surface is discrete isothermic if and only if the cross ratio
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factorizing function can be chosen so that apq = ars and aps = aqr for vertices p, q, r, s
(in order) about a given quadrilateral, but this will be explained in a separate text.

2.6. The third fundamental form. When x has curvature line coordinates, the
first and second fundamental forms are

I = (gij)
2
i,j=1 =

(
E 0
0 G

)
, II = (bij)

2
i,j=1 =

(
k1E 0
0 k2G

)
.

Because (n0)u = −k1xu and (n0)v = −k2xv, the third fundamental form is

III =

(
4(n0)u · (n0)u 4(n0)u · (n0)v
4(n0)v · (n0)u 4(n0)v · (n0)v

)
=

(
k21E 0
0 k22G

)
,

and then it is immediate that

III − 2H · II +K · I = 0 .

In fact, for any (not necessarily curvature line) choice of coordinates u and v,

III =
g22b11 − 2g12b12 + g11b22

g11g22 − g212
(bij)

2
i,j=1 −

b11b22 − b212
g11g22 − g212

(gij)
2
i,j=1 .

2.7. Moutard lifts. Given an immersion x(u, v) in R3, the light cone lift

X = X(u, v) ∈M0

could also be represented by α · X for any choice of nonzero real-valued function
α = α(u, v) (see Remark 2.3). If we can choose α and coordinates u, v so that

(2.14) ∂u∂v(αX)||X ,

or equivalently αuxv + αvxu + αxuv = 0, then we say that αX is a Moutard lift. We
will see the usefulness of Moutard lifts later.

Lemma 2.19. Moutard lifts exist for any isothermic immersion.

Proof. Let x(u, v) be a smooth isothermic immersion with isothermic coordinates u, v.
Because b12 = 0, there exist real-valued functions A,B so that

(2.15) xuv = Axu +Bxv .

Taking the inner product of this with xu and with xv, and using that

xu · xu = xv · xv > 0 and xu · xv = 0 ,

we find that

(2.16) A = ∂v(
1
2
log(xu · xu)) , B = ∂u(

1
2
log(xu · xu)) ,

and thus

(2.17) Au = Bv .

The existence of a solution α to the equation

αuxv + αvxu + αxuv = 0

is equivalent to solving the system

αu = −αB , αv = −αA ,

because of (2.15). The compatibility condition of this system is (2.17), seen as follows:

αuv = αvu → (−αB)v = (−αA)u →
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αvB + αBv = αuA+ αAu →
(−αA)B + αBv = (−αB)A+ αAu → Bv = Au .

This proves the lemma. �
From the above proof, we see that the isothermic coordinates u, v are the same as

the coordinates for which the Moutard equation (2.14) holds.

2.8. Spheres. The spheres in any of the spaceforms Mκ are the surfaces x such that
4|x−C0|2 (the square of the radius r0 in the case of Euclidean space) is constant for
some constant C0 ∈ R3, generically. In the case κ = 0, with a sphere has radius r0,
then r0H0 = ±1. The sphere can be parametrized, and then

x = x(u, v) = (−1/H0)n0(u, v) + C0

for some constant C0. Then the equation Hκ = (1 + κ|x|2)H0 + 2κ(x · n0) in Lemma
2.7 implies the following formula (note that |n0|2 = 1

4
)

(2.18) Hκ = H0 −
κ

4H0

+H0κ|C0|2

for the relationships between the different mean curvatures for a sphere considered in
the different spaceforms Mκ.
A point

S =

ztz4
z5

 , z = (z1, z2, z3) ,

in R4,1 with positive norm

||S||2 = |z|2 + z24 − z25 > 0

determines a sphere S̃ in the spaceform Mκ as follows: Set

(2.19) S̃ = {Y ∈Mκ | ⟨Y,S⟩ = 0} .
See Figure 2.6.
Note that Y ∈ S̃ implies Y is perpendicular to S − Y , so S̃ is the base of the

tangent cone from S to Mκ, once S is scaled so that ⟨S, QMκ⟩ = −1. (Note that S̃
is invariant under scalings of S.) In fact, Y − S is then a normal vector field to S̃
within the tangent space of Mκ.
So we have now seen how both points and spheres in the spaceforms can be de-

scribed by using vectors in the single space R4,1, respectively lightlike and spacelike
vectors, which is a valuable property from the viewpoint of Möbius geometry.
If S satisfies z5 = 0, then S̃ is a great sphere in M1 = S3. Also, note that if

||S||2 = 0, then S is a point in S3 and S̃ consists of just a real scalar multiple of S,
hence S̃ simply gives back the same point S.
Let ℓ be the horizontal line segment from S to the timelike axis


0
0
0
0
t


∣∣∣∣∣∣∣∣∣∣
t ∈ R

 .
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Figure 2.6. The sphere S̃

Figure 2.7. Two depictions of the setting in Lemma 2.20

Then m = ℓ∩L4 is a single point, which, when considered as being in S3 =M1, gives
the center of S̃ in S3.

Lemma 2.20. Let S̃1, S̃2 be two intersecting spheres in S3 produced from S1,S2,
respectively, and suppose ||S1||2 = ||S2||2 = 1. Let α be the intersection angle between
S̃1 and S̃2. Then cosα = ±⟨S1,S2⟩, where the sign on the right hand side depends on
the orientations of S̃1 and S̃2. (See Figure 2.7.)

Proof. As κ = 1, any p ∈ S3 = M1 has x5 coordinate equal to 1. Take p ∈ S̃1 ∩ S̃2 ⊂
M1. Scale S1 and S2 so that they also have x5 coordinates equal to 1. Then S1 − p
and S2 − p are normals (in the tangent space of S3) to S̃1 and S̃2, respectively, at p.
So

cosα =

⟨
S1 − p

||S1 − p||
,

S2 − p

||S2 − p||

⟩
=

1

||S1 − p||
1

||S2 − p||
⟨S1,S2⟩ =

1

||S1||
1

||S2||
⟨S1,S2⟩ .

Returning to the scalings for S1 and S2 so that ||S1||2 = ||S2||2 = 1, the lemma is
proved. �

Remark 2.21. Lemma 2.20 implies that if S gives a sphere S̃ containing Y ∈ Mκ,
then {S + tY | t ∈ R} gives a pencil of spheres at Y , i.e. the collection of spheres of
arbitrary radius through Y and tangent to S̃. See Figure 2.8.
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Figure 2.8. A pencil of spheres

Lemma 2.22. Inversion through S̃ is the map

f : p→ p− 2⟨p,S⟩S ,

when ||S||2 = 1.

Proof. First note that p ∈ L4 implies p − 2⟨p,S⟩S ∈ L4. Now let C be a circle that
intersects S̃ perpendicularly. We wish to show that p ∈ C implies f(p) ∈ C. Note
that C = S̃1 ∩ S̃2 for some spheres S̃1 and S̃2. Then S̃1 ⊥ S̃ and S̃2 ⊥ S̃, and so

⟨S,S1⟩ = ⟨S,S2⟩ = 0 ,

by Lemma 2.20. Then p ∈ C implies p ∈ S̃1 ∩ S̃2, which implies ⟨p,S1⟩ = ⟨p,S2⟩ = 0.
Thus

⟨p− 2⟨p,S⟩S,S1⟩ = ⟨p− 2⟨p,S⟩S,S2⟩ = 0 ,

and so f(p) ∈ C. �

Lemma 2.23. S̃ is a sphere with mean curvature

H0 = ±z5 − z4
2||S||

and center
z

z5 − z4
in M0, and is a sphere in Mκ with mean curvature

Hκ = ±(z5 − z4)
2 + κ(|z|2 − ||S||2)

2(z5 − z4)||S||
.

Proof. Consider the case κ = 0. Take

Y =

 2yt

|y|2 − 1
|y|2 + 1

 ∈ S̃ , y = (y1, y2, y3) .

Then ⟨S, Y ⟩ = 0 implies

4|y − (z5 − z4)
−1z|2 = (2(z5 − z4)

−1||S||)2 ,
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Figure 2.9. The Christoffel transformation

and thus S̃ is a sphere of radius 2||S||/|z5 − z4| and center z/(z5 − z4). (By Remark
2.4, the coefficient 4 on the right-hand side of the above equation is needed.) Hence
H0 is as in the lemma. The final statement of the lemma now follows from Equation
(2.18). �
Remark 2.24. If xp, xq, xr and xs in R3 (with associated lifts Xp, Xq, Xr and Xs

in M0) all lie in the circle of positive radius determined by the intersection of two
distinct spheres S̃1 and S̃2 given by spacelike vectors S1 and S2, see (2.19), then the
fact that Xp, Xq, Xr, Xs ∈ S̃1 ∩ S̃2 is equivalent to

Xp, Xq, Xr, Xs ⊥ span{S1,S2} .

Because S̃1∩S̃2 is a circle of positive radius, the R4,1 metric restricted to span{S1,S2}
is positive definite. This implies, in particular, that Xp, Xq, Xr and Xs all lie in a
3-dimensional space.

Remark 2.25. Looking back at Section 2.4, let us take points xp, xq, xr, xs that are
concircular, with corresponding Xp, Xq, Xr, Xs ∈ Mκ. This makes the cross ratio
cr = crxpxqxrxs real-valued, by Remark 2.24 (i.e., E = 0 by Remark 2.12). Then, once
cr is real, the value cr, along with the values of Xp and Xq and Xs, determine Xr via

(2.20) Xr = α

(
Xp +

1

⟨Xq, Xs⟩
{(cr− 1)⟨Xp, Xs⟩Xq + (cr−1 − 1)⟨Xp, Xq⟩Xs}

)
for some real scalar α, by Lemma 2.11. In this way, the cross ratio is a parameter for
parametrizing the circle containing xp, xq and xs.

2.9. Christoffel transformations. We now define the Christoffel transformation
x∗, or “dual surface”. For a CMC (constant mean curvature) surface in R3, this gives
the parallel CMC surface.

Let x be a surface in R3 with mean curvature H0 and unit normal n0 (with respect
to the metric in (2.5)). The Christoffel transformation x∗ satisfies that (see Figure
2.9)

• x∗ is defined on the same domain as x (to avoid issues related to global be-
havior of x∗, we consider only simply-connected domains here),

• x∗ has the same conformal structure as x,
• and x and x∗ have parallel tangent planes with opposite orientations at cor-
responding points.
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One can check that automatically the principal curvature directions at corresponding
points of x and x∗ will themselves also be parallel.
This description above of the Christoffel transformations turns out to be equivalent

to the following definition, and the existence of the integrating factor ρ below is
equivalent to the existence of isothermic coordinates. Then, we will see in Corollary
2.29 that we can choose x∗ so that

dx∗ = − xu
|xu|2

du+
xv
|xv|2

dv

We avoid umbilic points in this discussion.

Definition 2.26. A Christoffel transformation x∗ of an umbilic-free surface x in R3

is a surface that satisfies

dx∗ = ρ(dn0 +H0dx)

for some nonzero real-valued function ρ on the surface x (here x∗ is determined only
up to translations and dilations).

Lemma 2.27. Away from umbilics of x, the Christoffel transform x∗ exists if and
only if x is isothermic.

Proof. First we prove one direction, by assuming x is isothermic and then showing x∗

exists.
Take x to be isothermic, and take isothermic coordinates u, v for x, so xuv =

Axu +Bxv for some A,B. Then

d(− xu

|xu|2du+
xv

|xv |2dv) =

16g−2
11 ((|xu|2 + |xv|2)xuv − 2(xu · xuv)xu − 2(xv · xuv)xv)du ∧ dv = 0 .

This implies that there exists an x∗ such that

(2.21) dx∗ = − xu

|xu|2du+
xv

|xv |2dv .

Also,

dn0 +H0dx = 1
8
(b11 − b22)(− xu

|xu|2du+
xv

|xv |2dv) ,

implying that x∗ is a Christoffel transform, since b11 − b22 ̸= 0 at non-umbilic points.
Now we prove the other direction, by assuming x∗ exists and then showing that x

has isothermic coordinates.
For any choice of coordinates u, v for x = x(u, v), the Codazzi equations are

(b11)v − (b12)u = Γ1
12b11 + (Γ2

12 − Γ1
11)b12 − Γ2

11b22 ,

(b12)v − (b22)u = Γ1
22b11 + (Γ2

22 − Γ1
21)b12 − Γ2

21b22 .

Here the Christoffel symbols are Γh
ij = 1

2

∑2
k=1 g

hk(∂uj
gik + ∂ui

gjk − ∂uk
gij), where

u1 = u and u2 = v. Because we are avoiding any umbilic points of x, we may assume
that u and v are curvature line coordinates for x, and so g12 = b12 = 0. It follows
that

Γ1
11 =

∂ug11
2g11

, Γ2
22 =

∂vg22
2g22

, Γ2
11 = −∂vg11

2g22
,

Γ1
22 = −∂ug22

2g11
, Γ1

12 = Γ1
21 =

∂vg11
2g11

, Γ2
12 = Γ2

21 =
∂ug22
2g22

.
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Denoting the principal curvatures by kj, the Codazzi equations simplify to

(2.22) 2(k1)v =
∂vg11
g11

· (k2 − k1) , 2(k2)u =
∂ug22
g22

· (k1 − k2) .

Then existence of x∗ gives

d(ρdn0 + ρH0dx) = 0 ,

from which it follows that

(2.23)

(
0 b11

g11
− b22

g22
b22
g22

− b11
g11

0

)(
ρu
ρv

)
= ρ ·

( b11
g11

+ b22
g22

)
v(

b11
g11

+ b22
g22

)
u

 .

Then because ρuv = ρvu, we have(
(k2 + k1)v
k1 − k2

)
u

=

(
(k1 + k2)u
k2 − k1

)
v

,

which implies

2(((k1)v)u + ((k2)u)v)

k1 − k2
+ 2(k2 − k1)

−2 ((k1)v(k2 − k1)u + (k2)u(k2 − k1)v) = 0 .

Using the Codazzi equations (2.22), we have(
log

g11
g22

)
uv

= 0 .

In particular, there exist positive functions a(u) and b(v) depending only on u and v,
respectively, so that

(a(u))2g11 = (b(v))2g22 .

Writing u = u(û) and v = v(v̂) for new curvature line coordinates û and v̂, we have

ĝ12 = b̂12 = 0 and ĝ11 = (uû)
2g11 and ĝ22 = (vv̂)

2g22, for the fundamental form entries

ĝij and b̂ij in terms of û and v̂. We can choose û and v̂ so that uû = a(u(û)) and
vv̂ = b(v(v̂)) hold. Then ĝ11 = ĝ22 and so û, v̂ are isothermic coordinates. �

The last part of the above proof is reminiscent of an argument used in Section 2.5.

Proposition 2.28. The form (2.22) of the Codazzi equations, in the case of curvature
line coordinates, is invariant under different choices of the spaceform Mκ.

Proof. Following the proof of Lemma 2.7, when changing spaceforms, i.e. when chang-
ing κ = 0 to general κ, we have, for s = 1 + κ|x|2:

g11 → ĝ11 = s−2g11 , g12 = 0 → ĝ12 = 0 , g22 → ĝ22 = s−2g22 .

b11 → b̂11 = s−1b11 + 2κg11s
−2(x · n0) , b12 = 0 → b̂12 = 0 ,

b22 → b̂22 = s−1b22 + 2κg22s
−2(x · n0) .

Here, b11 = 4(xuu · n0) and b22 = 4(xvv · n0). These transformations were seen in the
proof of Lemma 2.7 using x = x(u, v) with isothermic coordinates (u, v), but they
still hold with (u, v) that are just curvature line coordinates.
So

k1 =
b11
g11

→ k̂1 =
b̂11
ĝ11

= sk1 + 2κ(x · n0) .
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Similarly, k̂2 = sk2+2κ(x ·n0). The Codazzi equations for curvature line coordinates
when κ = 0 are as in (2.22). Then

2k̂1,v

k̂2 − k̂1
− (ĝ11)v

ĝ11
=

4κ(x · xv)k1 + 2sk1,v + 4κ(x · n0,v)

s(k2 − k1)
− 4s−3(−κ)(x · xv)g11 + s−2(g11)v

s−2g11
=

4κ

s

(
(x · xv)(

k1
k2 − k1

+ 1) + (x · n0,v)
1

k2 − k1

)
=

4κ

s(k2 − k1)
(x · (k2xv + n0,v)) =

4κ

s(k2 − k1)

(
x · 0⃗

)
= 0 .

Similarly,

2k̂2,u

k̂1 − k̂2
=

(ĝ22)u
ĝ22

.

�
The proof of Lemma 2.27 gives the following corollary:

Corollary 2.29. Away from umbilic points, one Christoffel transformation x∗ of an
isothermic surface x = x(u, v) can be taken as a solution of

dx∗ = − xu
|xu|2

du+
xv
|xv|2

dv .

With respect to isothermic coordinates (u, v), Equation (2.23) implies

(2.24) ρu = − g11∂uH0

g11H0 − b22
· ρ , ρv = − g11∂vH0

g11H0 − b11
· ρ .

The existence of x∗ then automatically implies the compatibility condition (ρu)v =
(ρv)u, with ρu and ρv as in the right-hand sides of the equations in (2.24).
This pair of equations (2.24) tells us that ρ is uniquely determined once its value is

chosen at a single point, and thus the solution ρ is unique up to scalar multiplication
by a constant factor. Thus the Christoffel transformation in Corollary 2.29 is essen-
tially the unique choice, up to homothety and translation in R3. As a result of this,
with no loss of generality, we can now simply take the definition of x∗ as follows:

Definition 2.30. The Christoffel transformation of a surface x in R3 with isothermic
coordinates (u, v) is any x∗ (defined in R3 up to translation) such that

dx∗ = − xu
|xu|2

du+
xv
|xv|2

dv .

The constant scalar factor freedom that is allowed for ρ still implicitly exists in Def-
inition 2.30, because of the constant scalar factor freedom allowed for the coordinates
u, v.

Remark 2.31. The function ρ in Definition 2.26 is a constant scalar multiple of the
multiplicative inverse of the mean curvature of x∗, seen as follows: The Christoffel
transform of the Christoffel transform (x∗)∗, with respect to Definition 2.30, satisfies

d((x∗)∗) = − x∗
u

|x∗
u|2
du+ x∗

v

|x∗
v |2
dv = xudu+ xvdv = dx ,
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Figure 2.10. A Delaunay unduloid and its dual surface (Christoffel
transform), which is a translated copy of the same surface

so (x∗)∗ should be the original surface x, up to translation and homothety, with
respect to Definition 2.26. Thus, by scaling and translating appropriately, we may
assume (x∗)∗ = x. Also, if the normal of x is n0, then the normal of x∗ is −n0. Thus

dx = d((x∗)∗) = ρ∗(dn∗
0 +H∗

0dx
∗) = ρ∗(−dn0 +H∗

0ρ(dn0 +H0dx)) ,

and so
(1− ρρ∗H0H

∗
0 )dx = (H∗

0ρρ
∗ − ρ∗)dn0 .

Since dx and dn0 are linearly independent away from umbilic points, it follows that

ρH∗
0 = ρ∗H0 = 1 .

Remark 2.32. When H0 is a nonzero constant and we have isothermic coordinates,
Equation (2.24) implies ρ is constant. Then x∗ and the parallel CMC surface x|| =
x + H−1

0 n0 differ by only a homothety and translation of R3. Thus the Christoffel
transformation is essentially the same as the parallel CMC surface to x, as expected.

Example 2.33. The round cylinder gives one simple example of a Christoffel trans-
form’s orientation reversing property. For the cylinder x(u, v) = (cos u, sinu, v)
in R3 (with metric as in (2.5)), the normal vector is n0 = 1

2
(cosu, sinu, 0), and

the Christoffel transform is x∗(u, v) = (− cosu,− sinu, v) with its normal vector
n∗
0 =

1
2
(− cosu,− sinu, 0). Thus n∗

0 = −n0.

Example 2.34. Delaunay surfaces are CMC surfaces of revolution in R3. They can be
either embedded (unduloids) or nonembedded (nodoids). The Christoffel transforms
of Delaunay surfaces are again Delaunay surfaces. See Figure 2.10.

Lemma 2.35. We have the relation

dx∗ =
2

(k1 − k2)|xu|2
(dn0 +H0dx) .

Proof. This proof is a direct computation:(
2

(k1 − k2)|xu|2
(dn0 +H0dx) +

xu

|xu|2du−
xv

|xv|2dv

)
|xu|2 =

2

k1 − k2
(−k1xudu− k2xvdv +

k1+k2
2

(xudu+ xvdv)) + xudu− xvdv = 0 .

�
The Hopf differential (see [49], for example) for a surface in R3 is defined as (the

inner products ⟨·, ·⟩ and ”·” are bilinearly extended to apply to complex vectors)

Q̂dz2 , Q̂ = ⟨Tn0 , (X0)zz⟩ = 4(n0 · xzz) (z = u+ iv) .
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Corollary 2.36. If H0 is constant for the surface x = x(u, v) in R3 with isothermic

coordinates (u, v), then the factor Q̂ of the Hopf differential is a real constant.

Proof. The factor

Q̂ = 4(n0 · 1
4
(xuu − xvv)) = (k1 − k2)|xu|2

is constant by Lemma 2.35 and Remark 2.32. It is clearly also real. �
2.10. Flat connections on the tangent bundle. Let us first review what a con-
nection is. Later we will see how isothermic surfaces have a 1-parameter family of flat
connections. Although we do not show it here (see [29] for such an argument), the
converse is also true: existence of a family of flat connections implies that the surface
is isothermic.
Recall that the Riemannian connection of a Riemannian manifold is the unique

connection satisfying

(2.25) ∇fX+YZ = f∇XZ +∇YZ ,

(2.26) ∇X(fY + Z) = X(f)Y + f∇XY +∇XZ ,

(2.27) ∇XY −∇YX = [X,Y ] ,

(2.28) X⟨Y, Z⟩ = ⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩ ,
where X,Y, Z are any smooth tangent vector fields of the manifold, and f is any
smooth function from the manifold to R. The first two relations (2.25), (2.26) define
affine connections, and inserting the last two conditions (2.27), (2.28) makes the
connection a Riemannian connection.
Taking an n-dimensional manifoldMn with affine connection ∇, and taking a basis

X1, X2, ... , Xn of vector fields for the tangent spaces, we define Γk
ij and R

k
lij by

∇Xi
Xj =

n∑
k=1

Γk
ijXk ,

(2.29) ∇Xi
∇Xj

Xl −∇Xj
∇Xi

Xl −∇[Xi,Xj ]Xl =
n∑

k=1

Rk
lijXk .

We define the one forms ωi and ωi
j by (here δij is the Kronecker delta function)

ωi(Xj) = δij , ωi
j =

n∑
k=1

Γi
kjω

k .

The one forms ωi
j are called the connection one forms. Then

dωi
l +

n∑
p=1

ωi
p ∧ ω

p
l = 1

2

n∑
j,k=1

Ri
ljkω

j ∧ ωk .

When the connection is the Riemannian connection, the Ri
ljk give the Riemannian

curvature tensor. When, for an affine connection, all of the Ri
ljk are zero, then we say

that ∇ is a flat connection.
Connections are equivalent to having a notion of parallel transport along each given

curve in the base manifold, and a connection is flat if and only if the parallel transport
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map depends only on the homotopy class of each curve (with fixed endpoints). In
particular, if the surface x is simply connected, parallel transport is independent of
path if and only if the connection is flat, which can be seen as follows: One direction
is immediately clear from Equation (2.29), by choosing the Xi there to be constant
vector fields (that is, by choosing Xi by using parallel translation, i.e. ∇∗Xi = 0),
and then all Rk

lij become 0. To see the other direction, let us restrict to the case that

Mn is a 2-dimensional simply-connected manifold given by a surface x = x(u, v) in R3

as in Section 2.2. Suppose that the connection is flat. Then Equation (2.29) implies

∇∂u∇∂vY = ∇∂v∇∂uY

for any tangent vector field Y . Then we can apply an argument like in the proof of
Proposition 3.1.2 in [49] to conclude that if Y is constructed so that ∇∂uY = 0 along
one curve where v = v0 is constant and so that ∇∂vY = 0 everywhere, then also
∇∂uY = 0 everywhere, and so Y is a vector field that is parallel on any curve in x.

2.11. The wedge product. In the next section, unlike the previous section, we will
consider flat connections on a bundle over a surface that is not the tangent bundle.
To prepare for that, we consider the wedge product here.

Given a vector space V over R with an inner product ⟨, ⟩ and fixed A,B and variable
v lieing in V , we can define the wedge operator, a map from V to V , by

(2.30) (A ∧B)(v) = ⟨A, v⟩B − ⟨B, v⟩A .

Note that

(1) (A+ α1B) ∧B = A ∧B for any α1 ∈ R,
(2) (α2A) ∧ (α3B) = α2α3(A ∧B) for any α2, α3 ∈ R.

Thus it suffices to consider A and B that form the edges of a unit square, and A∧B
becomes the operator that is rotation by 90 degrees in the plane spanned by A and
B. With the inner product of A ∧B and Â ∧ B̂ defined as

⟨A ∧B, Â ∧ B̂⟩ = det

(
⟨A, Â⟩ ⟨A, B̂⟩
⟨B, Â⟩ ⟨B, B̂⟩

)
,

we find that when A and B form the edges of a unit square, we have

|A ∧B|2 = ⟨A,A⟩⟨B,B⟩ − ⟨A,B⟩2 = 1 .

Incidentally, the properties (1) and (2) above give that A ∧ B really depends only
on the plane spanned by A and B, and on the area of the parallelogram determined
by A and B. Note also that

⟨v, (A ∧B)v⟩ = 0

for all v ∈ V . A computation gives also

|(A ∧B)v|2 = −⟨v, (A ∧B)2v⟩ .

Remark 2.37. The wedge product just defined here is a different type of object than
the wedge product du ∧ dv of the two 1-forms du and dv. Sometimes both types of
wedge products can appear in the same equation, and we can distinguish between
them simply by noting what types of objects they are applied to.
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We now give two ways to define wedge products that do not use a metric:
Second definition of ∧: One can define ∧, involving neither a metric nor a choice

of basis, as a map from the alternating bilinear forms B to R, so that

(A ∧B)(B) = B(A,B) .

Before we defined the wedge product as in (2.30) (which we now denote by ∧m since
it used the metric), which is a map taking vectors to vectors. Setting

Bx,y(A,B) = ⟨(x ∧m y)A,B⟩ = ⟨x,A⟩⟨y,B⟩ − ⟨y,A⟩⟨x,B⟩ ,
then

Bx,y(B,A) = −Bx,y(A,B) ,

so it is alternating (skew). Also,

Bx,y(A,B) = BA,B(x, y)

and

By,x(A,B) = −Bx,y(A,B) .

If x, y can be any pair of vectors, then the Bx,y generate all alternating bilinear forms
(we do not prove this here), so A ∧B is determined by

(A ∧B)(Bx,y) = Bx,y(A,B) = BA,B(x, y) = ⟨(A ∧m B)x, y⟩ .
This gives a one-to-one correspondence between A ∧B and A ∧m B.
For a basis of V we can take e1 = A, e2 = B, e3, ..., en with ej ⊥ span{A,B} for

all j ≥ 3. Then

(1) ((A ∧m B)ej, ek) = 0 if j ≥ 3 or k ≥ 3,
(2) ((A ∧m B)ej, ej) = 0 for all j,
(3) ((A ∧m B)ej, ek) = −((A ∧m B)ek, ej) for all j, k, and
(4) ((A ∧m B)e1, e2) = ⟨A,A⟩⟨B,B⟩ − ⟨A,B⟩2.

Thus

(A ∧B)(Bej ,ek) = 0

if j ≥ 3 or k ≥ 3 or j = k, and

(A ∧B)(Be1,e2) = ⟨A,A⟩⟨B,B⟩ − ⟨A,B⟩2 .
Third definition of ∧: One can define the wedge product by the following prop-

erties:

(1) It is a map

V × V → ∧2V , (A,B) 7→ A ∧B
(∧2V is the collection generated by general A ∧B).

(2) A ∧B is alternating, i.e. A ∧B = −B ∧ A.
(3) A ∧B is bilinear, that is, separately linear in A and B.
(4) A ∧ B is universal, i.e. for any vector space W and any alternating bilinear

map

B : V × V → W ,

there exists a unique linear map β : ∧2V → W such that

B(A,B) = β(A ∧B)

for all A,B ∈ V .
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For the Bx,y : V × V → R in the second definition above, for example, β would be

β(A ∧B) = (A ∧B)(Bx,y) = Bx,y(A,B) ,

or equivalently

β(A ∧m B) = ⟨(A ∧m B)x, y⟩ .
The A ∧B and A ∧m B in the second definition above are both universal.

Lemma 2.38. If ∧ : V × V → ∧2V and ∧̃ : V × V → ∧̃2
V are both universal

alternating bilinear maps, then there exists a unique linear isomorphism θ : ∧2V →
∧̃2
V such that θ(A ∧B) = A∧̃B for all A,B ∈ V .

Proof. Because ∧ is universal, there exists a unique linear map θ : ∧2V → ∧̃2
V such

that A∧̃B = θ(A ∧ B). Similarly, ∧̃ being universal implies there exists a unique

linear map ϕ : ∧̃2
V → ∧2V such that

A ∧B = ϕ(A∧̃B) .

We have

ϕ ◦ θ(A ∧B) = A ∧B .

However, does not yet mean that θ and ϕ are inverse to each other, since A∧B is not
a general element of ∧2V (the A ∧B are only a set of generators of ∧2V ). Using the
definition of universality of ∧ in item (4) above with B equal to ∧ itself andW = ∧2V ,
there exists a unique linear map β : ∧2V → ∧2V such that

β(A ∧B) = A ∧B .

Since one possible such map is the identity map, it must be that ϕ ◦ θ is the identity
map on ∧2V . (Similarly, θ ◦ ϕ is the identity map on ∧̃2

V .) �
We still need to show that this definition of the wedge is not empty:

Lemma 2.39. There exists a map V × V → ∧2V that is universal, alternating and
bilinear.

Proof. Let R[V × V ] be the vector space with basis

{A×B |A,B ∈ V } .
R[V ×V ] is called the free vector space generated by V ×V . We can regard A×B ∈
R[V × V ] as the function with

(A×B)(x, y) = 0

unless x = A and y = B, and

(A×B)(A,B) = 1 ,

and then R[V × V ] equals the set of those functions from V × V to R that are 0 at
all but a finite number of points in V × V . Thus the vector space R[V × V ] exists,
as it is a subset of the space RV×V of all functions from V × V to R. Consider the
subspace R of R[V × V ] consisting of elements of the form

(1) (λA1 + µA2)×B − λ(A1 ×B)− µ(A2 ×B) for λ, µ ∈ R,
(2) A× (λB1 + µB2)− λ(A×B1)− µ(A×B2) and
(3) A×B +B × A.
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Both R[V × V ] and R are infinite dimensional. However, the quotient space ∧2V =
R[V × V ]/R, with A ∧ B = [A × B]mod R, is finite dimensional. The map (A,B) →
A∧B is alternating and bilinear. It is also universal, since it was constructed without
imposing anything more than the bilinear and alternating conditions. �
For a basis e1, ..., en of V we can define ∧2V to be R[{ei ∧ ej : i < j}], and for

A =
n∑

i=1

aiei , B =
n∑

j=1

bjej ,

we have

A ∧B =
n∑

i,j=1

aibjei ∧ ej ,

where ej ∧ ei denotes −ei ∧ ej when j > i, and ei ∧ ei = 0.
The wedge product for 1-forms. Suppose A = A(u1, u2) and B = B(u1, u2) are

vectors in V depending on the real parameters u1 and u2. Then the wedge product
of the 1-forms Adui and Bduj is defined by

(Adui ∧Bduj)v = ((A ∧B)v)dui ∧ duj .
Here we can think of the dui and duj as scalars to be taken outside the wedge product
of A and B, and then we are seeing two different types of wedge products on the right-
hand side, that is, one type of wedge in dui ∧ duj and another type in A ∧B.
Suppose that C = C(u1, u2) and D = D(u1, u2) are vectors in V depending on u1

and u2, as well. We can also apply the commutator wedge to objects of the form
A ∧Bdui and C ∧Dduj, as follows:
(2.31) [(A ∧Bdui) ∧ (C ∧Dduj)](v) =

((A ∧B)((C ∧D)v)− (C ∧D)((A ∧B)v))dui ∧ duj .
This commutator wedge is symmetric, not skew symmetric, that is,

[(A ∧Bdui) ∧ (C ∧Dduj)] = [(C ∧Dduj) ∧ (A ∧Bdui)] .
The wedge product for R4,1. For vectors A and B in R4,1, A∧B can be regarded

as a matrix in the Lie algebra o4,1 defined by (2.30). We make this more explicit in
the proof of the following lemma:

Lemma 2.40. A ∧B lies in the Lie algebra o4,1.

Proof. For

D =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1

 , A =


A1

A2

A3

A4

A5

 , B =


B1

B2

B3

B4

B5

 ,

the matrix A that represents A ∧B is
0 B1A2 − A1B2 B1A3 − A1B3 B1A4 − A1B4 B5A1 − A5B1

B2A1 − A2B1 0 B2A3 − A2B3 B2A4 − A2B4 B5A2 − A5B2

B3A1 − A3B1 B3A2 − A3B2 0 B3A4 − A3B4 B5A3 − A5B3

B4A1 − A4B1 B4A2 − A4B2 B4A3 − A4B3 0 B5A4 − A5B4

B5A1 − A5B1 B5A2 − A5B2 B5A3 − A5B3 B5A4 − A5B4 0

 ,
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which does satisfy the condition A ·D +D · At = 0 to lie in o4,1. �

Lemma 2.41. If T ∈ o4,1 and A and B are vectors in R4,1, then

[T,A ∧B] = (TA) ∧B + A ∧ (TB) .

Proof. For C ∈ R4,1,

⟨A, TC⟩ = AtDTC = −AtT tDC = −⟨TA,C⟩ .

Then

[T,A ∧B]C = T (A ∧B)C − (A ∧B)TC =

T (⟨A,C⟩B − ⟨B,C⟩A)− (⟨A, TC⟩B − ⟨B, TC⟩A) =

⟨A,C⟩TB − ⟨B,C⟩TA− ⟨A, TC⟩B + ⟨B, TC⟩A =

⟨A,C⟩TB − ⟨B,C⟩TA+ ⟨TA,C⟩B − ⟨TB,C⟩A =

((TA) ∧B)C + (A ∧ (TB))C .

�

Remark 2.42. A second proof of Lemma 2.41 can be given as follows: Let g(t) be a
curve in O4,1 such that g(0) = I and g′(0) = T . Then

(g(A ∧B)g−1)C = g(⟨A, g−1C⟩B − ⟨B, g−1C⟩A) =

⟨gA,C⟩(gB)− ⟨gB,C⟩(gA) = ((gA) ∧ (gB))C ,

so

∂t(g(A ∧B)g−1)|t=0 = ∂t((gA) ∧ (gB))|t=0 ,

which implies

[g′(0), A ∧B] = (g′(0)A) ∧B + A ∧ (g′(0)B) .

Remark 2.43. Later, when we consider Lie sphere geometry, we will again use wedge
products as defined in (2.30), and will again have two lemmas analogous to those
just above. All arguments are identical, except that R4,1 becomes R4,2 with metric
signature (−,+,+,+,+,−), and o4,1 becomes o4,2, and O4,1 becomes O4,2, and D
becomes

D =


−1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

 ,

and the vectors A and B become

A =


A1

A2

A3

A4

A5

A6

 , B =


B1

B2

B3

B4

B5

B6

 ,
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and the matrix in the proof of Lemma 2.40 becomes

0 B1A2 −A1B2 B1A3 −A1B3 B1A4 −A1B4 B1A5 −A1B5 B6A1 −A6B1

B1A2 −A1B2 0 B2A3 −A2B3 B2A4 −A2B4 B2A5 −A2B5 B6A2 −A6B2

B1A3 −A1B3 B3A2 −A3B2 0 B3A4 −A3B4 B3A5 −A3B5 B6A3 −A6B3

B1A4 −A1B4 B4A2 −A4B2 B4A3 −A4B3 0 B4A5 −A4B5 B6A4 −A6B4

B1A5 −A1B5 B5A2 −A5B2 B5A3 −A5B3 B5A4 −A5B4 0 B6A5 −A6B5

B1A6 −A1B6 B6A2 −A6B2 B6A3 −A6B3 B6A4 −A6B4 B6A5 −A6B5 0

 .

2.12. Conserved quantities and CMC surfaces. For a smooth isothermic surface
x = x(u, v), we can regard R4,1 as the 5-dimensional fibers of a trivial vector bundle
defined on x. To define a flat connection on this bundle, like in Section 2.10, we can
instead just define a path-independent notion (within homotopy classes) of parallel
vector fields. Such a vector field can be given by a section Y = Y (u, v) ∈ R4,1 solving
(here we rename ∇ to Γ because we now fix a specific connection), for some λ ∈ R,

ΓY = 0 , Γ := d+ λτ ,

(2.32) τ =
−2

⟨(X0)u, (X0)u⟩
X0 ∧X0,udu+

2

⟨(X0)v, (X0)v⟩
X0 ∧X0,vdv

=
−1

2|xu|2
X0 ∧X0,udu+

1

2|xv|2
X0 ∧X0,vdv ,

where X0 is the particular lift into the light cone that lies in M0 (i.e. X0 is as in
Lemma 2.2 with κ = 0). We call τ a retraction form of X0.

Remark 2.44. For the Riemannian connection ∇ZY , Z and Y are both vector fields
in the tangent bundle of the manifold. In Γ, however, Y will be a vector field in the
trivial R4,1 vector bundle, and Z will still be in the tangent bundle of the surface.
The X0 ∧X0,u and X0 ∧X0,v parts of Γ apply to Y , and the 1-forms du and dv in Γ
apply to Z (as ∂u and ∂v form a basis of the fibers of the tangent bundle).

Remark 2.45. Note that τ is invariant of the choice of lift X of x. We chose the
particular lift X0 when defining τ above, but we could have chosen any lift X. We
will use X to denote a general choice of lift.

We claimed above that the solution Y of ΓY = 0 is independent of path. We now
give two proofs of this, the first without using a Moutard lift, and the second using
such a lift, to illustrate the usefulness of Moutard lifts. The second proof is shorter.

Lemma 2.46. For any initial condition, there exists a solution Y of ΓY = 0 inde-
pendent of choice of path (within homotopy classes), that is, Γ is a flat connection for
any choice of λ.

Proof. For this proof, one can of course simply check that the curvature tensor of Γ is
zero (equivalent to Equation (2.33) below), and then employ the well-known fact that
parallel transport will then be independent of path. However, with a future study
of discrete surfaces in mind, we start this proof from a different viewpoint here, as
follows:
The condition for Γ to be flat is that the solution Y exists independently of choice

of path, and an argument shows this to be equivalent to

(2.33) λdτ + 1
2
λ2[τ ∧ τ ] = 0 .

One direction of this argument showing equivalence is straightforward, and the other
direction requires an argument like the one in the proof of Proposition 3.1.2 in [49].
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By (2.33), it suffices to show

dτ = [τ ∧ τ ] = 0 .

That is, we need

(2.34) ∂v(τ(∂u)) = ∂u(τ(∂v))

and

(2.35) τ(∂u)τ(∂v) = τ(∂v)τ(∂u) .

Equation (2.35) holds, by a computation that shows, for Z ∈ R4,1,

τ(∂u)τ(∂v)(Z) = τ(∂v)τ(∂u)(Z) =
1
4
|xu|−4⟨X0, Z⟩⟨X0,u, X0,v⟩X0 .

The condition (2.34) can be shown with the following consequences of Equation (2.15):

X0,uv = AX0,u +BX0,v , ∂v(|xu|−2) = −2A|xu|−2 , ∂u(|xv|−2) = −2B|xv|−2 .

�
Another consequence of Equation (2.15) is

∂v(|xu|−1) = −A|xu|−1 and ∂u(|xv|−1) = −B|xv|−1 ,

and from this it follows that
s := 1√

2
|xu|−1X0

is a Moutard lift. Also,
τ = −s ∧ sudu+ s ∧ svdv .

We make use of this in the next second proof of Lemma 2.46.

Proof. We start by noting that

−∂v(τ(∂u)) + ∂u(τ(∂v)) = (s ∧ su)v + (s ∧ sv)u =

sv ∧ su + s ∧ suv + su ∧ sv + s ∧ suv = 2s ∧ suv = 0 .

For Z ∈ R4,1,

(τ(∂u)τ(∂v)− τ(∂v)τ(∂u))Z = (−(s ∧ su)(s ∧ sv) + (s ∧ sv)(s ∧ su))Z =

−(s ∧ su)(⟨Z, s⟩sv − ⟨Z, sv⟩s) + (s ∧ sv)(⟨Z, s⟩su − ⟨Z, su⟩s) =
⟨Z, s⟩(−⟨s, sv⟩su + ⟨su, sv⟩s+ ⟨s, su⟩sv − ⟨su, sv⟩s)+

⟨Z, sv⟩(⟨s, s⟩su − ⟨s, su⟩s)− ⟨Z, su⟩(⟨s, s⟩sv − ⟨s, sv⟩s) ,
and all terms after the final equal sign above are zero. �
Remark 2.47. Noting that the compatibility condition for (T = T (u, v) a 5×5 matrix)

dT = T · λτ
is once again (2.33) (see the upcoming Lemma 2.61), solutions exist for any choice of
initial condition, and solving this for T ∈ O4,1 with initial condition T = I at some
point (u0, v0) in the (u, v)-domain, we have that ΓY = 0 with Y = Y0 at (u0, v0) is
equivalent to

(2.36) Y = T−1Y0 ,

since ΓY = 0 means d(TY ) = 0. We will see later that T is a Calapso transformation
(Section 2.13), and when Y0 ∈ L4, then Y represents a Darboux transform (Section
2.14) of the surface x.
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In the next definition, we are once again considering general spaceforms M , so the
normalization (2.3) is not assumed.

Definition 2.48. If there exist Q and Z in R4,1 depending smoothly on u and v such
that, for P = Q+ λZ,

(2.37) ΓP = 0 (or equivalently d(TP ) = 0)

holds for all λ ∈ R, then we call P a linear conserved quantity of x.

Remark 2.49. By Definition 2.48, a linear conserved quantity exists if and only if there
exist Q = Q(u, v) and Z = Z(u, v) in R4,1 such that the following three conditions
hold:

(1) Q is constant,
(2) dZ = −τQ,
(3) τZ = 0.

Necessary and sufficient conditions for existence of a linear conserved quantity can
be stated without ever referring to τ if we wish, as follows:

(1) Q is constant,
(2) ⟨X0, Q⟩X0,u − ⟨X0,u, Q⟩X0 = 2|xu|2Zu,
(3) ⟨X0,v, Q⟩X0 − ⟨X0, Q⟩X0,v = 2|xv|2Zv,
(4) ⟨X0, Z⟩X0,u = ⟨X0,u, Z⟩X0,
(5) ⟨X0, Z⟩X0,v = ⟨X0,v, Z⟩X0.

Some properties related to linear conserved quantities are immediate. For example,
Q is constant (as noted in Remark 2.49) and τX = 0 (by the definition of τ). Some
other immediate properties are given in the next lemmas, the first of which follows
directly from items (4) and (5) in Remark 2.49:

Lemma 2.50. X is perpendicular to both Z and dZ.

Lemma 2.51. ⟨Z,Z⟩ is constant.

Proof. We have that

d(⟨Z,Z⟩) = 2⟨Z, dZ⟩ = −2⟨Z, τQ⟩ = 0 ,

because τQ lies in span{X0, X0,u, X0,v} ⊥ Z. �
Corollary 2.52. We have ⟨Z,Z⟩ ≥ 0, and if ⟨Z,Z⟩ = 0, then Z is parallel to X.

Proof. Because Z is perpendicular to X, and because X is lightlike, Z is either space-
like, or is a scalar multiple of X. �
Furthermore, when Z ̸= 0, the upcoming Equation (2.41) will imply ⟨Z,Z⟩ > 0,

i.e. ⟨Z,Z⟩ ̸= 0.
Properties like these will be utilized to prove Theorems 2.53 and 2.54 below. The

first of these two theorems characterizes the case that x is a part of a sphere.

Theorem 2.53. The surface x is part of a sphere (in any spaceform) if and only if
it has a constant conserved quantity P = Q+ λ · 0.

Proof. Suppose that x has a conserved quantity Q of order 0. LetM be the spaceform
defined by Q, and let X be the lift of x lieing in M . Then ⟨X,Q⟩ = 0, and therefore
Q is either spacelike or parallel to X. Thus X lies in the sphere given by S = Q, as



40

in (2.19). If Q is lightlike, then X would be a single point, not a surface, so Q must
be spacelike (so the curvature κ of M is strictly negative). In fact, X is part of the
virtual boundary sphere at infinity of M . Thus X will detemine a part of a finite
sphere in other choices for the spaceform.

Conversely, in the case that x is part of a sphere, with lift X in M , then there
exists a constant S that is perpendicular to X, by (2.19). Taking Q = S, it follows
that Q = Q+ λ · 0 is a constant (and linear) conserved quantity, by the conditions at
the end of Remark 2.49. �
Theorem 2.54. [20] An isothermic immersion x = x(u, v) without umbilic points
has constant mean curvature in a spaceform M (produced by Q ̸= 0) if and only if
there exists (for that Q) a linear conserved quantity P = Q+ λZ.

Proof. Assume that x has a linear conserved quantity. Applying a single O4,1 isometry
to R4,1 if necessary, we can take Q as in (2.3), and we denote the components of Z
by zj, i.e.

Z =


z1
z2
z3
z4
z5

 ∈ R4,1 .

Applying ⟨X0, dZ⟩ = 0 to d(⟨X0, Z⟩), we have, when z = (z1, z2, z3),

z · dx+ (z4 − z5)(x · dx) = 0 ,

which implies z must be of the form

z = (z5 − z4)x+ hn0

for some real-valued function h. Then ⟨X0, Z⟩ = 0 implies

(z5 − z4)|x|2 + 2h(x · n0)− z4 − z5 = 0 .

We can then compute that ⟨Z,Z⟩ = h2/4, so h is constant. In particular ⟨Z,Z⟩ ≥ 0.
The relation dZ = −τQ from (2.37) gives that

d(z5 − z4) + 2κ(x · dx∗) = 0 and (z5 − z4)dx+ hdn0 − (1 + κ|x|2)dx∗ = 0 .

The second of these two equations gives us a pair of (real) equations that are linear
with respect to both h and z5 − z4. Solving simultaneously for h and z5 − z4 gives

(2.38) h =
2(1 + κ|x|2)
|xu|2(k1 − k2)

,

which we know to be constant, and

(2.39) z5 − z4 =
1
2
h(k2 + k1) = h ·H0 .

Equations (2.38), (2.39) and h being constant then imply

d(z5 − z4) = hdH0 =
2(1 + κ|x|2)
|xu|2(k1 − k2)

dH0 .

Using d(z5 − z4) = −2κ(x · dx∗) and (2.21), we find that (2.7) holds, and so Hκ is
constant. One direction of the theorem now follows.

To prove the converse direction, assume that x is a CMC surface with isothermic
coordinate z = u+iv. The Hopf differential is a constant multiple of dz2 (see Corollary
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2.36 here for the case when the spaceform is R3 and Equations (5.1.1) and (5.2.1) in
[49] for other spaceforms). Thus, by the end of the proof of Lemma 2.7, we see that

b11 − b22 =
4|xu|2(k1 − k2)

1 + κ|x|2

is constant, and so, defining h as in (2.38), this h is also constant. We may assume
Q is as in (2.3), and then take

(2.40) Z = 1
2
hH0X0 + h

 nt
0

x · n0

x · n0

 .

We then set the candidate for the conserved quantity to be P = Q + λZ. A com-
putation gives ΓP = 0, by Equation (2.7), and the definitions of k1 and k2, and the
properties

⟨X0, Z⟩ = ⟨dX0, Z⟩ = ⟨X0, dZ⟩ = 0

and

⟨X0, Q⟩ = −(1 + κ|x|2) ,
so P is a linear conserved quantity. �
In Theorem 2.54, when x is of constant mean curvature in the spaceform for a

given Q and not totally umbilic, then Z is unique. In fact, in the proof above we saw
that Z has the unique form (2.40), where h is the constant as in (2.38). Furthermore,
because 1 + κ|x|2 is never zero, h cannot be zero, so the norm of Z satisfies

(2.41) ||Z|| = 1
2
|h| > 0 .

Also, by Lemma 2.7, the mean curvature satisfies

(2.42) Hκ = −2h−1⟨Z,Q⟩ = −sgn(h)
1

||Z||
⟨Z,Q⟩ .

Any constant scaling of the linear conserved quantity is still a linear conserved quan-
tity, and will change the mean curvature by a constant multiple.
Next, noting that z5 − z4 = hH0, Lemma 2.23 tells us that Z determines a sphere,

as in (2.19), in M0 with mean curvature

±|z5 − z4|
2||Z||

= ±|h||H0|
2 · 1

2
|h|

= ±|H0| ,

so this sphere has the same mean curvature as the mean curvature at the correspond-
ing point of the surface. For this, it is not necessary that H0 be constant.
By Lemma 2.50, the spheres determined by Z contain the corresponding points X

in the surface and are tangent to the surface, so Lemma 2.7 implies that Z determines
a sphere congruence for which each sphere has mean curvature equalling that of the
corresponding point on the surface, regardless of the choice of spaceform (i.e. the
choice of value κ). Thus Z is the mean curvature sphere congruence. (One must
check that Z and X have common orientation as well, which is left to the reader.)

Lemma 2.55. The mean curvature sphere congruence Z can be characterized as the
conformal Gauss map of the surface X, i.e. the unique sphere congruence with the
same induced conformal structure as X.
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Figure 2.11. Left: a mean curvature sphere. Right: the situation
described in Lemma 2.56, where the two principal curvature spheres
are related by inversion through the sphere Z

Proof. That Z is the conformal Gauss map can be seen from the following computa-
tion (we do not show uniqueness here):

⟨dZ, dZ⟩ = h2(H2
0dx · dx+ 2H0(dx · dn0) + dn0 · dn0) = h2|H0dx+ dn0|2 =

1
4
h2(k1 − k2)

2 + | − xudu+ xvdv|2 = 1
4
h2|xu|2(k1 − k2)

2(du2 + dv2) .

�

Lemma 2.56. The mean curvature sphere congruence Z can also be characterized as
the central sphere congruence, i.e. the sphere congruence whose spheres exchange the
principal curvature spheres via inversion.

Proof. Let X = X(u, v) be the lift of the surface in Mκ. Take

Λ = Λ(u, v) =

ℓtℓ4
ℓ5

 ∈ R4,1

such that ||Λ|| = 1 (i.e. Λ lies in the de Sitter space S3,1) and

⟨Λ, Q⟩ = ⟨Λ, X⟩ = ⟨Λ, dX⟩ = 0 ,

with Q as in (2.3). This makes Λ the tangent geodesic plane to the surface. These
conditions are equivalent to

• |ℓ|2 + ℓ24 − ℓ25 = 1,
• (ℓ4 + ℓ5)κ+ ℓ5 − ℓ4 = 0,
• −2x · ℓ+ ℓ5 + ℓ4 + |x|2(ℓ5 − ℓ4) = 0,
• −ℓ · dx+ (x · dx)(ℓ5 − ℓ4) = 0.

Define St, z, z4 and z5 by

St = Λ+ tX = Λ +
t

1 + κ|x|2
X0 =

ztz4
z5

 .

Then St also lies in S3,1 and is perpendicular to both X and dX. By Remark 2.21,
the St represent all of the tangent spheres to X. Then, by Lemma 2.23, the mean
curvature of the sphere St with respect to the spaceform Mκ is

z5 − z4
2

− κ

2(z5 − z4)
+ κ

|z|2

2(z5 − z4)
= t .
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Figure 2.12. The situation described in Lemma 2.57, where the di-
rections of second order contact between Z and X are marked

Then, if kj are the principal curvatures of X, Sk1 and Sk2 are the principal curvature
spheres. So by Lemma 2.22, when Z is the central sphere congruence, we have

(2.43) −Sk2 = Sk1 − 2⟨Sk1 , Z⟩ · Z .

Note that, as we wish to have an inversion that preserves orientation rather than
reversing it, we changed Sk2 to −Sk2 here. This does not change the sphere itself, as
Sk2 is defined only projectively anyways. Now the image of Sk1 under inversion and
Sk2 itself will have the same orientation.
We have that Z = St for some t, and so we can now compute from (2.43) that

t =
1

2
(k1 + k2) ,

i.e. t is the mean curvature. Thus the central sphere congruence is the same as the
mean curvature sphere congruence. �
Lemma 2.57. The mean curvature sphere congruence Z can be characterized as
the sphere congruence that has second order contact with the surface in orthogonal
directions.

Proof. Principal curvature spheres, second order contact and orthogonality are exam-
ples of notions that are invariant under Möbius transformations. Because only Möbius
invariant notions appear in this proof, without loss of generality we may assume that
the surface X(u, v) lies in M0 = R3.
Let Z be the mean curvature sphere at a point X(u0, v0) of the surface. Then

X(u0, v0) is one point of the sphere Z. Let p be a different point in Z and let S be
a sphere with center p that intersects Z transversally. We apply inversion fS of R3

through the sphere S, so that the point p is mapped to infinity and the sphere Z is
thus mapped to a flat plane fS(Z). The image fS(X(u, v)) of X(u, v) under inversion
will satisfy H = 0 at the point fS(X(u0, v0)). Thus the asymptotic directions of
fS(X(u, v)) at that point are perpendicular to each other, and are also the directions
of second order contact with fS(Z). Because we have been working only with Möbius
invariant notions, the lemma follows. �

2.13. Calapso transformations. In the following definition, the surface x has lift
X in some spaceform M , but since we are dealing with a Möbius geometric notion,
the choice of spaceform will not matter.
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Definition 2.58. Let x = x(u, v), with lift X = X(u, v) ∈M , be an immersed surface
with isothermic coordinates u, v. A Calapso transformation T ∈ O4,1 is a solution of

(2.44) T−1dT = λτ .

Then
L4 ∋ X → TX ∈ L4

is a Calapso transform, also called a T -transform or conformal deformation.

Remark 2.59. If the initial condition for the solution T lies in O4,1, then T will lie in
O4,1 for all u and v.

Remark 2.60. Because of (2.44), λτ can be thought of as the logarithmic derivative
of the Calapso transformation.

The Calapso transformation is classical, and was studied by Calapso, Bianchi and
Cartan. It preserves the conformal structure and thus is naturally of interest in
Möbius geometry. In the case that the initial surface is CMC, it is the same as the
Lawson correspondence (see Section 2.20).

The following result has already been noted in Remark 2.47:

Lemma 2.61. If x is isothermic, then Calapso transformations exist.

Proof. The compatibility condition for the system

(2.45) T−1Tu = λU , U = −1
2|xu|2X0 ∧X0,u ,

(2.46) T−1Tv = λV , V = 1
2|xv |2X0 ∧X0,v

to have a solution T is
λ(UV − V U) + Vu − Uv = 0

for all λ ∈ R, which means

(X0 ∧X0,v)(X0 ∧X0,u) = (X0 ∧X0,u)(X0 ∧X0,v)

and
(|xu|2)v(X0 ∧X0,u)− |xu|2X0 ∧X0,uv =

−(|xv|2)u(X0 ∧X0,v) + |xv|2X0 ∧X0,vu .

The first of these two relations is easily checked, and the second follows from the facts
that

(2.47) |xu|2 = |xv|2 , xu · xv = 0 , xuv = Axu +Bxv

for some functions A,B, and then, for the same A,B, that

(2.48) X0,uv = AX0,u +BX0,v .

�
In Möbius geometry (that is, in the space R4,1), isothermic surfaces are deformable

(Calapso transformations with deformation parameter λ), and this deformation pre-
serves second order invariants in Möbius geometry, such as the conformal class (as
the next lemma shows). Note that for surfaces in Euclidean geometry, a nontrivial
deformation will never preserve the second order invariants of Euclidean differential
geometry, i.e. the first and second fundamental forms.
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Lemma 2.62. If x(u, v) and associated lift X(u, v) have isothermic coordinates (u, v),
then (u, v) will also be isothermic coordinates for any Calapso transform TX.

For the map TX in this lemma taking values in the lightcone, we have not yet
formally defined the notion of ”isothermic coordinates”. However, a working defini-
tion implicitly appears in the proof below, and a proper justification of that working
definition will be given in Section 4.2 (see also Corollary 4.31).

Proof. Without loss of generality, we may assume M is of the form Mκ in (2.2) and
(2.3). The lift X takes the form

X = sx

 2xt

|x|2 − 1
|x|2 + 1


for some scalar sx, and the normal n lifts to

Tn = sn

 nt

n · x
n · x


for some scalar sn. Then

⟨Xu, Xu⟩ = ⟨Xv, Xv⟩ = 4s2x(xu · xu) , ⟨Xu, Xv⟩ = 0 ,

⟨Tn, Xu⟩ = ⟨Tn, Xv⟩ = ⟨Tn, X⟩ = 0 .

From (2.45) and (2.46) and the fact that T ∈ O4,1, we can see that

(TX)u = TXu and (TX)v = TXv ,

and then it follows that X and TX have the same metric. We also have that TTn is
perpendicular to (TX)u and (TX)v, so TTn is a normal of the Calapso transformation.
Finally, as (u, v) are isothermic coordinates for x and so ⟨Xuv, Tn⟩ = 0, we can
compute that ⟨(TX)uv, TTn⟩ = 0, completing the proof. �

Lemma 2.63. If X is a Moutard lift of x(u, v), then TX is a Moutard lift as well.

Proof. As in the proof of Lemma 2.62, we have (TX)uv = TXuv, and so Xuv||X
implies (TX)uv = TXuv||TX. �

Let us write T = T λ, since the solution T λ in dT λ = T λ · λτ depends on λ. Then,
the Calapso transformation Xλ := T λX has an associated

(2.49) τλ =
−2

⟨Xλ
u , X

λ
u ⟩
Xλ ∧Xλ

udu+
2

⟨Xλ
v , X

λ
v ⟩
Xλ ∧Xλ

v dv

as well, and we can in turn determine the Calapso transformations of T λX by solving

d(T λ,µ) = T λ,µ · µτλ

for T λ,µ. The next lemma is about this T λ,µ.

Lemma 2.64. With suitable choice of initial conditions for the solutions T λ,µ and
T λ, we have

T µ+λ = T λ,µT λ .
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Figure 2.13. A Darboux transform: when the curve c in the surface
x is a curvature line, then the corresponding curve ĉ in the surface x̂ is
also a curvature line

Proof. Let us take the initial conditions to be (here “I” denotes the identity matrix)

T λ,µ = T λ = I

for all λ, µ ∈ R. We need to show that d(T λ,µT λ) equals T λ,µT λ · (µ + λ)τ . For this
we can first verify that τλT λ = T λτ . Then we can compute that

d(T λ,µT λ) = d(T λ,µ)T λ + T λ,µdT λ = T λ,µ(µτλT λ + T λλτ) =

T λ,µ(µT λτ + T λλτ) = T λ,µT λ(µ+ λ)τ .

�

2.14. Darboux transformations. Geometrically, a Darboux transformation of an
isothermic surface is one such that

• there exists a sphere congruence enveloped by the original surface and the
transform,

• the correspondence, given by the sphere congruence, from the original surface
to the other enveloping surface (i.e. the transform), preserves curvature lines,

• this correspondence preserves conformality.

However, we define Darboux transformations differently:

Definition 2.65. Let T be a Calapso transformation of X. Then X̂ in the projec-
tivized light cone PL4 is a Darboux transformation of X if TX̂ is constant in PL4

for some choice of λ.

The equation that TX̂ is constant is called Darboux’s linear system.
Take a spaceform Mκ as in (2.2) and (2.3). Let x̂ be the surface in R3 = M0 that

X̂ is a lift of. Then

TX̂ = T

α̂
 2x̂t

|x̂|2 − 1
|x̂|2 + 1
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being constant in PL4 means that

(2.50) d

rT
 2x̂t

|x̂|2 − 1
|x̂|2 + 1

 = 0

for some nonzero function r ∈ R. A computation then shows the following lemma.
An equation of the form y′ = f(y), where f(y) is a quadratic polynomial, is called
a Riccati equation, so Equation (2.51) below is a Riccati-type partial differential
equation (where y becomes x̂).

Lemma 2.66. Equation (2.50) is equivalent to the Riccati-type equation

(2.51) dx̂ = λ|x̂− x|2dx∗ − 2λ(x̂− x)((x̂− x) · dx∗) .

Remark 2.67. From Equation (2.51) we have

|x̂u|2 = |x̂v|2 = λ2|xu|−2|x̂− x|4 , x̂u · x̂v = 0 ,

so x̂ is conformally parametrized by u and v. Also, we can check that

n̂ || (−|x̂− x|2n+ 2((x̂− x) · n)(x̂− x))

and then that
x̂uv · n̂ = 0 ,

and therefore the parametrization of x̂ by u and v is isothermic.

Lemma 2.68. If X̂ is a Darboux transform of X, then X is also a Darboux transform
of X̂, and both are Darboux transforms with respect to the same choice of λ.

Proof. Equation (2.51) implies

|xu|2|x̂u|2 = λ2|x̂− x|4 .
and

xu · (x̂− x) =
λ|x̂− x|2

|x̂u|2
(x̂u · (x̂− x)) ,

xv · (x̂− x) = −λ|x̂− x|2

|x̂u|2
(x̂v · (x̂− x)) .

Using these equations, we can rewrite Equation (2.51) as

x̂u = − |x̂u|2xu
λ|x̂− x|2

+ 2(x̂− x)|x̂− x|−2(x̂u · (x̂− x)) ,

x̂v =
|x̂u|2xv
λ|x̂− x|2

+ 2(x̂− x)|x̂− x|−2(x̂v · (x̂− x)) .

Isolating the xu and xv terms, we find that

(2.52) xu = λ|x− x̂|2x̂∗u − 2λ(x− x̂)(x̂∗u · (x− x̂)) ,

(2.53) xv = λ|x− x̂|2x̂∗v − 2λ(x− x̂)(x̂∗v · (x− x̂)) ,

and these are the same as Equation (2.51), but with the x and x̂ switched, proving
the lemma. �
To prove that Darboux transformations as we have defined them have all the re-

quired geometric properties mentioned at the beginning of this section, it remains
only to find a common sphere congruence S(u, v) to x and x̂, i.e. S(u, v) such that
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(1) S(u, v) ⊥ X(u, v),
(2) S(u, v) ⊥ dX(u, v),

(3) S(u, v) ⊥ X̂(u, v), and

(4) S(u, v) ⊥ dX̂(u, v).

Taking

S(u, v) =

 2x̂t

|x̂|2 − 1
|x̂|2 + 1

+
(x− x̂) · (x− x̂)

(x− x̂) · n̂

 n̂t

x̂ · n̂
x̂ · n̂

 ,

direct computations show that items (1), (3) and (4) above hold. Then showing that
item (2) holds amounts to showing

2((x− x̂) · n̂)((x̂− x) · dx) + ((x− x̂) · (x− x̂))(n̂ · dx) = 0,

and this follows from Equations (2.52), (2.53).

Remark 2.69. When the surface x has a linear conserved quantity Q+ λZ, one pos-
sibility for a Darboux transform is to take X̂ = Q+ λ0Z with λ = λ0 chosen so that
||X̂||2 = 0. Note that ||Q+ λ0Z||2 is constant with respect to u and v, since

d(⟨Q,Z⟩) = ⟨Q, dZ⟩ = ⟨Q,−τQ⟩ = 0 .

This is a special case of a Darboux transform, and even of a Bäcklund transform,
called a ”complementary surface”, and we will come back to this in Section 2.16,
after defining polynomial conserved quantities.

Remark 2.70. We define Bäcklund transforms only after defining polynomial con-
served quantities, in Section 2.16. But for now, we just mention that Bäcklund
transforms (more generally than just complementary surfaces) can be obtained by
this recipe:

• take a surface x with a linear conserved quantity P = Q+ λZ,
• pick a value λ = µ,
• pick an initial condition x̂p, at some point p in the domain of x, such that

X̂0,p =

 2x̂tp
|x̂p|2 − 1
|x̂p|2 + 1

 ⊥ P (µ)p ,

• solve the Riccati equation (2.51) for x̂.

Actually, we can choose either µ or x̂p first, and then choose the other. Also, one

can check that X̂ will remain perpendicular to P (µ) at all points in the domain of x.
This gives a 3-parameter family of Bäcklund transformations, generally not preserving
topology of the surface x when x is not simply connected.

Also, note that we need to choose µ so that P (µ) is not timelike, for otherwise no

possible choice of X̂0,p would exist. In the case that P (µ) is lightlike, the solution X̂
becomes P (µ) itself, and the Bäcklund transform will be a complementary surface as
described in Remark 2.69 and Section 2.16.

We now give a characterization of CMC surfaces in terms of Christoffel and Darboux
transformations:
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Theorem 2.71. A smooth surface x in R3 has constant mean curvature if and only if
some scaling and translation of the Christoffel transform x∗ equals a Darboux trans-
form x̂ (for some value of λ).

Proof. Assume x is a CMC surface in R3. Then x∗ = x+H−1
0 n0 is the parallel CMC

surface, by Remark 2.32. To show x∗ is a Darboux transformation, we can compute
that Equation (2.51) holds, for λ = H2

0/|n0|2 ∈ R.
Now we show the converse direction, proven in [63]. Assume x̂ is a Darboux trans-

form of x, and that x̂ = a ·x∗+ b⃗ for some constants a ∈ R\{0} and b⃗ ∈ R3. So there
exists λ such that (2.51) holds, that is,

(λ|ax∗ + b⃗− x|2 − a)dx∗ = 2λ((ax∗ + b⃗− x) · dx∗)(ax∗ + b⃗− x) .

It follows that

(ax∗ + b⃗− x) · x∗u = (ax∗ + b⃗− x) · x∗v = 0 .

Since

|ax∗ + b⃗− x|2 = aλ−1

is constant,

ax∗ + b⃗− x = r · n0

for some constant r ∈ R. So

dx∗ = a−1dx+ ra−1dn0 .

Definition 2.26 implies x has CMC H0 = r−1. �

Corollary 2.72. Let x be a CMC surface in R3. Suppose x̂ is both a Christoffel and
Darboux transform of x, as in Theorem 2.71. Then, |x̂ − x|2 is constant, and x̂ − x
is perpendicular to dx, so x̂ is a parallel surface to x.

2.15. Other transformations. Here we make some brief remarks about two other
transformations. The interested reader can find other sources for more complete
information about them.
Ribaucour transformations: If we disregard some degenerate cases, Ribaucour

transforms (like Darboux transforms) preserve curvature lines, but (unlike Darboux
transforms) they do not necessarily preserve the conformal structure. A simple ex-
ample of a Ribaucour transform of a surface in R3 is its reflection across a plane,
which is not a Darboux transform. So Ribaucour transformations are more general
than Darboux transforms.
Goursat transformations: In the case of a CMC H ̸= 0 surface, a Goursat trans-

formation is the composition of three transformations, first a Christoffel transforma-
tion, second a Möbius transformation, and third another Christoffel transformation.
In the case of a minimal surface, a Goursat transformation is as follows: lift the

minimal surface to a null curve in C3, apply a complex orthogonal transformation
to that null curve, and then project back to R3. It is a Möbius transformation for
the Gauss map. One example of this is a catenoid being transformed into a minimal
surface that is defined only on the universal cover of the annular domain, and a picture
of this can be found in Section 5.3 of [60].
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2.16. Polynomial conserved quantities. Definition 2.48 and Equation (2.37) can
be extended to define smooth surfaces with polynomial conserved quantities of order
n simply by replacing P = Q+ λZ with

P = Q+ λP1 + λ2P2 + ...+ λn−1Pn−1 + λnZ

in that definition, where Q, Z and the Pj (we define P0 = Q and Pn = Z) are maps
from the domain for x = x(u, v) to R4,1. When x has a conserved quantity of order
n with ⟨Z,Z⟩ > 0, we say that x is special of type n.

We now state a result about polynomial conserved quantities of Darboux transforms
of special surfaces of type n:

Lemma 2.73. If the initial isothermic surface x = x(u, v) has a polynomial conserved
quantity P of order n, then any Darboux transform x̂ = x̂(u, v) has a polynomial

conserved quantity P̂ of order at most n+ 1.

Proof. Let X0 be the lift as in Lemma 2.2 with κ = 0 of the initial surface x with
Calapso transformation T = T λ and polynomial conserved quantity P = P (λ) of

order n. Then T λP is constant with respect to u and v. Let X̂0 be the lift as in
Lemma 2.2 with κ = 0 of the Darboux transform x̂ of x, i.e. T λX̂0 is constant in
PL4 for some particular choice of λ, and let us refer to that choice of λ as λ = µ, i.e.
T µX̂0 is constant with respect to u and v. From now on we take µ to be that fixed
value, and λ will denote a free real parameter.

Let A be the matrix in O4,1 representing the map

R4,1 ∋ Y → Y + (⟨X0, X̂0⟩)−1

{
−λ
µ

⟨Y, X̂0⟩X0 +
λ

µ− λ
⟨Y,X0⟩X̂0

}
∈ R4,1 .

Then the map that A−1 represents will be

R4,1 ∋ Y → Y + (⟨X0, X̂0⟩)−1

{
−λ
µ

⟨Y,X0⟩X̂0 +
λ

µ− λ
⟨Y, X̂0⟩X0

}
∈ R4,1 .

We note, as an aside, that by Equation (2.51) we have

x̂u = −µ|x̂− x|2 xu
|xu|2

+ 2µ(x̂− x)

(
(x̂− x) · xu

|xu|2

)
,

x̂v = µ|x̂− x|2 xv
|xv|2

− 2µ(x̂− x)

(
(x̂− x) · xv

|xv|2

)
.

We now wish to show

(2.54) λτ̂(∂u) = A−1λτ(∂u)A+ A−1dA(∂u) ,

(2.55) λτ̂(∂v) = A−1λτ(∂v)A+ A−1dA(∂v) .

For this purpose, we will take convenient scalar multiples of X0 and X̂0. Because
T µX̂0 is constant in PL

4, we have that T µX̂0 = r̂Ŷ , where Ŷ is a constant vector and
r̂ = r̂(u, v) is a real scalar factor. Then

T µ(r̂−1X̂0) = Ŷ .

Because
0 = d(T µ(r̂−1X̂0)) = (dT µ)(r̂−1X̂0) + T µd(r̂−1X̂0) =

T µ(µτ(r̂−1X̂0) + d(r̂−1X̂0)) ,
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we have
(d+ µτ)(r̂−1X̂0) = 0 .

Similarly, there exists a real scalar factor r = r(u, v) so that T̂ µ(r−1X0) = Y is a
constant vector, and

(d+ µτ̂)(r−1X0) = 0 .

We use the above two equations repeatedly in the following computations. Also,

d⟨r−1X0, r̂
−1X̂0⟩ = ⟨d(r−1X0), r̂

−1X̂0⟩+ ⟨r−1X0, d(r̂
−1X̂0)⟩ =

µ(⟨r−1X0, τ̂(r̂
−1X̂0)⟩⟨τ(r−1X0), r̂

−1X̂0⟩) = 0 ,

because τX0 = τ̂ X̂o = 0. Thus, without loss of generality,

⟨X, X̂⟩ = 1 ,

where we define
X := r−1X0 , X̂ := r̂−1X̂0 .

Using these special normalizations X and X̂, we can now make a cleaner computation
showing Equations (2.54) and (2.55), as follows: First we note that we can rewrite
the maps that A and A−1 represent as

Y → Y +
−λ
µ

⟨Y, X̂⟩X +
λ

µ− λ
⟨Y,X⟩X̂ ,

Y → Y +
−λ
µ

⟨Y,X⟩X̂ +
λ

µ− λ
⟨Y, X̂⟩X .

Defining

A(u) := −λτ̂(∂u) + A−1λτ(∂u)A+ A−1dA(∂u) ,

A(v) := −λτ̂(∂v) + A−1λτ(∂v)A+ A−1dA(∂v) .

It suffices to check that A(∗)Z = 0, for Z = X, X̂ and for

Z = Z(u, v) ∈ (span{X, X̂})⊥ .
An useful fact will be

A−1Xu = Xu +
λ

µ−λ
⟨Xu, X̂⟩X = Xu +

λ
µ−λ

⟨−µτ̂(∂u)X, X̂⟩X = Xu ,

and similarly

A−1Xv = Xv , A−1X̂u = X̂u , A−1X̂v = X̂v .

If Z = X, then

A(u)Z = (A−1Au − λτ̂(∂u))X = A−1AuX + λ
µ
Xu =

A−1((1− λ
µ
)X)u + (λ

µ
− 1)Xu = 0 .

Now suppose Z ∈ (span{X, X̂})⊥. Then

A−1Zu − Zu = −λ
µ
⟨Zu, X⟩X̂ + λ

µ−λ
⟨Zu, X⟩X =

λ
µ
⟨Z,Xu⟩X̂ − λ

µ−λ
⟨Z,Xu⟩X =

λ
µ
⟨Z,−µτ̂(∂u)X⟩X̂ − λ

µ−λ
⟨Z,−µτ(∂u)X̂⟩X =

−λ⟨Z, −2

⟨X̂u,X̂u⟩
X̂u⟩X̂ + µλ

µ−λ
⟨Z, −2

⟨Xu,Xu⟩Xu⟩X =
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2λ

⟨X̂u, X̂u⟩
⟨Z, X̂u⟩X̂ − 2µλ

(µ− λ)⟨Xu, Xu⟩
⟨Z,Xu⟩X ,

and so
A(u)Z = A−1λτ(∂u)Z + A−1AuZ − λτ̂(∂u)Z =

2λ

⟨Xu, Xu⟩
⟨Xu, Z⟩A−1X + A−1(AZ)u − Zu −

2λ

⟨X̂u, X̂u⟩
⟨X̂u, Z⟩X̂ = 0 ,

by substituting in the relation for A−1Yu − Yu just above. These and other similar
computations show Equations (2.54), (2.55).

Using Equations (2.54) and (2.55), we see that

d(T λA) = T λA · λτ̂ ,
and so

T̂ λ = T λA

solves
(T̂ λ)−1dT̂ λ = λτ̂ .

Then we define
P̂ = µ(µ− λ)A−1P .

T̂ λP̂ is constant, since

d(T̂ λP̂ ) = µ(µ− λ)d(T λA · A−1P ) = µ(µ− λ)d(T λP ) = 0 .

Thus P̂ is a polynomial conserved quantity for x̂ of degree at most n + 2. To show
that the degree is actually at most n+1, it suffices to show that the leading coefficient

P̂n+2 = ⟨X0, X̂0⟩−1⟨Pn, X0⟩X̂0

is zero. But, like in item (3) of Remark 2.49, we have

τPn = τZ = 0 ,

so ⟨Pn, X0⟩ = 0 (see Lemma 2.50), and P̂ has order at most n+ 1. �
Remark 2.74. Although A and A−1 in the above proof have poles at λ = µ, note that
P̂ itself does not.

The Darboux transform in Lemma 2.73 is a Bäcklund transform exactly when it
is of type at most n. See Remarks 2.69 and 2.70. We can take this as a definition of
Bäcklund transformations. One can think of Bäcklund transformations are Darboux
transformations that preserve special properties. For example, they will preserve the
property of being CMC.

For an isothermic surface with a polynomial conserved quantity of order n, we
define a complementary surface, like in Remark 2.69, as follows: take a value µ so
that

||P (µ)||2 = ||Q+ µP1 + µ2P2 + ...+ µn−1Pn−1 + µnZ||2 = 0

and define the complementary surface to be P (µ). (Clearly, choices of µ for which
P (µ) is not lightlike are not allowed.) This will be a Bäcklund transformation, i.e. of
type at most n.

Complementary surfaces can be of type n. But if a Bäcklund transform is of type
n−1 (Darboux transforms must be of type at least n−1, by Lemmas 2.68 and 2.73),
then it must be a complementary surface, by Lemma 4.10 of [25]. Examples of type
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n−1 Bäcklund transforms can come from CMC 1 surfaces in H3 and minimal surfaces
in R3. In fact, we have the following lemma:

Lemma 2.75. In the case n = 1 (i.e. CMC surfaces), CMC ±
√
−κ surfaces in Mκ

are the only cases where a type n−1 = 0 Bäcklund transform can exist. In particular,
if such a Bäcklund transform exists, then κ ≤ 0.

Proof. When the linear conserved quantity is normalized so that ||Z||2 = 1, we have
(see (2.41), (2.42) and Lemma 2.5)

||λZ +Q||2 = λ2 − 2Hλ− κ ,

and the discriminant is

2
√
H2 + κ .

When a type 0 Bäcklund transform exists, we have a higher order zero of λ2−2Hλ−κ
(by Lemma 4.10 in [25]), so

H2 + κ = 0 ,

i.e. H2 = −κ. (See [25] for further details.) �

2.17. Bianchi permutability. In this section, we will see how two Darboux trans-
formations of a surface can themselves have a common Darboux transformation. Con-
sider an isothermic surface, in a spaceform M3,

X(u, v) ⊂M3 ⊂ L4 ⊂ R4,1

with isothermic coordinates u, v, and with associated 1-parameter family of flat con-
nections

Γλ = d+ λτ ,

where τ is as defined in Equation (2.32).

Lemma 2.76. X̂(u, v) is a Darboux transform of X(u, v) with Darboux parameter

λ = µ if and only if ΓµX̂||X̂.

Proof. X̂ is a Darboux transform with Darboux parameter µ if and only if T µX̂ =
r(u, v)Y0 for some constant vector Y0 and some scalar function r(u, v). This condition
can be restated in derivate form as

(dT µ)X̂ + T µdX̂ = dr · Y0 ,
which is equivalent to

ΓµX̂ = dr
r
r(T µ)−1Y0 =

dr
r
X̂ .

This proves the lemma. �
Definition 2.77. We define the orthogonal transformation Γw

v (s) of R4,1, for v, w ∈
L4, by

Γw
v (s)Y = sY if Y ||w ,

Γw
v (s)Y = s−1Y if Y ||v ,

Γw
v (s)Y = Y if Y ⊥ span{v, w} ,

for each s ∈ R.

The explicit form for Γw
v (s) as in the next lemma can be easily verified:
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Lemma 2.78. Γw
v (s)Y , for Y ∈ R4,1, can be written as

Γw
v (s)Y = Y + ⟨v, w⟩−1{(s− 1)⟨Y, v⟩w + (s−1 − 1)⟨Y,w⟩v} .

The next lemma, however, requires a bit more work to prove:

Lemma 2.79. Taking lifts X, X̂ such that ⟨X, X̂⟩ = 1, ΓµX̂ = Γ̂µX = 0, for

Γλ = d+ λτ and Γ̂λ = d+ λτ̂ , as we did in the proof of Lemma 2.73, we have

(1) ΓX̂
X(s) = exp((log(s))X ∧ X̂),

(2) for all λ ̸= µ,

ΓX̂
X(1− λ

µ
) ◦ Γλ = Γ̂λ ,

where the symbol ◦ denotes the composition of maps

ΓX̂
X(1− λ

µ
) ◦ Γλ := (ΓX̂

X(1− λ
µ
))(Γλ)(ΓX̂

X(1− λ
µ
))−1 .

(The second of the two equations above is actually independent of the choices of lifts

X and X̂.)

Proof. The proof of the first item is straightforward. A proof of the second item can
be accomplished in the following three steps:

(1) Insert X into both the left and right hand sides of the equation, and show

(1− λ
µ
)ΓX̂

X(1− λ
µ
)(−µτ̂X) = (λ− µ)τ̂X .

The conditions on the choices of lifts X and X̂ imply that Xu, Xv, X̂u, X̂v

are all perpendicular to span{X, X̂}. We need to show, for the coefficient of

the du part for example, that −µ(1 − λ
µ
)X̂u = (λ − µ)X̂u, which of course is

true.
(2) Insert X̂ into both the left and right hand sides of the equation, and argue

similarly to the previous case.
(3) Insert Y ⊥ span{X, X̂}, and show, for example,

ΓX̂
X(1− λ

µ
)Yu +

2λ
|Xu|2 ⟨Xu, Y ⟩ µ

µ−λ
X = Yu +

2λ

|X̂u|2
⟨X̂u, Y ⟩X̂ .

Writing

Yu = −⟨X̂u, Y ⟩X − ⟨Xu, Y ⟩X̂ + Z (Z ⊥ span{X, X̂}) ,
we need to show statements like

⟨X̂u, Y ⟩⟨Xu, Xu⟩ = 2µ⟨Xu, Y ⟩ ,

which follows from X̂u = 2µ
|Xu|2Xu.

The proof is then completed by noting that for any scalar functions f1(u, v) and
f2(u, v),

(ΓX̂
X(1− λ

µ
) ◦ Γλ)(f1X + f2X̂ + Y ) = f1(Γ

X̂
X(1− λ

µ
) ◦ Γλ)X+

f2(Γ
X̂
X(1− λ

µ
) ◦ Γλ)X̂ + (ΓX̂

X(1− λ
µ
) ◦ Γλ)Y + df1X + df2X̂ =

f1Γ̂
λX + f2Γ̂

λX̂ + Γ̂λY + df1X + df2X̂ = Γ̂λ(f1X + f2X̂ + Y ) .

�
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Figure 2.14. Bianchi permutatibility

Now suppose that X̂1 and X̂2 are both Darboux transforms of X, with Darboux
parameters µ1 and µ2 respectively,

µ1 ̸= µ2 ,

and with associated 1-parameter families of flat connections Γ̂λ
1 and Γ̂λ

2 respectively.

Bianchi permutability is the existence of another surface X̆ that is both a Darboux
transform of X̂1 with Darboux parameter µ2 and a Darboux transform of X̂2 with
Darboux parameter µ1. We define X̆ as

X̆ = ΓX̂2

X̂1
(t)X ⊂ L4 ∩ span{X, X̂1, X̂2} .

Noting that dim(span{X, X̂1, X̂2, X̆}) ≤ 3, it follows that X, X̂1, X̂2, X̆ will all lie on
one circle, once they are projected down to some spaceform M3. In particular, their
cross ratio will be real, and Lemma 2.11 implies

cr(X, X̂2, X̆, X̂1) =
⟨X, X̂2⟩⟨X̂1, X̆⟩ − ⟨X, X̆⟩⟨X̂1, X̂2⟩+ ⟨X, X̂1⟩⟨X̂2, X̆⟩

2⟨X, X̂1⟩⟨X̂2, X̆⟩
.

Then, using the facts that

⟨X̂1, X̆⟩ = t⟨X, X̂1⟩ ,
⟨X̂2, X̆⟩ = t−1⟨X, X̂2⟩ ,

⟨X, X̆⟩ = (t+ t−1 − 2)
⟨X, X̂1⟩⟨X, X̂2⟩

⟨X̂1, X̂2⟩
,

we can prove the following lemma, which was actually the motivation for the choice
of definition of X̆ above.

Lemma 2.80. The cross ratio of X, X̂2, X̆, X̂1 is

crX,X̂2,X̆,X̂1
= t .

The next theorem shows that, when t is chosen correctly, X̆ is a Darboux transform
of both X̂1 and X̂2, with Darboux parameters µ2 and µ1 respectively.

Theorem 2.81. Taking t = µ1µ
−1
2 , we have Γ̂µ2

1 X̆||X̆, Γ̂µ1

2 X̆||X̆.
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Figure 2.15. Physical models of the helicoid in R3, a minimal surface
(owned by the geometry group at the Technical University of Vienna)

Proof. Let us prove the first of the two claims Γ̂µ2

1 X̆||X̆ here. The second claim is
proven similarly. The first of the two claims is equivalent to

ΓX̂1
X (1− µ2µ

−1
1 )Γµ2ΓX

X̂1
(1− µ2µ

−1
1 )ΓX̂2

X̂1
(µ1µ

−1
2 )X||ΓX̂2

X̂1
(µ1µ

−1
2 )X ,

i.e.

Γµ2ΓX
X̂1
(1− µ2µ

−1
1 )ΓX̂2

X̂1
(µ1µ

−1
2 )X||ΓX

X̂1
(1− µ2µ

−1
1 )ΓX̂2

X̂1
(µ1µ

−1
2 )X .

Since X̂2 is a Darboux transform of X with Darboux parameter µ2, it will suffice to
show that

ΓX
X̂1
(1− µ2µ

−1
1 )ΓX̂2

X̂1
(µ1µ

−1
2 )X

is parallel to X̂2, and it can be shown by straightforward computation that

ΓX
X̂1
(1− µ2µ

−1
1 )ΓX̂2

X̂1
(µ1µ

−1
2 )X =

µ1 − µ2

µ2

· ⟨X, X̂1⟩
⟨X̂1, X̂2⟩

X̂2 .

�

In the next sections 2.18, 2.19, 2.21, 2.22, we consider particular surfaces in ways
only loosely connected with previous sections, but in later chapters we wish to consider
their relations with Lie sphere geometry, and also consider their discretizations in a
separate text, so we include these sections here. Section 2.20 is about the connection
between the surfaces in Section 2.18 and those in Section 2.19, and makes use of
conserved quantities in Möbius geometry, as described in previous sections.

2.18. Minimal surfaces in R3. We can always take a CMC surface to have local
isothermic coordinate z = u + iv, u, v ∈ R, i =

√
−1 (away from umbilic points),

and then the Hopf differential becomes Q̂dz2 for some real constant Q̂. Rescaling
the coordinate z by a constant real factor, we may assume Q̂ = 1. So now assume
we have an isothermic minimal surface in R3 with Hopf differential function Q̂ = 1.
Then

Q̂dz2

dg
=
dz

g′
,
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where g is the stereographic projection of the Gauss map to the complex plane, and
g′ = dg/dz. The map g taking z in the domain of the immersion (of the surface) to
C is holomorphic. Because we are avoiding umbilics, we have g′ ̸= 0. When we are
only concerned with local behavior of the surface, we can ignore the possibility that
g has poles or other singularities. Then the Weierstrass representation is

x = Re

∫ z

z0

(2g, 1− g2, i+ ig2)
dz

g′
.

The explanation of the Weierstrass representation for minimal surfaces here is ex-
tremely brief. More complete explanations of this representation can be found in
many places, including [49], and many of the more standard references can be found
in the bibliographies of [49] and [103].

2.19. CMC 1 surfaces in H3. We can now similarly describe CMC 1 surfaces in H3.
Construction of CMC 1 surfaces with isothermic coordinates starts with the Bryant
equation (g is an arbitrary holomorphic function such that g′ ̸= 0)

dF = F

(
g −g2
1 −g

)
dz

g′

with solution F ∈ SL2C, and the surface is then

F · F̄ t ∈ H3 .

Here, hyperbolic 3-space is

H3 = {(x0, x1, x2, x3) ∈ R3,1 |x0 > 0, x20 − x21 − x22 − x23 = 1} ={
A =

(
x0 + x3 x1 + ix2
x1 − ix2 x0 − x3

)∣∣∣∣ det(A) = 1, x0 > 0

}
=

{a · āt | a ∈ SL2C} .

Example 2.82. Take any constant q ∈ C \ {0}. Then for g = qz, one solution to the
Bryant equation is

F = q−1/2

(
cosh(z) q sinh(z)− qz cosh(z)
sinh(z) q cosh(z)− qz sinh(z)

)
,

and FF̄ t is a CMC 1 Enneper cousin in H3.

Example 2.83. To make CMC 1 surfaces of revolution, called catenoid cousins, one
can use g = eµz for µ either real or purely imaginary.

Once again, the explanation of the Weierstrass representation here, for CMC 1
surfaces in H3, is brief. More complete explanations of this representation can be
found in [49], [103] and references therein.

2.20. The Lawson correspondence. For a surface x with isothermic coordinates
u and v, and with lift X in L4 and τ as in (2.32), X gives a surface in the space-
form determined by Q, and we have the Calapso transformation Xλ := T λX, with
(T λ)−1dT λ = λτ . For any fixed real µ, the τµ for Xµ is similarly defined as in (2.49)
(with λ there replaced by µ), and it is readily shown (see the proof of Lemma 2.64)
that

τµ = T µτ(T µ)−1 .
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Now suppose X has a polynomial conserved quantity P . Then

(d+ λτµ)(T µP (λ+ µ)) = 0 ,

and therefore

P µ = P µ(λ) := T µP (λ+ µ)

is a polynomial conserved quantity for Xµ of the same order as P = P (λ).
For later use, we note that

(2.56) dXµ = d(T µX) = T µ(dX + (T µ)−1dT µX) = T µ(dX + µτX) = T µdX ,

and we similarly have, for the top term coefficient Zµ = T µZ of P µ,

(2.57) dZµ = T µ(dZ + µτZ) = T µdZ ,

because τZ = 0.
When P is a linear conserved quantity, xµ gives a CMC surface in the spaceform

determined by the constant term Qµ in P µ. Let us rescale X so that it lies in the
spaceform M determined by the constant term Q of P . Since

Qµ = T µ(µZ +Q) ,

and

⟨Xµ, Qµ⟩ = ⟨X,Q⟩ = −1 ,

Xµ lies in the spaceform Mµ determined by Qµ. Then ||dXµ||2 = ||dX||2 implies the
metrics of the two surfaces in M and Mµ coming from X and Xµ, respectively, are
the same. Using (without loss of generality) the case (2.3) and Equation (2.40) and
that h is constant, we have⟨

Tn,

(
1

1 + κ|x|2
X0

)
zz

⟩
=

1

1 + κ|x|2
(n0 · (xuu − xvv)) =

h−1

⟨(
1

1 + κ|x|2
X0

)
v

, Zv

⟩
− h−1

⟨(
1

1 + κ|x|2
X0

)
u

, Zu

⟩
.

We also have, by (2.56) and (2.57),

⟨dXµ, dZµ⟩ = ⟨T µdX, T µdZ⟩ = ⟨dX, dZ⟩ .

Furthermore, Zµ = T µZ, and so ||Zµ||2 = ||Z||2 and so Equation (2.41) implies h is
the same constant for the two surfaces. It follows that the Hopf differentials of the
two surfaces are the same. Also, assuming we have normalized P so that ||Z||2 = 1,
the mean curvatures H and Hµ of x and xµ are related by

Hµ = −⟨T µZ, T µ(µZ +Q)⟩ = −µ+H .

We conclude that we have the Lawson correspondence between the surface given by
X in the spaceform M determined by Q with constant sectional curvature −||Q||2
and the surface given by Xµ in the spaceform Mµ determined by Qµ with constant
sectional curvature

−||Qµ||2 = −µ2 + 2µH − ||Q||2 .
(See Section 5.5.1 of [49].)
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Figure 2.16. Spacelike constant mean curvature surfaces of revolution
in Minkowski 3-space with timelike axes (see [16])

Remark 2.84. Minimal surfaces in R3 and CMC 1 surfaces in H3, as in Sections 2.18
and 2.19, are related to each other by the Lawson correspondence. In this case,

||Q||2 = H = 0 and µ = −1 ,

so

−||Qµ||2 = −1 and Hµ = 1 .

2.21. Spacelike CMC surfaces in R2,1. In this section, we consider maximal sur-
faces and spacelike CMC surfaces in R2,1, in preparation for considering discrete
versions of these surfaces later. Consider a smooth surface

x(u, v) = (x1(u, v), x2(u, v), x3(u, v))

in R3 or R2,1 (with metric of signature (+,+,−) in the case of R2,1), with unit normal
n0, which we simply write as n here. Suppose the surface is spacelike, in the case
of R2,1. Also, suppose that the coordinates u, v are isothermic, with first and second
fundamental forms

I =

(
xu · xu 0

0 xv · xv

)
=

(
E 0
0 E

)
,

II =

(
n · xuu n · xvu
n · xuv n · xvv

)
=

(
b11 b12
b21 b22

)
=

(
k1E 0
0 k2E

)
.

where “·” denotes the inner product associated with R3 or R2,1. We have nu =
−k1xu and nv = −k2xv, where k1 and k2 are the principal curvatures. For the Hopf
differential Q̂dz2 with z = u+ iv, the Hopf differential function Q̂ is, with “·” linearly
extended to complex vectors,

Q̂ = n · xzz =
E

4
(k1 − k2) .

If the mean curvature H is constant, then

Q̂ = (E/4)(k1 − k2) ∈ R

is constant. (See Corollary 2.36, for example.)
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Figure 2.17. A constant Gaussian curvature surface of revolution in
Minkowski 3-space that is a parallel surface to the CMC surface shown
on the righthand side of Figure 2.16 (see [16])

Figure 2.18. Spacelike constant mean curvature surfaces of revolution
in Minkowski 3-space with lightlike axes (see [16])

Lemma 2.85. If x is isothermic in R3 or R2,1 with isothermic coordinates u, v, then
x∗ exists, solving

dx∗ = −xu
E
du+

xv
E
dv .

Proof. This was already proven in the case of R3 in Lemma 2.27, so let us be brief
here: We want to show “d2x∗ = 0”, i.e.

d(−xuE−1du+ xvE
−1dv) = 0 ,

i.e.
2xuvE − xuEv − xvEu = 0 .

We can see this by noting that b12 = 0 implies xuv = Axu+Bxv for some reals A and
B, and that ⟨xu, xv⟩ = 0. �

The x∗ in Lemma 2.85 is the same as the x∗ in Definition 2.30, but scaled by a
factor of 1/4. This is a non-essential change.

Proposition 2.86. Let x be an isothermic immersion in R3 or R2,1, with x∗ as in
Lemma 2.85. Then x is CMC H if and only if

dx∗ = h(Hdx+ dn)

for some constant h.
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Figure 2.19. Spacelike CMC surfaces of revolution in Minkowski 3-
space with spacelike axes, the righthand surface being a cylinder (see
[16])

Figure 2.20. A spacelike CMC surface in Minkowski 3-space lying in
the associate family of the spacelike CMC surface of revolution shown
on the righthand side of Figure 2.16, and itself not being a surface of
revolution (see [16])

Proof. Let us again be brief, because the R3 case was already dealt with in Remark
2.32:

(2.58) −xuE−1du+ xvE
−1dv = h(Hdx+ dn) , h constant

is equivalent to k1 + k2 = 2H with

h = 2E−1(k1 − k2)
−1
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constant. The first of these last two equalities is clearly true, and h is constant if and
only if the Hopf differential function Q̂ is constant, which is true if and only if x has
constant mean curvature. �

Because, even without assuming H is the mean curvature, Equation (2.58) forces
H to be the mean curvature, we have:

Corollary 2.87. An isothermic immersion x in R3 or R2,1 is CMC if and only if

−xu
E
du+

xv
E
dv = h(Hdx+ dn)

for some real constants h and H.

2.22. Weierstrass representation for flat surfaces in H3. We denote by R3,1

the Minkowski 4-space with the inner product ⟨·, ·⟩ of signature (−,+,+,+). The
hyperbolic 3-space H3 is considered as the upper-half component of the “radius 1”
two-sheeted hyperboloid in R3,1 with the induced metric. Identifying R3,1 with the
set of 2× 2 Hermitian matrices Herm(2) via

R3,1 ∋ (x0, x1, x2, x3) ↔
(

x0 + x3 x1 + ix2
x1 − ix2 x0 − x3

)
∈ Herm(2),

H3 is represented, like in Section 2.19, as

H3 = {x = (x0, x1, x2, x3) ∈ R3,1 | ⟨x, x⟩ = −1, x0 > 0}

= {X ∈ Herm(2) | detX = 1, traceX > 0}

= {aāt | a ∈ SL2 C} = SL2 C/ SU2 .

Any isometry of H3 is given by the map on the collection of points aāt in H3, as
follows:

aāt → (a0a)a0a
t ,

for some a0 ∈ SL2 C.
We can consider the projection to the upper half-space model

(2.59) π : H3 ∋ (x0, x1, x2, x3) 7−→
1

x0 − x3
(x1 + ix2, 1) ∈ R3

+,

where R3
+ := {(ζ, h) ∈ C × R ; h > 0}. This is an isometry when the target is given

the metric

(2.60)

(
R3

+,
|dζ|2 + dh2

h2

)
.

The ideal boundary ∂H3 is identified with C ∪ {∞}. We can write

(2.61) π(aāt) =
(a11a21 + a12a22, 1)

a21a21 + a22a22
, where a =

(
a11 a12
a21 a22

)
∈ SL2C.

Similarly, 3-dimensional de Sitter space S2,1 can be described as

S2,1 =

{
a ·
(
1 0
0 −1

)
· āt
∣∣∣∣ a ∈ SL2C

}
.
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Figure 2.21. Flat surfaces in H3: a hyperbolic cylinder on the left, a
“snowman” in the middle, an “hourglass” on the right (see Examples
2.92, 3.36 and 3.38)

Figure 2.22. Flat surfaces in H3, the surface on the left being a
“peach front” (see Example 3.37), the surface in the middle having
Weierstrass data G = z and G∗ = z2 on the Riemann surface C\{0, 1},
the surface on the right being a portion of the surface in the middle
(see [78])

Remark 2.88. A point (x0, x1, x2, x3) ∈ H3 in the Minkowski model becomes

(x1, x2, x3)

1 + x0
in the Poincare model. (See [103].)

Definition 2.89. A smooth map x : M2 → H3 with unit normal vector field n in
S2,1 from a 2-manifold M2 is called a front if the map (x, n) : M2 → T1H3 is an
immersion. Here, T1H3 denotes the unit tangent bundle to H3.

The parallel front xt at distance t of a front x is given by

(2.62) xt = (cosh t)x+ (sinh t)n, nt = (cosh t)n+ (sinh t)x,

where nt is the unit normal vector field of xt.

Definition 2.90. A front x : M2 → H3 is called a flat front if, for each p ∈ M2,
there exists t ∈ R such that the parallel front xt is a flat immersion at p, where an
immersion is flat if its intrinsic Gaussian curvature K is identically zero.

If any one parallel front is a flat immersion, then all parallel fronts that are immer-
sions are flat (see the comments on parallel flat fronts below). So Definition 2.90 is
sensible.
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Figure 2.23. Flat surfaces in H3, the surface on the left having Weier-
strass data G = z and G∗ = z3 on the Riemann surface C \ {0, 1,−1},
the surface on the right being a portion of the surface on the left (see
[78])

Figure 2.24. Flat surfaces in H3, the surface on the left being the
caustic of the surface shown in Figure 2.23 (see [78]), the surface on the
right being an example of a p-front that is not globally a caustic (see
[79])

The following result is in [55] (a proof can also be found in [49]), and is similar
in spirit to both the Weierstrass representation for minimal surfaces in R3 and the
representation of Bryant for CMC 1 surfaces in H3:

Theorem 2.91. A flat front x from a Riemann surface M2 with local coordinate z
to H3 can be locally constructed from two complex analytic one-forms ω = ω̂dz and
θ = θ̂dz on M2 (z is a local complex coordinate on M2) as follows:

x = EĒt , where E =

(
A B
C D

)
∈ SL2C solves dE = E

(
0 θ
ω 0

)
,
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and its normal vector field in S2,1 is

n = E

(
1 0
0 −1

)
Ēt .

Example 2.92. Let α ∈ R \ {0, 1} be a constant and define holomorphic functions ω̂,

θ̂ on the universal cover of M2 = C \ {0} as follows:

θ̂ = − 1

c2
z−2/(1−α) ω̂ =

c2α

(1− α)2
z2α/(1−α)

for some constant c ∈ R \ {0}. Then we have surfaces called hyperbolic cylinders if
α = −1, hourglasses if α < 0 (α ̸= −1) and snowmen if α > 0. All of these surfaces
are well-defined on M2 itself. See Figure 2.21. If we set α = 0 and replace M2 by C,
then we have a horosphere.

The first and second fundamental forms of x are

(2.63)
ds2 = |ω + θ̄|2 = Q̂dz2 + Q̂dz̄2 + (|ω|2 + |θ|2), Q̂dz2 = ωθ,

II = |θ|2 − |ω|2.

Immersed umbilic points occur at points where the Hopf differential Q̂dz2 (a holo-
morphic 2-differential) is zero but ds2 is not degenerate, i.e. exactly one of the two
1-forms ω and θ is zero.
Although ω and θ are generally only defined on the universal cover M̃2 of M2, |ω|2

and |θ|2 are well-defined on M2 itself, as is Q̂dz2. Furthermore, the zeros of Q̂ are
the umbilic points of x. Defining a meromorphic function

(2.64) ρ =
θ

ω

on M̃2, we have that |ρ| : M2 → [0,+∞] is well-defined on M2, and p ∈ M2 is a
singular point of x exactly when |ρ(x)| = 1.
The hyperbolic Gauss maps. The hyperbolic Gauss maps are

G = A
C
, G∗ =

B
D
.

Geometrically, G and G∗ represent the intersection points in the ideal boundary
∂H3 = C ∪ {∞} of H3 of the two oppositely-directed normal geodesics emanating
from x in the n and −n directions, respectively.
For a ∈ SL2C, the transformation Ex 7→ aEx corresponds to the rigid motion

x 7→ axāt in H3. Then the hyperbolic Gauss maps change, with a = (aij)
2
i,j=1, by a

Möbius transformation:

(2.65) G 7→ a ⋆ G =
a11G+ a12
a21G+ a22

, G∗ 7→ a ⋆ G∗ =
a11G∗ + a12
a21G∗ + a22

.

Because detE = 1, we have

dG =
−ω
C2

, dG∗ =
θ

D2
, G−G∗ = (CD)−1 ,

so the Hopf differential is

(2.66) Q̂dz2 = −(CD)2dGdG∗ =
−dGdG∗

(G−G∗)2
.
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Another computation gives

(2.67)
G′′

G′ −
2G′

G−G∗
=
ω̂′

ω̂
,

G′′
∗

G′
∗
− 2G′

∗
G∗ −G

=
θ̂′

θ̂
.

Defining

S(G) =

(
G′′

G′

)′

− 1

2

(
G′′

G′

)2

as the Schwarzian derivative, and defining s(ω̂) = (ω̂′/ω̂)′ − (1/2)(ω̂′/ω̂)2, we have

(2.68) S(g)− S(G) = 2Q̂dz2 if and only if s(ω̂)− {G, z} = 2Q̂ ,

S(g∗)− S(G∗) = 2Q̂dz2 if and only if s(θ̂)− {G∗, z} = 2Q̂ .

We know that S(g)− S(G) = 2Q̂dz2 and S(g∗)− S(G∗) = 2Q̂dz2 hold, by using

G′′

G′ =
ω̂′

ω̂
− 2Dω̂

C
,

G′′
∗

G′
∗
=
θ̂′

θ̂
− 2Cθ̂

D
.

U1-ambiguity. Changing E to

E ·
(
eiγ/2 0
0 e−iγ/2

)
does not change the surface if γ ∈ R, but does change θ and ω to eiγθ and e−iγω. So
θ and ω have a U1-ambiguity.

Dual flat fronts. Also,

(2.69) E♮
x := Ex

(
0 i
i 0

)
gives the same front x, but the unit normal E♮

fe3
¯
E♮

f

t
= −n is reversed. E♮

f is called

the dual of Ef . The hyperbolic Gauss maps G♮, G♮
∗, the canonical forms ω♮, θ♮ and

Hopf differential Q̂♮dz2 satisfy

G♮ = G∗ , G♮
∗ = G , ω♮ = θ , θ♮ = ω , Q̂♮dz2 = Q̂dz2 .

Parallel flat fronts. Replacing θ̂ and ω̂ with etθ̂ and e−tω̂ for some t ∈ R, we
find that

E ·
(
e−t/2 0
0 et/2

)
becomes a solution of the equation in Theorem 2.91, and that x and n change to the
xt and nt in (2.62). It follows that all the parallel surfaces of a flat front are flat
wherever they are immersions.

Remark 2.93. It was shown in [82] that E can be written as (the Small-type formula
[123])

E =

(
A dA/ω
C dC/ω

)
,

where A = CG and C = i
√

ω
dG

.
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A holomorphic Legendrian lift E can be expressed in terms of a pair (G,ω), see
[82]:

(2.70) E =

(
GC d(GC)/ω
C dC/ω

)
, where C = i

√
ω

dG
.

Another representation formula for E is given in [82]:

(2.71) E =

(
G/ξ ξG∗/(G−G∗)
1/ξ ξ/(G−G∗)

)
, ξ := δexp

∫ z

z0

dG

G−G∗
,

where z0 ∈ M2 is a base point of integration and δ ∈ C \ {0} is a constant. Here δ
corresponds to the choices in the U1-ambiguity and in the family of parallel fronts.
We then have

(2.72) ω = −dG
ξ2
, Q̂dz2 = − dGdG∗

(G−G∗)2
,

and the second of these two equations was already seen in Equation (2.66).

Remark 2.94. The normal n gives a flat spacelike surface in S2,1, and the normal to
n is x.

Remark 2.95. We have a relation with a Riccati-type equation here. Given the form
of Q̂ in (2.72) and the fact that we can locally take

Q̂ = 1/4

wherever the Hopf differential is not zero (by a conformal change of coordinate z),
we have

(2.73) (G−G∗)
2 = −4G′G′

∗ .

This is a Riccati-type equation, which means we have a means to solve it. Taking G
as given, we can find G∗. The solution G∗ is determined by an initial condition in C,
so there is a real 2-dimensional choice of solutions G∗.

Example 2.96. Here are some examples of determining a G∗, given a G:

(1) G = 0 implies we can take G∗ = 0,
(2) G = c implies we can take G∗ = c,
(3) G = az + b implies we can take

G∗ = az + b+ 2ia− 4a

ceiz − i
,

(4) G = az3 + b implies we can take

G∗ = b+ az(z2 − 12) + 6iaz2 · e
iz − ic

eiz + ic
,

(5) G = a/z implies we can take

G∗ =
a(c cos(z/2) + sin(z/2))

(cz + 2) cos(z/2) + (z − 2c) sin(z/2)
,

(6) G = ez/
√
2 implies we can take

G∗ = −ez/
√
2 · tan

(
z

2
√
2
− c

)
,
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where a, b and c are constants. Some other examples for which one can find G∗
explicitly are

G = z3 ±
√
3z2 + z , G = zn , G = cos z ,

G = sin z , G = (z − 1)ez and G = a log z .

We now consider how to find all solutions G∗ for a given G. Define u = u(z) by

G∗ = 4G′
(
u′

u
− 2G′′ −G

4G′

)
,

and then (2.73) becomes

(2.74) u′′ + u · (G
′)2 − 2G′G′′′ + (G′′)2

4(G′)2
= 0 .

Then, once we have one solution G∗ with associated solution u0 to (2.74), we have
all solutions G∗, as follows: Given one solution u0 to (2.74), one other independent
solution is

u = u0

∫
u−2
0 dz .

Thus we know all solutions to (2.74), and in turn all solutions G∗.
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3. Lie sphere geometry

We now “lift” Möbius geometry up to Lie sphere geometry, which is the natural
setting for considering Ω surfaces.

3.1. Lie sphere transformations. The first part of this section reiterates material
found in [31], so we will keep the descriptions here brief.
Consider R4,2 with the metric (·, ·) of signature (−,+,+,+,+,−) and

R4,1 = span




0
0
0
0
0
1





⊥

⊂ R4,2

with induced metric ⟨·, ·⟩ of signature (−,+,+,+,+). (This R4,1 has timelike direction
in the first coordinate rather than the last, unlike the R4,1 we used in previous sections.
We make this non-essential change to conform here with the notations used in [31]
and other sources.) Let L4, resp. L5, be the light cone in R4,1, resp. R4,2. Slicing
L4 by hyperplanes P of R4,1 gives 3-dimensional spaceforms M3. Spheres in these
spaceforms are given by

{x⃗ ∈M3 = L4 ∩ P | ⟨x⃗, ξ⟩ = 0}
for spacelike vectors ξ ∈ R4,1 (point spheres result when ξ is lightlike). See Section
2.8.
Möbius transformations are given via A ∈ O4,1 applied to R4,1 by

(3.1) ξ → A · ξ ,
telling us how points (point spheres) and spheres transform. See Section 2.3.

Example 3.1. As an example of this, like in Section 2.3, take v = (v1, v2, v3) and
p = (p1, p2, p3) in R3 and r ∈ R, and consider the transformation

ξp,r → Aξp,r = ξp+v,r ,

where

A :=


1 + 1

2
v · v 1

2
v · v v1 v2 v3

−1
2
v · v 1− 1

2
v · v −v1 −v2 −v3

v1 v1 1 0 0
v2 v2 0 1 0
v3 v3 0 0 1

 ∈ O4,1 ,

ξp,r :=


1
2
(1 + p · p− r2)

1
2
(1− p · p+ r2)

p1
p2
p3

 .

The vector ξp,r represents a sphere with center p and radius r (when we take QM0 =
(1,−1, 0, 0, 0)t). The map (3.1) translates spheres of radius |r| and center p by v in
R3. Note that ||ξp,r||2 = r2 > 0 when the radius |r| is nonzero.
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In Lie sphere geometry, on the other hand, the Lie sphere transformations are
given by matrices in O4,2, and the group of Lie sphere transformations is isomorphic
to O4,2/{±I}. The objects under consideration are oriented spheres, and for this we
use R4,2, i.e. we give a sphere by

ξ̄p,r :=

(
ξp,r
±r

)
∈ L5 ,

where the ξp,r part determines a sphere (with center p and radius |r|) in R3 (and
also determines a sphere in any other spaceform) and the sign in front of the final
coordinate r determines the orientation of the sphere (see Section 2.5 of [31]).

To determine the form of ξ̄p,r when r = ∞, we can consider the family of spheres

r−1 · ξ̄p+rn,r =


(2r)−1(1 + p · p+ 2rp · n)
(2r)−1(1− p · p− 2rp · n)

r−1pt + nt

1


all containing the point p and all having the unit normal n at p, and then take the
limit as r → ∞, to obtain the following vector representing the plane through p with
unit normal n:

ξ̄p,n :=


p · n
−p · n
nt

1

 .

When x is a surface and n is a unit normal vector field of x, ξx,n represents the tangent
planes to x.

Example 3.2. With A as in Example 3.1, take(
A 0
0 1

)
∈ O4,2

and take the map (
ξp,r
±r

)
→
(
A 0
0 1

)
ξ̄p,r = ξ̄p+v,r .

This is an example of a Möbius transformation becoming a Lie sphere transformation.
Orientation of the spheres could be reversed by instead choosing(

A 0
0 −1

)
∈ O4,2 .

All Möbius transformations can be included in the collection of Lie sphere trans-
formations by taking arbitrary A ∈ O4,1 in Example 3.2.

The next example is a Lie sphere transformation that does not reduce to a Möbius
transformation, because it takes point spheres to true spheres (“true sphere” means
that the sphere has a strictly positive radius), and takes some true spheres to point
spheres as well:

Example 3.3. This will be an example of a Laguerre transformation. Laguerre trans-
formations are Lie sphere transformations that preserve the point at ∞ for R3∪{∞},
i.e. that preserve planes in R3.
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If a Lie sphere transformation (or just “Lie transformation” for short) in R4,2 fixes
a spacelike vector, then it reduces to a Lie transformation of R3,2. If it fixes a timelike
vector, then it will produce a Möbius transformation. If it fixes a lightlike vector,
then it gives a Laguerre transformation.
Möbius transformations preserve the angle of intersection between spheres. Lie

sphere transformations preserve oriented tangential contact between spheres. La-
guerre transformations preserve ratios amongst tangential distances between spheres,
and we will see in the example here how Laguerre transformations do this. Set

W =


1− 1

2
s2 −1

2
s2 0 0 0 −s

1
2
s2 1 + 1

2
s2 0 0 0 s

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
s s 0 0 0 1

 ∈ O4,2 ,

(3.2) ξ̄p,r →Wξ̄p,r = ξ̄p,r+s .

This map preserves a lightlike vector, which means it preserves a sphere S. We can
choose a unit timelike vector p̂ so R4,1 = span{p̂}⊥ and S is a point-sphere in that
R4,1. Then we can choose R3 ⊂ L4 ⊂ R4,1 such that S is the point at infinity of R3.
More explicitly, 

1
−1
0
0
0
0


is an eigenvector of W , and we can take

R4,1 = span




0
0
0
0
0
1





⊥

and then 
1
−1
0
0
0
0

 projects to q :=


1
−1
0
0
0


in R4,1. We use this q to make

R3 = {X ∈ L4 | ⟨X, q⟩R4,1 = −1} .

(We are now using a lowercase “q” to denote the vector that determines the spaceform,
rather than the uppercase “Q” that we used before. This is for compatibility with
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Figure 3.1. A Laguerre transformation

the “p, q” notation soon to be used in Section 3.3.) Then q is the point at infinity of
R3, and finite points p = (p1, p2, p3) ∈ R3 are of the form 1

2
(1 + p · p)

1
2
(1− p · p)

pt

 .

A configuration consisting of two spheres tangent to one plane will be mapped by
this Laguerre transformation to a configuration of the same type in that R3. (See
page 49 of [31], and Corollary 4.4 on page 55 of [31].) This is depicted in Figure
3.1. In particular, planes are mapped to planes. If the two spheres touch the plane
(tangentially of course) at the two points p and q, then the tangential distance between
the two spheres is the distance between p and q inside the plane. We will now illustrate
how the ratios of such distances are preserved by this map (3.2).

The spacelike vector

P :=


a
−a
1
0
0


is perpendicular to q, so it gives a plane P̃ in R3. A sphere tangent to this plane is
given by

ξ := r−1


1
2
(1 + 2ra+ a2 + p22 + p23)

1
2
(1− 2ra− a2 − p22 − p23)

p1
p2
p3

 ,

where p1 = r + a, for some r ∈ R. This is because
||P ||2 = ||ξ||2 = ⟨P, ξ⟩ = 1 ,

see Lemma 2.20. This plane and sphere intersect at the unique point

L :=


1
2
(1 + a2 + p22 + p23)

1
2
(1− a2 − p22 − p23)

a
p2
p3
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because ||L||2 = ⟨L, P ⟩ = ⟨L, ξ⟩ = 0. Now,

W ·
(
P
1

)
=


a− s

−(a− s)
1
0
0
1

 ,

W ·
(
ξ
1

)
=

1

r


1
2
(1 + 2(r + s)(a− s) + (a− s)2 + p22 + p23)

1
2
(1− 2(r + s)(a− s)− (a− s)2 − p22 − p23)

(r + s) + (a− s)
p2
p3
r + s

 =
1

r

(
ξ(p1,p2,p3),r+s

r + s

)
,

so the intersection point of the image plane and image sphere under this map is
1
2
(1 + (a− s)2 + p22 + p23)

1
2
(1− (a− s)2 − p22 − p23)

a− s
p2
p3

 .

Computing similarly for more general P perpendicular to q, we see that, in this case
(3.2), tangential distance between spheres is preserved. In general, homotheties of
R3 are also allowed amongst the Laguerre transformations, since they also preserve
planes, and so only ratios of tangential distances between spheres are preserved.
Fact: ([31], Theorem 3.16) The group of Lie sphere transformations is equal to the

union of the group of Möbius transformations and group of Laguerre transformations,
and subsequent compositions of transformations.

3.2. Lifting surfaces to Lie sphere geometry, parallel transformations. For
illustrating the process of lifting surfaces, let us first define the quadric PL5, and then
take the case of H3.
The quadric: The Lie quadric PL5 is projectivized L5. Each line in PL5, or

equivalently, each null plane in L5, will give a collection of spheres making oriented
tangential contact at some point, in any choice of 3-dimensional spaceform M3 (this
is related to Remark 2.21, and we also come back to this in Section 3.5).
Consider a surface in H3 and its normal:

x(u, v) = (x0, x1, x2, x3) :M
2 → H3 ⊂ R3,1 ,

n(u, v) = (n0, n1, n2, n3) :M
2 → S2,1 ⊂ R3,1 ,

i.e. n ⊥ x and n ⊥ dx. Here H3 and S2,1 are defined the standard way, and the
metric of R3,1 has signature (−,+,+,+). Let

Λ = Λ(u, v) = span{X,N} ,
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where X and N are the lifts

X =


x0
x1
x2
x3
1
0

 and N =


n0

n1

n2

n3

0
1


to R4,2. Then Λ is a null plane in R4,2, and a line in PL5. The projection

(3.3) ϕ : P

Λ ∩




0
0
0
0
0
1





⊥ = P (Λ ∩ R4,1) → H3 ,

ϕ




y0
y1
y2
y3
y4
0



 =

(
y0
y4
,
y1
y4
,
y2
y4
,
y3
y4

)

returns us to x.
We have the following properties:

(X,X) = (N,N) = (N,X) = (X, dX) = (N, dX) = (X, dN) = 0 .

Before application of the above projection ϕ, we could first apply an isometric
transformation A ∈ O4,2 of R4,2 to the null plane Λ, obtaining the null plane AΛ.
Then, after projecting by ϕ to R4,1, we would get some kind of transform x̂ of x,
still in H3. This is the viewpoint we take in the next lemma (Ij×j denotes the j × j
identity matrix):

Lemma 3.4. If

A =

I4×4 0 0
0 cosh θ sinh θ
0 sinh θ cosh θ

 ,

the transform

x̂ = x̂(u, v) = ϕ

A · Λ(x, n) ∩




0
0
0
0
0
1





⊥
is a parallel surface of x = x(u, v).
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Note that we can use

p =


0
0
0
0
0
1


to project to the Möbius geometric space span{p}⊥ ≈ R4,1 and then use

q = QH3 =


0
0
0
0
−1
0


to get the spaceform H3, similarly to (2.2). The map given by left multiplication by
A fixes the 2-plane span{p, q}.

Proof. Using the abbreviations c := cosh θ and s := sinh θ, define

S := A

a
xt1

0

+ b

nt

0
1

 ∣∣∣∣∣∣ a, b ∈ R


 =

a
xtc
s

+ b

nt

s
c

 ∣∣∣∣∣∣ a, b ∈ R

 .

This implies

Ŝ := S ∩




0
0
0
0
0
1





⊥

=

rc
xtc
s

− rs

nt

s
c

 ∣∣∣∣∣∣ r ∈ R



=

r
cxt − snt

1
0

 ∣∣∣∣∣∣ r ∈ R

 .

Thus

x̂ := ϕ(Ŝ) = x · cosh θ − n · sinh θ ,
a parallel surface. �
Remark 3.5. We can give the analogous results to Lemma 3.4 for R3 or S3 instead of
H3, as well.

Fact: ([31], Theorem 3.18) All Lie sphere transformations are generated (by com-
position) from Möbius transformations and parallel surface transformations in R3, S3

and H3.

Example 3.6. Now we give simple examples involving geodesic planes and spheres:
Take the following geodesic plane and its normal:

x(u, v) = (
√
1 + u2 + v2, u, v, 0) ⊂ H3 , n(u, v) = (0, 0, 0, 1) ∈ S2,1 .
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Then

Λ =




a
√
1 + u2 + v2

au
av
b
a
b



∣∣∣∣∣∣∣∣∣∣∣∣
a, b ∈ R


.

Consider these eight cases:

(1)

A =

 cos θ 0 sin θ
0 I4×4 0

− sin θ 0 cos θ


implies

x̂ =

(
1

cos θ
·
√
1 + u2 + v2, u, v, tan θ ·

√
1 + u2 + v2

)
.

Here the starting point (before the transformation is applied) is the vector in
Λ with a = 1 and b = 0, which is the choice that gives a single point in H3.
The image of the transformation, applied to Λ, is


cos θ · a

√
1 + u2 + v2 + sin θ · b

au
av
b
a

− sin θ · a
√
1 + u2 + v2 + cos θ · b



∣∣∣∣∣∣∣∣∣∣∣∣
a, b ∈ R


,

with a = 1 and b = sin θ
cos θ

·
√
1 + u2 + v2 being the choice that gives the single

point x̂ above. The other seven examples below operate similarly.
(2) With A as in Lemma 3.4, we have that

x̂ = (cosh θ ·
√
1 + u2 + v2, cosh θ · u, cosh θ · v,− sinh θ)

is a parallel unbounded sphere in H3 having the same limit at the ideal bound-
ary ∂H3 as x has.

(3)

A =


1 0 0 0
0 cosh θ 0 sinh θ
0 0 I3×3 0
0 sinh θ 0 cosh θ


implies

x̂ =

(√
1 + u2 + v2,

1

cosh θ
· u, v,− tanh θ · u

)
.

(4)

A =


I3×3 0 0 0
0 cosh θ 0 sinh θ
0 0 1 0
0 sinh θ 0 cosh θ
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implies x̂(u, v) = x(u, v).
(5)

A =

(
∗ 0
0 I2×2

)
,

where ∗ denotes any matrix in O3,1, implies x̂ is isometric to x.
(6)

A =


cosh θ 0 sinh θ 0

0 I3×3 0 0
sinh θ 0 cosh θ 0
0 0 0 1


implies

x̂ =
1

sinh θ
√
1 + u2 + v2 + cosh θ

(
cosh θ

√
1 + u2 + v2 + sinh θ, u, v, 0

)
.

Note that this x̂ is simply a reparametrization of x.
(7)

A =


1 0 0 0 0
0 cos θ 0 sin θ 0
0 0 I2×2 0 0
0 − sin θ 0 cos θ 0
0 0 0 0 1


implies

x̂ =
1

cos θ − u sin θ

(√
1 + u2 + v2, sin θ + u · cos θ, v, 0

)
.

This x̂ is also just a reparametrization of x.
(8)

A =


I3×3 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1


implies

x̂ =
1

cos θ

(√
1 + u2 + v2, u, v, sin θ

)
.

This x̂ is an unbounded sphere in H3.

In cases (1), (3)-(7) above, x̂ is a geodesic plane, and is a sphere in cases (2), (8).

3.3. Different ways to project to a spaceform. In Section 3.2 we used the vector

p =


0
0
0
0
0
1
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Figure 3.2. The setting in Section 3.3

to project to Möbius geometry in R4,1, and we used

q =


0
0
0
0
−1
0


to define the 3-dimensional hyperbolic space

H3 = {X ∈ L5 |X ⊥ p, (X, q) = −1} ,

like the definition in (2.4).
We could, however, make more other choices for p and q. In Section 3.1, we had in

effect chosen

p =


0
0
0
0
0
1

 and q =


1
−1
0
0
0
0

 .

When choosing p and q, we only need that p and q are both nonzero, and per-
pendicular to each other, and to avoid a certain distinctly different (but interesting)
special case let us also assume p is not lightlike. We call p the point sphere complex,
and we call q the spaceform vector.

To get positive definite spaceforms as in the first part of these notes, we could take
p with ||p||2 = −1, and then take any nonzero q ⊥ p to define the spaceform M , as

(3.4) M = {X ∈ R4,2 | (X,X) = 0, (X, p) = 0, (X, q) = −1} ,

which will have sectional curvature −||q||2.
Specific examples that we might choose are:
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• an R3 is produced using

p =


0
0
0
0
0
1

 and q =


1
−1
0
0
0
0

 .

• an S3 is produced using

p =


0
0
0
0
0
1

 and q =


1
0
0
0
0
0

 .

• an H3 is produced using

p =


0
0
0
0
0
1

 and q =


0
0
0
0
1
0

 .

Remark 3.7. In Example 3.6 we were using

p =


0
0
0
0
0
1

 , q =


0
0
0
0
−1
0

 .

to choose the spaceform H3. Then, in case (2) of Example 3.6 we had that x̂ is an
unbounded sphere. (To see it is unbounded, one could, for example, project to the
upperhalf space model for H3, via

(3.5) (x0, x1, x2, x3) →
(x1, x2, 1)

x0 − x3
,

and see that projection of this sphere into that model is unbounded.)
The points ρ in this sphere x̂ satisfy

(ρ, ρ) = 0 , (ρ, p) = 0 , (ρ, q) = −1 , (ρ,Sθ) = 0 ,

where

Sθ =


0
0
0
1

sinh θ
cosh θ
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in R4,2. In this way the sphere parametrized by x̂ is associated with the vector Sθ,
analogous to the description in Section 2.8.

Another example is the spherical piece parametrized by coordinates (u, v) via (b ∈ R
is a constant)

(
√
1 + b2, u, v,

√
b2 − u2 − v2) ,

a part of a bounded sphere, which again can be seen by projecting to the upperhalf
space model for H3 (using the same p and q, and projection map (3.5), as above).
This sphere is associated with the vector

Sb =


1
0
0
0√

1 + b2

b

 ∈ R4,2 .

In the first case, where we have unbounded spheres in H3,(
(Sθ, q)

(Sθ, p)

)2

< 1 .

In the second case, where we have bounded spheres in H3,(
(Sb, q)

(Sb, p)

)2

> 1 .

In fact, one can show that arbitrary choices of S produce

• unbounded spheres with asymptotic boundary a circle when(
(S, q)
(S, p)

)2

< 1 .

• horospheres or the ideal boundary sphere ∂H3 (with one orientation or the
other) when (

(S, q)
(S, p)

)2

= 1 ,

with ∂H3 occuring when the projection of S to (span{p})⊥ is parallel to q,
and a horosphere occuring otherwise.

• bounded spheres when (
(S, q)
(S, p)

)2

> 1 .

The ideal boundary ∂H3 for H3 is identified with points ρ in the projectivized light
cone of R3,1 extended to ρ̂ ∈ R4,2 so that

(ρ̂, p) = (ρ̂, q) = 0 .
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3.4. Lorentzian spaceform case. We could also choose p so that

||p||2 = +1 ,

and then the 5-dimensional space

{p}⊥ := (span{p})⊥

perpendicular to p will have metric with signature such that some orthogonal basis has
three spacelike vectors and two timelike vectors. ({p1, p2, ...} is shorthand notation
for span{p1, p2, ...}.) The resulting M (using the definition (3.4)) will be a spaceform
with a Lorentzian metric.
To be explicit, let us take

p =


0
0
0
0
1
0

 , q =


0
0
0

1
2
(1− κ)
0

1
2
(1 + κ)


for some κ ∈ R. Then points in M can be represented as

X =
1

1 + κ|y|2


2yt

|y|2 − 1
0

|y|2 + 1

 , |y|2 = |y|2R2,1 ,

where y = (y0, y1, y2) ∈ R2,1 ∪ {∞} such that |y|2 ̸= −κ−1, analogous to Equation
(2.4) and Lemma (2.2). Note that κ = −||q||2.
As in Section 2.1, the metric induced on M is then

4

(1 + κ(−y20 + y21 + y22))
2
(−dy20 + dy21 + dy22) .

To see that the curvature of such a signature space M is κ, one could make the
standard computations for this pseudo-Riemannian case as well, just as we did in the
proof of Lemma 2.5 (again, see [94], for example), using the same formulas. Alter-
natively, one could also proceed as we did in Remark 2.6, in this pseudo-Riemannian
case, now checking that anti-de Sitter space

H2,1 = {σ ∈ R2,2 | |σ|2 = −1}

has constant sectional curvature −1, and de Sitter space

S2,1 = {σ ∈ R3,1 | |σ|2 = 1}

has constant sectional curvature 1, instead of using the H3 and S3 as in Remark 2.6.

Remark 3.8. We can refer to the case ||p||2 > 0 as Lorentz Möbius geometry.
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3.5. Contact elements and Legendre immersions. First we give the definition
of Legendre immersions in the context of Lie sphere geometry:

Definition 3.9. Let

Λ ⊂ L5 ⊂ R4,2

be a null plane, which projectivizes to a line in PL5 called a contact element. This line
represents a family of spheres (a pencil) that are all tangent (with same orientation)
at one point.

If Λ is a (smooth) map from M =M2 to the collection of null planes in R4,2, where
M is a 2-dimensional manifold, then Λ is a Legendre immersion if,

for any m ∈M and any choice of Y ∈ TmM,

dX(Y ) ∈ Λ for all sections X of Λ implies Y = 0

(immersion condition) ,

and if, for any pair of sections X1, X2 of Λ,

dX1 ⊥ X2

(contact condition) .

Remark 3.10. The immersion condition in Definition 3.9 can be restated in terms of
a basis of sections for the null planes Λ as follows: If

Λ = span{X1, X2} ,

with basis X1, X2 :M
2 → L5, then the immersion condition is equivalent to

dX1(Y ), dX2(Y ) ∈ Λ implies Y = 0

for all Y ∈ TmM , one can then check that this condition is independent of the choice
of basis X1, X2.

Next we consider what this definition means in the context of the conformal 3-
sphere:

Definition 3.11. Let

x :M2 → S3 ⊂ R4

be a smooth map to S3. Suppose there exists a smooth map

n :M2 → TxS3

(so n ⊥ x) such that n has norm identically 1 and

n ⊥ dx .

We say that x is a front if x and n considered together form an immersion, that is,
if, for Y ∈ TmM

2,

dx(Y ) = dn(Y ) = 0 ⇒ Y = 0 .
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Figure 3.3. Projections of the Dupin cyclide to R3

In the next definition, let S3 be identified with the 3-dimensional spaceform deter-
mined by

p =


0
0
0
0
0
1

 , q =


1
0
0
0
0
0

 .

A straightforward computation (or simply applying Theorem 4.2 in [31]) implies
that the following Definition 3.12 is compatible with Definition 3.9 above.

Definition 3.12. Let x and n define a front, as in Definition 3.11. Let

Λ = span{X1, X2}
with

X1 = X =

 1
xt

0

 ⊥ p and X2 = N =

 0
nt

1

 ⊥ q ,

then Λ is the Legendre immersion induced by the pair (x, n) ⊂ T1S3. (T1S3 denotes
the unit tangent bundle to S3.) We call Λ the congruence of contact elements of the
surface x in S3.

Remark 3.13. Note that (X, q) = (N, p) = −1 and (N, q) = (X, p) = 0.

3.6. Dupin cyclides. Dupin cyclides are Legendre immersions, and can be con-
structed in this way:

(1) Split R4,2 into two fixed orthogonal V1 ≈ R2,1 and V2 ≈ R2,1.
(2) Each Vj has a light cone L2, and each projectivized L2 is a circle Cj, j = 1, 2.
(3) Taking p1 ∈ C1 and p2 ∈ C2, we have a line ℓp1p2 through p1 and p2 lieing in

the quadric PL5.
(4) Taking various p1 and p2, we get a two-dimensional family of lines in the

quadric. This is the Dupin cyclide, with curvature spheres represented by p1
and p2. (Curvature spheres are explained in the upcoming Section 3.8.)
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Figure 3.4. Further projections of the Dupin cyclide to R3

Figure 3.5. Further projections of the Dupin cyclide to R3, the pro-
jection on the left being one that extends out to ∞ in R3 ∪ {∞}

Figure 3.6. Further projections of the Dupin cyclide to R3
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Figure 3.7. Another projection of the Dupin cyclide to R3, with a
partial piece shown on the right

Figure 3.8. Yet another projection of the Dupin cyclide to R3, with
a partial piece shown on the right

(5) Various projections of the ℓp1p2 , through the Möbius geometry in R4,1, to R3,
give all the Dupin cyclides in R3.

However, we define them this way, regarding S3 as Möbius equivalent to R3∪{∞}:
Definition 3.14. f :M2 → S3 is a Dupin cyclide if the principal curvature function
associated to each curvature line is constant along that curvature line.

Examples of Dupin cyclides considered in R3, in addition to cylinders and cones,
are the following three:

(1) Take a nonintersecting line and circle in a plane and rotate the circle about
the line to get a donut-shaped embedded surface of revolution in R3.

(2) Take a line and circle intersecting tangentially at one point in a plane and
rotate the circle about the line to get a surface of revolution with one singular
point in R3.

(3) Take a line and circle intersecting transversally at two points in a plane and
rotate the circle about the line to get a surface of revolution with two cone-like
singular points in R3.

Theorem 3.15. (Pinkall, [95], [96]) All Dupin cyclides are Möbius transformations of
the above surfaces of revolution. In particular, this includes Clifford tori and cylinders
and cones.

See Figures 3.3-3.8.
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Figure 3.9. A wire frame model of a Clifford torus in R3 (owned by
the geometry group at the Technical University of Vienna)

Theorem 3.16. (Pinkall, [95], [96]) Up to the freedom of Lie sphere transformations,
there is only one Dupin cyclide.

So, for example, in Theorem 3.16 the transformation to parallel surfaces in R3 of
the first (embedded “donut”) of the three examples above is allowed.

Pinkall gave various equivalent descriptions of Dupin cyclides in R3 in his thesis
([95], [96]):

(1) Principal curvatures along corresponding lines of curvature are constant (this
is a restatement of Definition 3.14).

(2) All lines of curvature are circular arcs.
(3) Principal curvature spheres along lines of curvature are constant.
(4) Focal surfaces degenerate to curves.
(5) The surface is a channel surface in two ways, i.e. it envelopes two different

1-parameter families of spheres.

To illustrate Theorem 3.16, we could start with the Clifford torus

(3.6) x(u, v) = (cos v · (
√
2 + cos u), sin v · (

√
2 + cos u), sinu) ,

considered in R3. Under the metric induced on R3 ∪ {∞} by the usual stereographic
projection of S3 to R3 ∪ {∞}, this surface x is a minimal surface, which can be seen,
for example, by noting that, with respect to the S3 metric,

dist((0, 0, 0), (1, 0, 0)) = dist((1, 0, 0), (∞, 0, 0)) = π
2
,

dist((0, 0, 0), (
√
2− 1, 0, 0)) = dist((

√
2− 1, 0, 0), (1, 0, 0)) = π

4
,

dist(( 1√
2
, 0, 1√

2
), (1, 0, 0)) = dist(( 1√

2
, 0, 1√

2
), (0, 0, 1)) = π

4
,

and that the surface has two distinct rotational symmetries.
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Then the induced Legendre immersion in PL5 is given by the span of

ξ1 = ξ̄p=(
√
2 cos v,

√
2 sin v,0),r=1 =


1
0√

2 cos v√
2 sin v
0
1

 ,

ξ2 = ξ̄
p=(0,0,−

√
2 tanu),r=1+

√
2

cosu

||



−1
2 cosu+

√
2

cosu+
√
2

0
0

−
√
2 sinu

cosu+
√
2

1


.

In particular, (ξ1, ξ1) = (ξ2, ξ2) = (ξ1, ξ2) = 0. Also, span{ξ1, ξ2} = span{ξ̄x,0, ξ̄−n}.
Now

ξ1 ∈ V1 :=




A
0
B
C
0
A



∣∣∣∣∣∣∣∣∣∣∣
A,B,C ∈ R


,

ξ2 ∈ V2 :=




A
B
0
0
C
−A



∣∣∣∣∣∣∣∣∣∣∣
A,B,C ∈ R


and V1 ≈ R2,1, V2 ≈ R2,1 and V1 ⊥ V2. Then, for any A ∈ O4,2, the projection of

A(span{ξ1, ξ2}) ∩




0
0
0
0
0
1





⊥

to R3 gives any arbitrary Dupin cyclide in R3.
The Clifford torus can also be described in S3 ⊂ R4 as

x(u, v) = 1√
2
(cosu, sinu, cos v, sin v) ,

with normal

n(u, v) = 1√
2
(cosu, sinu,− cos v,− sin v) ,
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Figure 3.10. Physical models of three different projections of the
Dupin cyclide to R3 (owned by the geometry group at the Technical
University of Vienna)

and the associated lines in the quadric PL5 are given by

span

γ± = 1√
2

 1
xt

0

±

 0
nt

1

 ,

with

γ+ = γ+(u) =



√
2
−1

cosu
sinu
0
0√
2
−1

 and γ− = γ−(v) =



√
2
−1

0
0

cos v
sin v

−
√
2
−1

 .

Taking

A =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ∈ O(4) ,

we have

A · xt = 1√
2


cos v
sin v
cosu
sinu

 ,

so there exists an isometry of S3 = (R3 ∪ {∞}, ds2S3) preserving the set of points in
the Clifford torus that switches the two geodesic circles {(cos θ, sin θ, 0) | θ ∈ [0, 2π)}
and {(0, 0, t) | t ∈ R} (the second of these is not parametrized by arc length). Thus,
the two 3-dimensional regions bounded by the Clifford torus in (3.6), considered in
S3, are congruent to each other.

For the Clifford torus in (3.6), regarded as a surface in R3, one focal curve is
traversed only once, while the other is traversed twice. However, when this torus is
regarded as a minimal surface in S3, both focal curves are traversed only once.

3.7. Surfaces in various spaceforms. Suppose we have a Legendre immersion Λ.
Let us make a choice of p, q ∈ R4,2, ||p||2 ̸= 0, q ̸= 0 and p ⊥ q, to define a particular 3-
dimensional spaceformM3 in {p}⊥, like in (2.2). Here we collect some facts regarding
the choices of p and q.
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Generically we have a lift X ∈ Λ of a surface x in M3 and a lift N ∈ Λ of the
normal n to x (that is, N represents the tangent geodesic planes of x in M3) so that
Λ = span{X,N} and

(X, p) = (N, q) = 0 , (X, q) = (N, p) = −1 .

Lemma 3.17. Scaling p by a factor γ ∈ R scales the normal to the surface (the
normal determined by N) in the tangent space TM of the spaceform M by the factor
γ−1, and so scales the principle curvatures κi of the surface by the factor γ−1.

Proof. Because q is unchanged, x is also unchanged. However, n changes to γ−1n,
and then the Rodrigues equations become

(γ−1κ1)∂ux+ ∂u(γ
−1n) = 0 , (γ−1κ2)∂vx+ ∂v(γ

−1n) = 0 ,

and so the κi change to γ−1κi. (We soon introduce the Rodrigues equations, in
(3.7).) �

Remark 3.18. Scaling p does not change M3, nor the surface in M3. In Lemma 3.17
we are regarding the principle curvatures as depending on both the surface itself and
also on the choice of normal in TM3.

One can similarly prove:

Lemma 3.19. Scaling q by a factor γ ∈ R scales the principle curvatures of the
surface by the same factor γ.

Lemma 3.20. Scaling both p and q by the same factor will leave the principle cur-
vatures of the surface unchanged.

Remark 3.21. For any A ∈ O4,2 (i.e. any isometry of R4,2) that preserves span{p, q},
the two surfaces coming from p, q and Ap,Aq will be parallel surfaces of each other,
like in Lemma 3.4.

Remark 3.22. As we will see in Lemma 3.25 below, the curvature spheres of the
surfaces are represented by, for j = 1, 2,

N + κjX .

Remark 3.23. When (p, p) > 0, so the spaceform is Lorentzian, and when consider-
ing a spacelike surface in the spaceform, the definition of the Gaussian curvature is
sometimes taken with the opposite sign from the Riemannian spaceform case:

K = − detA ,

where A is the shape operator. See, for example, [3].

Remark 3.24. In R4,1 (Möbius geometry), surfaces and the sphere congruences they
envelop are both 2-parameter families of vectors, the only difference being that the
former lie in L4, while the latter lie in S3,1. However, in R4,2 (Lie sphere geometry),
Legendre maps and the sphere congruences they envelop are fundamentally different
things, each of the latter being merely a single “section” of the former.
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3.8. Lie cyclides. Consider a Legendre immersion

Λ = span{X,N}
for a surface x in H3 with normal n ∈ S2,1. In particular, let us choose

p =


0
0
0
0
0
1

 and q =


0
0
0
0
−1
0

 ,

and so

X =

xt1
0

 and N =

nt

0
1

 .

The principal curvatures ki satisfy (the ∂i are in principal curvature directions, that
is, when u, v are curvature line coordinates for x = x(u, v), we can take ∂1 = ∂u and
∂2 = ∂v)

(3.7) ∂in+ ki∂ix = 0 .

This is the Rodrigues equation, which holds for any spaceform. Now set

Ki := N + kiX .

Lemma 3.25. Ki is a curvature sphere of x.

Proof. We have

N + kiX =

nt + kix
t

ki
1


and X, dX ∈ span{p}⊥. Because

(N + kiX,X) = (N,X) + ki(X,X) = 0 + ki0 = 0 ,

we know that x lies in the sphere determined by Ki. Because

(N + kiX, dX) = (N, dX) + ki(X, dX) = 0 + ki0 = 0 ,

we know Ki is tangent to the surface x. Now, as ∂i is a directional derivative in the
direction associated with ki, we have

(Ki, ∂i∂iX) = ∂i(N + kiX, ∂iX)− (∂i(N + kiX), ∂iX) =

∂i(0)−

∂iki · xt∂iki
0

 ,

∂ixt0
0

 = ∂iki · ⟨x, ∂ix⟩R3,1 =

1
2
∂iki · ∂i(⟨x, x⟩R3,1) = 1

2
∂iki · ∂i(−1) = 0 .

Noting that now

(tKi, sX) = (tKi, d(sX)) = (tKi, ∂i∂i(sX)) = 0

for any scalar factors t and s considered as functions on the domain of x, we see that
Ki is a principal curvature sphere. �



91

Lemma 3.26. K = N + kX is a principal curvature sphere in some principal cur-
vature direction if and only if there exists a direction v⃗ such that ∂v⃗K ∈ Λ, and then
v⃗ will be the principal curvature direction for the principal curvature k.

Proof. We have ∂iKi = ∂iki ·X ∈ Λ. Conversely, for some function k on the surface
and some directional derivative ∂,

∂(N + kX) =

∂nt + k∂xt

0
0

+ ∂k ·X ∈ Λ

would give that ∂n+ k∂x = 0 (as ∂k ·X is in Λ, and

y⃗ =


y1
y2
y3
y4
0
0

 ∈ Λ

implies y⃗ = 0⃗), i.e. k is the principal curvature with principal curvature direction
∂. �
Remark 3.27. A Legendre immersion has an umbilic point at a domain point (u0, v0)
(umbilic points on Legendre immersions are the points where the two curvature
spheres coincide) if and only if its projection to a conformal S3 has an umbilic at
(u0, v0). Umbilics on Legendre immersions will cause problems when we consider Ω
surfaces, where isothermicity is involved, so we exclude them.

Remark 3.28. Curvature spheres are preserved under Lie sphere transformations.

Lemma 3.29. If Γ be a section of Λ, then dΓ is perpendicular to Λ.

Proof. A section is of the form Γ = aX + bN for some scalar functions a and b. Then

(Γ, X) = (aX + bN,X) = a · 0 + b · 0 = 0 ,

(Γ, N) = (aX + bN,N) = a · 0 + b · 0 = 0 ,

so

(dΓ, X) = −(aX + bN, dX) = −a(X, dX)− b(N, dX) = −a · 0− b · 0 = 0

and
(dΓ, N) = −(aX + bN, dN) = a(dX,N)− b(N, dN) = 0 .

�
The Ki can be used to determine the contact elements

Λ = span{K1, K2} ,
when excluding umbilics. Also, dKi ⊥ Λ and ∂iKi ∈ Λ, by Lemmas 3.29 and 3.26.
Set

V = span{K1, ∂2K1, ∂
2
2K1} , W = span{K2, ∂1K2, ∂

2
1K2} .

Proposition 3.30. V and W are perpendicular, and each is a Minkowski 3-space,
i.e. has metric with (+,+,−) signature.
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Proof. First we note the following properties:

(1) X and N are perpendicular, because the 3-dimensional tangent space TxH3

to H3 at x in R3,1 equals {x}⊥.
(2) Note that we cannot allow the surface X to have umbilic points, for K1 and

K2 to remain independent vectors, i.e. to have Λ = span{K1, K2} remain a
2-dimensional space.

(3) (∂2K1, K2) = −(K1, ∂2K2) = 0, since ∂2K2 ∈ Λ.
(4) (∂22K1, K2) = −(∂2K1, ∂2K2) = 0, since ∂2K2 ∈ Λ and Lemma 3.29 implies

∂2K1 is perpendicular to both K1 and K2.
(5) ∂1K1 ∈ Λ implies

∂1K1 = a1K1 + b1K2

for some scalar functions a1 and b1. So, for j = 1, 2, we have

(Kj, ∂2∂1K1) = (Kj, ∂2(a1K1 + b1K2)) =

a1(Kj, ∂2K1) + b1(Kj, ∂2K2) = 0 .

(6) Lemma 3.29 implies ∂2K1 is perpendicular to Λ, and also ∂jKj ∈ Λ for j = 1, 2,
so

(∂2K1, ∂jKj) = 0 .

(7) (∂1K2, ∂2K1) = ∂1(K2, ∂2K1)− (K2, ∂1∂2K2) = −(K2, ∂2∂1K1) = 0.
(8) (∂22K1, ∂1K2) = ∂2(∂2K1, ∂1K2)− (∂2K1, ∂2∂1K2) and then

(∂22K1, ∂1K2) = −(∂2K1, ∂1(a2K1 + b2K2)) =

−a2(∂2K1, ∂1K1)− b2(∂2K1, ∂1K2) = 0 .

(9) (∂22K1, ∂
2
1K2) = ∂2(∂2K1, ∂

2
1K2) − (∂2K1, ∂2∂

2
1K2) = −(∂2K1, ∂

2
1∂2K2) and

then

(∂22K1, ∂
2
1K2) = −(∂2K1, ∂

2
1(a2K1 + b2K2)) =

−∂1(∂2K1, ∂1(a2K1 + b2K2)) + (∂2∂1K1, ∂1(a2K1 + b2K2)) =

−∂1(a2(∂2K1, ∂1K1) + b2(∂2K1, ∂1K2))+

(∂2(a1K1 + b1K2), ∂1(a2K1 + b2K2)) =

(∂2(a1K1 + b1K2), ∂1(a2K1 + b2K2)) =

(a1∂2K1 + b1∂2K2, a2∂1K1 + b2∂1K2) = 0 .

(10) Λ ⊂ {∂2K1}⊥ and Λ is 2-dimensional and totally null, so the metric of R4,2

restricted to {∂2K1}⊥ cannot be of signature (+,+,+,+,−). So ∂2K1 is either
spacelike or lightlike.

(11) We now know

(∂2K1, ∂2K1) ≥ 0 ,

but it is actually strictly positive, seen as follows: if ||∂2K1||2 = 0, then
span{∂2K1,Λ} is totally null in R4,2, so must be only at most 2-dimensional,
which implies K1 and K2 are parallel, contradicting the fact that we have
excluded umbilics.
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Using the above properties, we can show the following:

(Kj, Kj) = 0 , j = 1, 2 ,

(K1, ∂2K1) = (K2, ∂1K2) = 0 ,

(K1, ∂
2
2K1) = −a , a > 0 ,

(K2, ∂
2
1K2) = −b , b > 0 ,

(K1, K2) = (K1, ∂1K2) = (K1, ∂
2
1K2) = 0 ,

(∂2K1, ∂2K1) = a ,

(∂1K2, ∂1K2) = b ,

(∂2K1, K2) = (∂2K1, ∂1K2) = (∂2K1, ∂
2
1K2) = 0 ,

(∂22K1, K2) = (∂22K1, ∂1K2) = (∂22K1, ∂
2
1K2) = 0 .

Here, a and b are functions (not constants).
Now, to complete the proof, one can just notice that the matrix (K1, K1) (∂2K1, K1) (∂22K1, K1)

(K1, ∂2K1) (∂2K1, ∂2K1) (∂22K1, ∂2K1)
(K1, ∂

2
2K1) (∂2K1, ∂

2
2K1) (∂22K1, ∂

2
2K1)

 =

 0 0 −a
0 a ∗
−a ∗ ∗


has strictly negative determinant, so V has a nondegenerate metric. Thus the metric
on V has either (+,+,−) or (−,−,−) signature. But (−,−,−) signature is not
possible in R4,2, so V is a Minkowski 3-space, and similarly so is W . �
Remark 3.31. Note that everything in Proposition 3.30 and its proof still holds if we
replace K1 and K2 by any scalar multiples of them.

Remark 3.32. We could rename V and W to V and V ⊥ if we like, now that we know
they are perpendicular.

The splitting V ⊕W of R4,2 by the perpendicular 3-planes V and W is called a
Lie cyclide, giving a congruence of Lie cyclides over the surface. Furthermore, each
Lie cyclide produces a Dupin cyclide (as explained at the beginning of Section 3.6),
which makes second order contact with the surface at that point on the surface. This
is the Dupin cyclide congruence of the surface. (This is somewhat akin to attaching
quadratic surfaces with second order tangential contact at points of a surface in R3.)

Proposition 3.33. A congruence of Lie cyclides (equivalently, Dupin cyclide con-
gruence) along a surface is constant if and only if the surface is a Dupin cyclide.

Proof. Lemma 3.26 implies there exist real scalars a and b so that

∂1K1 = aK1 + bK2 ,

and the Lie cyclide being constant implies

∂1K1 ∈ span{K1, ∂2K1, ∂
2
2K1} ,

and so b = 0. Thus ∂1K1||K1, and similarly ∂2K2||K2. Therefore

K1||∂1K1 = ∂1n+ k1∂1x+ ∂1k1 · x = ∂1k1 · x ,
and similarly K2||∂1k2 · x, giving that

∂1k1 · x||(n+ k1x)
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and

∂2k2 · x||(n+ k2x) .

Hence ∂1k1 = ∂2k2 = 0, and we have a Dupin cyclide. �
Lemma 3.34. The Dupin cyclide congruence of a lift of a surface of revolution in
a 3-dimensional Riemannian spaceform is constant along the rotational directions of
the surface. In particular, the congruence consists of only a 1-parameter family of
Dupin cyclides.

Proof. Without loss of generality, we can take the surface of revolution to be in R3,
as

x(u, v) = (f(u) cos v, f(u) sin v, g(u)) ,

where

f 2
u + g2u = f 2 ,

and the unit normal is

n(u, v) = f−1 · (−gu cos v,−gu sin v, fu) ,
and the first and second fundamental forms become

I =

(
f 2 0
0 f 2

)
, II =

(
f−1(fuguu − fuugu) 0

0 gu

)
.

Thus the principal curvatures are

k1 = f−3(fuguu − fuugu) , k2 = f−2gu .

Now, with

X =


1
2
(1 + x · x)

1
2
(1− x · x)

xt

0

 and N =


x · n
−x · n
nt

1

 ,

we find that K2 = k2X +N is independent of v. So

W = span{K2, K2,u, K2,uu}
is independent of v, as desired. Because V is perpendicular to W , V must also be
independent of v. (We can also check by direct computation that V is independent
of v). �

3.9. General frame equations for surfaces in H3 ⊂ R3,1. Take x ∈ H3 and
n ∈ S2,1 as in the beginning of Section 3.2. Set

F = (x, xu, xv, n) ,

where (u, v) are curvature line coordinates for x, so

nu + k1xu = nv + k2xv = 0 .

Thus the first and fundamental forms have the forms

|dx|2 = Edu2 +Gdv2 , II = k1Edu
2 + k2Gdv

2 .

Defining ϕ and ψ by

Fu = Fϕ , Fv = Fψ ,
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a computation gives

ϕ =


0 E 0 0
1 1

2
Eu

E
1
2
Ev

E
−k1

0 −1
2
Ev

G
1
2
Gu

G
0

0 k1E 0 0

 , ψ =


0 0 G 0
0 1

2
Ev

E
−1

2
Gu

E
0

1 1
2
Gu

G
1
2
Gv

G
−k2

0 0 k2G 0

 .

Then Fuv = Fvu implies
ϕv + ψϕ = ψu + ϕψ ,

which in turn gives the Gauss and Codazzi equations

(logE)v =
2(k1)v
k2 − k1

, (logG)u =
2(k2)u
k1 − k2

,

k1k2 − 1 =
−1

2
√
EG

((
Ev√
EG

)
v

+

(
Gu√
EG

)
u

)
.

3.10. Frame equations for flat surfaces in H3 via Lie cyclides. Because k1k2 =
1 for flat surfaces, away from umbilics we can set, for some real-valued function
φ = φ(u, v),

k1 = tanhφ , k2 = cothφ .

Then, by integrating the Codazzi equations, we have

E = fE(u) cosh
2 φ , G = fG(v) sinh

2 φ ,

for some functions fE and fG depending only on u and v, respectively. So, changing
coordinates via u = u(û) and v = v(v̂) appropriately, without loss of generality we
may assume the first fundamental form is

|dx|2 = cosh2 φdu2 + sinh2 φdv2 ,

and then the second fundamental form becomes

II = sinhφ coshφ · (du2 + dv2)

and the Gauss equation becomes simply

∆φ = φuu + φvv = 0 .

We also have

k1 − k2 =
−1

sinhφ coshφ
,

∂uk1
k1 − k2

= −k1∂uφ , ∂vk2 =
−∂vφ
sinh2 φ

,

∂vk2
k1 − k2

= k2∂vφ , ∂uk1 =
∂uφ

cosh2 φ
.

Note that (here we find the notation K̃i, rather than Ki, convenient, because of a
rescaling of the K̃i we make just below)

K̃i =

nt + kix
t

ki
1

 ,

∂uK̃1 =
∂uk1
k1 − k2

(K̃1 − K̃2) = −k1(K̃1 − K̃2)∂uφ ,
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∂vK̃2 =
∂vk2
k1 − k2

(K̃1 − K̃2) = k2(K̃1 − K̃2)∂vφ .

Then we have

∂u

(
coshφ · K̃1

)
= ∂uφ · (sinhφ · K̃2) ,

∂v

(
sinhφ · K̃2

)
= ∂vφ · (coshφ · K̃1) ,∣∣∣∂v(coshφ · K̃1)

∣∣∣2 = ∣∣∣∂u(sinhφ · K̃2)
∣∣∣2 = 1 .

Now we set
K1 := coshφK̃1 , K2 := sinhφK̃2 .

This will not change the 3-dimensional spaces V and W , and will not change the
truth of Proposition 3.30, by Remark 3.31. We then have

K1 = coshφ ·

nt + k1x
t

k1
1

 , K2 = sinhφ ·

nt + k2x
t

k2
1

 ,

and the consequent properties

∂uK1 = ∂uφ ·K2 ,

∂vK2 = ∂vφ ·K1 ,

∂u∂vK2 = ∂u∂vφ ·K1 + ∂uφ∂vφ ·K2 ,

∂v∂uK1 = ∂u∂vφ ·K2 + ∂uφ∂vφ ·K1 ,

∂2u∂vK2 = ∂2u∂vφ ·K1 + (2∂u∂vφ∂uφ+ ∂vφ∂
2
uφ) ·K2 + ∂uφ∂vφ · ∂uK2 ,

∂2v∂uK1 = ∂2v∂uφ ·K2 + (2∂u∂vφ∂vφ+ ∂uφ∂
2
vφ) ·K1 + ∂uφ∂vφ · ∂vK1 ,

∂uK2 = ∂uφ ·K1 + sinhφ · (k2 − k1) ·

∂uxt0
0

 ,

∂2uK2 = ∂2uφ ·K1 + (∂uφ)
2 ·K2 −

sinhφ

cosh2 φ
· ∂uφ ·

∂uxt0
0

+
1

coshφ
·

∂2uxt0
0

 ,

∂vK1 = ∂vφ ·K2 + coshφ · (k1 − k2) ·

∂vxt0
0

 ,

∂2vK1 = ∂2vφ ·K2 + (∂vφ)
2 ·K1 +

coshφ

sinh2 φ
· ∂vφ ·

∂vxt0
0

− 1

sinhφ
·

∂2vxt0
0

 ,

|∂vK1|2 = |∂uK2|2 = 1 .

Furthermore,
∂2uK2 ⊥ ∂uK2 , ∂2vK1 ⊥ ∂vK1

and
(∂2uK2, K2) = −|∂uK2|2 = (∂2vK1, K1) = −|∂vK1|2 = −1 .

Also,
(∂2uK2, ∂

2
vK1) = 0 ,
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seen as follows:

(∂2uK2, ∂
2
vK1) = ∂u(∂uK2, ∂

2
vK1)− (∂uK2, ∂u∂

2
vK1) =

∂u(∂v(∂uK2, ∂vK1)− (∂u∂vK2, ∂vK1))− ∂v(∂uK2, ∂u∂vK1)+

(∂u∂vK2, ∂u∂vK1) = ∂u(∂v0− 0)− ∂v0 + 0 = 0 .

Define
K̂1 = ∂2vK1 + αK1 , K̂2 = ∂2uK2 + βK2 ,

such that K̂j are null for both j = 1 and j = 2. This means taking

α = 1
2
|∂2vK1|2 , β = 1

2
|∂2uK2|2 .

Noting that

∂2vx = (sinhφ)2x− (tanhφ)∂uφ∂ux+ (cothφ)∂vφ∂vx+ k2(sinhφ)
2n ,

we find that

|∂2vx|2R3,1 = (k22 − 1)(sinhφ)4 + (sinhφ)2(∂uφ)
2 + (coshφ)2(∂vφ)

2 ,

and then that
α = 1

2
(∂uφ)

2 − (∂vφ)
2 + 1

2
.

Similarly, we have
β = 1

2
(∂vφ)

2 − (∂uφ)
2 − 1

2
.

One can then check that

(3.8) ∂vφ · ∂uβ + ∂uφ · ∂vα+ 2(α + β) · ∂u∂vφ = 0 .

Now all inner products amongst the elements of the basis

(3.9) F = {K1, ∂vK1, K̂1, K2, ∂uK2, K̂2}
for R4,2 are zero, except for

−⟨K1, K̂1⟩ = ⟨∂vK1, ∂vK1⟩ = −⟨K2, K̂2⟩ = ⟨∂uK2, ∂uK2⟩ = 1 .

One can check that

(3.10) 2∂u∂vφ∂vφ+ ∂uα + ∂uφ∂
2
vφ = 0 ,

(3.11) 2∂u∂vφ∂uφ+ ∂vβ + ∂vφ∂
2
uφ = 0 .

Using Equations (3.10) and (3.11), we have the properties

dK1 = ∂vK1dv + ∂uφK2du ,

d(∂vK1) = K1(∂uφ∂vφdu− αdv) + K̂1dv + ∂u∂vφ ·K2du ,

dK̂1 = ∂vK1(∂uφ∂vφdu− αdv) +K2((∂u∂
2
vφ+ α∂uφ)du−

(∂2u∂vφ+ β∂vφ)dv) + ∂u∂vφ∂uK2dv − K̂2∂vφdv ,

dK2 = K1∂vφdv + ∂uK2du ,

d(∂uK2) = K1∂u∂vφdv +K2(∂uφ∂vφdv − βdu) + K̂2du ,

dK̂2 = K1((∂
2
u∂vφ+ β∂vφ)dv − (∂u∂

2
vφ+ α∂uφ)du) + ∂vK1∂u∂vφdu−

K̂1∂uφdu+ ∂uK2(∂uφ∂vφdv − βdu) .

With F as defined in (3.9), we have the system

∂uF = FU , ∂vF = FV ,
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with U and V defined as

U =


0 ∂uφ∂vφ 0 0 0 −∂u∂2vφ− α∂uφ
0 0 ∂uφ∂vφ 0 0 ∂u∂vφ
0 0 0 0 0 −∂uφ
∂uφ ∂u∂vφ ∂u∂

2
vφ+ α∂uφ 0 −β 0

0 0 0 1 0 −β
0 0 0 0 1 0

 ,

V =


0 −α 0 ∂vφ ∂u∂vφ ∂2u∂vφ+ β∂vφ
1 0 −α 0 0 0
0 1 0 0 0 0
0 0 −∂2u∂vφ− β∂vφ 0 ∂uφ∂vφ 0
0 0 ∂u∂vφ 0 0 ∂uφ∂vφ
0 0 −∂vφ 0 0 0

 .

The compatibility condition ∂u∂vF = ∂v∂uF is

V U + ∂vU = ∂uV + UV ,

and this turns out to be equivalent to three equations. The first two are the equations
established in (3.10) and (3.11). The third equation, using ∆φ = 0, simplifies to
Equation (3.8).

3.11. Converting to the Weierstrass representation for flat surfaces in H3.
The Weierstrass-type representation found in [55] for flat surfaces in H3 was described
in Section 2.22, and we now consider how to write that representation in terms of φ.
Using the equations in (2.72),

(3.12) ω = ω̂dz =
−1

ξ2
dG , θ = θ̂dz =

ξ2

(G−G∗)2
dG∗ ,

where

ξ = δ · exp
∫ z

z0

dG

G−G∗
.

Having curvature line coordinates means, without loss of generality, that

ω̂θ̂ = 1
4
.

Then, without loss of generality (and with z = u+ iv),

|dx|2 = |ω + θ̄|2 =(
ω̂ ¯̂ω +

1

16ω̂ ¯̂ω
+

1

2

)
du2 +

(
ω̂ ¯̂ω +

1

16ω̂ ¯̂ω
− 1

2

)
dv2 =

cosh2 φdu2 + sinh2 φdv2 .

Then

cosh2 φ = ω̂ ¯̂ω +
1

16ω̂ ¯̂ω
+

1

2
implies

φ = ±1

2
log
(
4ω̂ ¯̂ω

)
= ∓1

2
log |ρ| ,

since

|ρ| = |θ̂|
|ω̂|

=
1

4ω̂ ¯̂ω
.
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Furthermore, Equation (3.12) gives

φ = ∓1

2
log

(
|ξ|4|G′

∗|
|G−G∗|2|G′|

)
.

Remark 3.35. In general, ω̂ being holomorphic implies

φ = ± log(2|ω̂|)
is harmonic, and

coshφ = |ω̂|+ 1/(4|ω̂|) , sinhφ = ±(|ω̂| − 1/(4|ω̂|))
implies |ω̂| = 1

2
e±φ.

Now we consider some simple explicit examples.
Note that the horosphere has been excluded from the beginning, because the con-

ditions k1 = tanhφ and k2 = cothφ exclude the possibility that k1 = k2 = 1.

Example 3.36. Round cylinder. See Figure 2.21. In this case, k1 and k2 are constant,
so φ is constant as well.

Example 3.37. Peach fronts. See Figure 2.22. We take

G =
i

2
z +

1

2
, G∗ =

i

2
z − 1

2
,

so ω̂θ̂ = 1/4 and
ω̂ = −ic̃e−iz , c̃ > 0

and
φ = ĉ± v , ĉ ∈ R .

Example 3.38. Surfaces of revolution. See Figure 2.21. We take

G = e

√
(1−µ)2

−4µ
z
, G∗ = µe

√
(1−µ)2

−4µ
z
, µ ∈ (0, 1) ∪ (1,∞) ,

so ω̂θ̂ = 1/4 and

ω̂ = c̃e

√
(1−µ)2

−4µ
µ+1
µ−1

z
,

and

φ = ĉ± i
µ+ 1√
−4µ

v , ĉ ∈ R .
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4. Ω surfaces

To discuss Ω surfaces, we first need to describe the relevant normal bundles of
sphere congruences, which we do in the next two sections.

4.1. Normal bundle for surfaces in PL5. Suppose [b] lies in PL5, where L5 is
the lightcone in R4,2. There exists, of course, a timelike vector v⃗ ∈ R4,2 such that
(b, v⃗) ̸= 0. We choose an orthonormal basis

{x0, x1, x2, x3, x4, v⃗}

of R4,2 of type (−,+,+,+,+,−). Let us assume (without loss of generality) we have
chosen the basis elements xj so that xj ⊥ b for j ≤ 3, and

(b, x4) = −(b, v⃗) , i.e. b ∈ span{x4, v⃗} .

There exists a neighborhood U of [b] in PR4,2 so that (y, v⃗) ̸= 0 for all [y] ∈ U . Define
the map

ϕ : U → ϕ(U) ⊆ R4,2 , ϕ




ρ0
ρ1
ρ2
ρ3
ρ4
1



 =


ρ0
ρ1
ρ2
ρ3
ρ4
0

 ,

where ρ0, ρ1, ρ2, ρ3, ρ4, 1 are the coordinates (with respect to the basis we have chosen)
of the appropriate representative y of [y] ∈ U . Using the natural topology on PR4,2,
ϕ is a local homeomorphism, and thus gives a local coordinate chart at b for PR4,2.

Let [γ] : R → U satisfy [γ(0)] = [b], then

ϕ[γ] =


γ0
γ1
γ2
γ3
γ4
0


when taking γ so that

γ =


γ0
γ1
γ2
γ3
γ4
1

 , so (ϕ[γ])′ =


γ′0
γ′1
γ′2
γ′3
γ′4
0

 ,

and thus

T[b]PR4,2 ⊆ span{v⃗}⊥ .



101

Then by considering specific curves γ, such as

γ(t) =


t
0
0
0
1
1


for example, one sees that

T[b]PR4,2 = span{v⃗}⊥ .
Suppose also that (γ, γ) = 0, i.e. γ is lightlike. Then (ϕ[γ], ϕ[γ]) = 1, and then

((ϕ[γ])′, ϕ[γ]) = 0, so in particular ((ϕ[γ])′(0), ϕ[b]) = 0, and so

(ϕ[γ])′(0) ∈ span{ϕ[b], v⃗}⊥ .

Note that

span{b}⊥ = span{x0, x1, x2, x3, b} .
If we take the correct scalar multiple of the representative b for the class [b], then also
ϕ[b] + v⃗ = b, hence span{ϕ[b], v⃗} = span{b, v⃗}. Thus

(ϕ[γ])′(0) ∈ span{x0, x1, x2, x3} ≈ span{b}⊥/span{b} ,

and so

T[b]PL
5 ⊆ span{x0, x1, x2, x3} .

Again, we can show that T[b]PL
5 and span{x0, x1, x2, x3} are equal by using specific

choices for γ, such as

γ(t) =
2

1 + t2


0
t
0
0

(1/2)(1− t2)
(1/2)(1 + t2)


for t close to 0. We conclude that

T[b]PL
5 = span{b}⊥/span{b} .

Now let [s] :M2 → PL5 be a surface with b = s(u0, v0), and so

T[s]PL
5 = span{s}⊥/span{s} .

The tangent space of [s] at (u0, v0) is

T(u0,v0)[s] = span{(ϕ[s])u, (ϕ[s])v}|(u0,v0) ⊆ span{s(u0, v0)}⊥/span{s(u0, v0)} .

The normal space N(u0,v0)[s] at (u0, v0) of [s] is then the set of vectors

N ⊥ (ϕ[s])u, (ϕ[s])v|(u0,v0)

(using the R4,2 metric to define perpendicularity) so that N ∈ span{x0, x1, x2, x3},
i.e.

N + span{s(u0, v0)} ∈ (span{(ϕ[s])u, (ϕ[s])v, s}|(u0,v0))
⊥/span{s(u0, v0)} .
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To avoid using the map ϕ, we can do the following: If s is normalized so that the
last coordinate of s (with respect to the basis chosen) is 1, and if s̃ = λs, then

(λs)u = λus+ λsu = λus+ λ(ϕ[s])u ,

so
(ϕ[s])u = λ−1s̃u − λ−2λus̃ ,

so
span{(ϕ[s])u, (ϕ[s])v, s} =

span{λ−1s̃u − λuλ
−2s̃, λ−1s̃v − λvλ

−2s̃, s̃} = span{s̃u, s̃v, s̃} .
Therefore the fibres of the normal bundle to [s] in PL5 are

(4.1) N(u,v)[s] = {N + span{s̃} |N ⊥ s̃, s̃u, s̃v}
for any choice of lift s̃. This normal bundle has 2-dimensional fibers.

The conditions for [s] to be isothermic with respect to the coordinates u, v are:

(1) The first fundamental form for s is conformal, i.e.

((ϕ[s])u, (ϕ[s])u) = ((ϕ[s])v, (ϕ[s])v) and ((ϕ[s])u, (ϕ[s])v) = 0 .

We can rewrite this condition as simply (su, su) = (sv, sv) and (su, sv) = 0 for
any choice of lift of s, once we note that this conformality property is invariant
of choice of that lift, giving a conformal equivalence class.

(2) The second fundamental form is diagonal, i.e. ((ϕ[s])uv, N) = 0 for all N ∈
N(u,v)[s], or equivalently, (suv, N) = 0 for all such N .

4.2. Normal bundle for surfaces in PL4. Take p timelike in R4,2, and a surface
[s(u, v)] ∈ {p}⊥ ≈ PR4,1. We can take v⃗ as in Section 4.1 so that b = s(u0, v0) ⊥ p
and s(u, v) ̸⊥ v⃗ for (u, v) close to (u0, v0). Now one can argue like in Section 4.1 that

T[b]PR4,1 = span{v⃗, p}⊥ ,

T[b]PL
4 = span{b, p}⊥/span{b} ,

T(u0,v0)[s] = span{(ϕ[s])u, (ϕ[s])v}|(u0,v0) ⊆ span{s(u0, v0), p}⊥/span{s(u0, v0)} ,

(4.2) N p⊥

(u,v)[s] = {N + span{s̃} |N ⊥ s̃, s̃u, s̃v, p}

for any choice of lift s̃. This normal bundle has 1-dimensional fibers.

Remark 4.1. Again considering the R4,2 Lie sphere geometry setting, when s = s(u, v)
is not perpendicular to p, then s gives a sphere congruence with spheres of non-zero
radius in resulting spaceforms. Assuming

||su||2 > 0 , ||sv||2 > 0 and su ⊥ sv ,

then
span{s, su, sv}⊥ ∩ span{p}⊥

has signature (+,−) and there exist precisely two independent vectors g, ĝ (up to
scalar factors) so that

g, ĝ ∈ span{s, su, sv}⊥ ∩ span{p}⊥ ∩ L5 ,

since V := span{s, su, sv} has signature (+,+, 0), so V ⊥ has signature (+,−, 0), and
then s ̸⊥ p implies V ⊥ ∩ span{p}⊥ has signature (+,−).
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Thus, when s ̸⊥ p, N(u0,v0)[s] contains two distinct lines (projectivized null planes)
span{s, g} and span{s, ĝ} in the quadric PL5, where g, ĝ ∈ span{p}⊥. Each of these
two families of lines envelops s. Then the normal bundle of the projection of s to
Möbius geometry p⊥ is

(4.3) Projp⊥(N(u,v)[s]) = span{g, ĝ} .

Now the conditions for s to be isothermic with respect to the coordinates u, v can
be written in terms of g and ĝ as:

(1) The first fundamental is conformal, i.e.

(su, su) = (sv, sv) and (su, sv) = 0 .

(2) The second fundamental form is diagonal, i.e.

(suv, s) = (suv, g) = (suv, ĝ) = 0 .

(Should s ⊥ p, the directions of g and ĝ would coincide, and in fact would become
the direction of s itself.)

4.3. Isothermic sphere congruences and Ω surfaces. In the following discussion,
any choice of 3-dimensional spaceform M3 will suffice, and we will consider a surface
x in M3 with unit normal field n in TxM

3 that lifts to a Legendre immersion Λ as in
Section 3.5. We can obtain R3 by taking

p =


0
0
0
0
0
1

 , q =


1
−1
0
0
0
0

 ,

and then the lifts of x and n will be

X =


1
2
(1 + |x|2)

1
2
(1− |x|2)

xt

0

 and N =


x · n
−x · n
nt

1


in R4,2, respectively. We could obtain S3 by taking

p =


0
0
0
0
0
1

 and q =


1
0
0
0
0
0

 ,

and then the lifts of x and n would be

X =

 1
xt

0

 and N =

 0
nt

1

 .
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We could obtain H3 by taking

p =


0
0
0
0
0
1

 and q =


0
0
0
0
−1
0

 ,

and then the lifts of x and n would be

X =

xt1
0

 and N =

nt

0
1

 .

However, to be explicit, let us take the case of R3.
Assume that x has coordinates u, v, and has first and second fundamental form

terms gij and bij, respectively, with respect to those coordinates. Assume also that x
is an immersion, so

g11g22 − g212 > 0 ,

and that x is umbilic free, so the principle curvatures k1 and k2 are not equal:

k1 ̸= k2 .

Let b = b(u, v) be a free real-valued function. We define

s = bX +N ,

which is a generic sphere congruence enveloped by span{X,N}. (See Remark 3.24.)
Since changing s by a scalar factor will not change the resulting sphere congruences,
we can also take the case ”b = ∞” to be

s = X .

Lemma 4.2. If there exists an isothermic sphere congruence s with isothermic coor-
dinates u, v, then the u, v are curvature line coordinates for x.

Proof. The trick for this proof is to consider the three fundamental forms I, II, III
for the isothermic sphere congruence s of X, with respect to the normal X of s.
What was written in Section 2.6 applies to s with normal X as well. By assumption
I = (ds, ds) and II = −(dX, ds) are both diagonal, so by Section 2.6, III = (dX, dX)
is also diagonal. This completes the proof. �
4.4. The first fundamental form for an isothermic sphere congruence s.
Now assume that s is an isothermic sphere congruence with isothermic coordinates
u, v, and hence g12 = b12 = 0, and b11 = k1g11 and b22 = k2g22, by Lemma 4.2.

A computation gives

(4.4) (ds, ds) = (b− k1)
2g11du

2 + (b− k2)
2g22dv

2 .

Note that this metric (4.4) would automatically be conformal if g11 = g22 and
b = 1

2
(k1 + k2) were the mean curvature. Also, in the case g11 = g22 and “b = ∞”,

i.e. s = X, then (ds, ds) = g11(du
2 + dv2) is conformal as well.

Note also that this metric (4.4) cannot be conformal if b equals one of k1 or k2.
(Since we are avoiding umbilic points, we have k1 ̸= k2.) Thus

b ̸= k1 and b ̸= k2 .
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We now consider the case when g11 is not equal to g22. By assumption, the metric
(4.4) is conformal. Because (su, su) = (sv, sv), we have

(4.5) b =
k1
√
g11 ∓ k2

√
g22√

g11 ∓
√
g22

,

b− k1 = ±(k1 − k2)

√
g22√

g11 ∓
√
g22

,

b− k2 = (k1 − k2)

√
g11√

g11 ∓
√
g22

,
b− k1
b− k2

= ±
√
g22√
g11

,

(b− k1)(b− k2) = ±(k1 − k2)
2

√
g11

√
g22

(
√
g11 ∓

√
g22)2

.

Using the Codazzi equations (2.22), we can compute that

bu
k1 − b

= (log(
√
g11 ∓

√
g22))u ∓

√
g11√
g22

k1,u
k1 − k2

,

bv
k2 − b

= (log(
√
g11 ∓

√
g22))v ±

√
g22√
g11

k2,v
k1 − k2

.

So

(4.6)

(
bu

k1 − b

)
v

−
(

bv
k2 − b

)
u

= ∓
((√

g11√
g22

k1,u
k1 − k2

)
v

+

(√
g22√
g11

k2,v
k1 − k2

)
u

)
.

4.5. The second fundamental form for s (case of b neither 0 nor ∞). By
isothermicity, (suv, Y ) must be zero for any choice of normal field Y in N [s]. The
(projectively 2-dimensional) normal bundle N [s] to [s] is as in (4.1). We have X +
span{s} ∈ N [s], and

(ds, dX) = b(dX, dX) + (dX, dN) = (b− k1)g11du
2 + (b− k2)g22dv

2 ,

which is diagonal with respect to u, v. However, because the normal bundle is 2-
dimensional, this does not yet tell us the second fundamental form of s is diagonal,
and we need the following more general argument.
For Y + span{s} to be in N [s], we need that (Y, s) = (Y, su) = (Y, sv) = 0, i.e.

(using Nu = −k1Xu and Nv = −k2Xv)

(Y,X) = −b−1(Y,N) ,

(4.7) (Y,Xu) =
bu

b(b− k1)
(Y,N) ,

(4.8) (Y,Xv) =
bv

b(b− k2)
(Y,N) .

Since the case of Y + span{s} = X + span{s} was already dealt with in the previous
paragraph, we may now assume that Y + span{s} ∈ N [s] satisfies

Y ̸∈ span{X,N} .
Then, if Y were perpendicular to N , we would also have Y ⊥ X, and noting that
span{su, sv} is spacelike, we would have Y ∈ span{X,N, su, sv}⊥ = span{X,N}, a
contradiction. Therefore

(Y,N) ̸= 0 .
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Then

(4.9) (Y, suv) = (Y, buvX + buXv + bvXu + bXuv +Nuv) = α · (Y,N) ,

where the scalar α in (4.9) is zero if and only if

(4.10)

(
bv − (b− k2)

k1,v
k1 − k2

)
bu

b− k1
+

(
bu − (b− k1)

k2,u
k2 − k1

)
bv

b− k2
= buv ,

which can be seen using that Nu = −k1Xu and Nv = −k2Xv imply

Nuv = −1
2
k1,vXu − 1

2
k2,uXv − 1

2
(k1 + k2)Xuv ,

and that

Xuv =
(g11)v
2g11

Xu +
(g22)u
2g22

Xv = k1,v(k2 − k1)
−1Xu + k2,u(k1 − k2)

−1Xv ,

coming from equations like those in (2.15), (2.16) and (2.22).
We now rewrite Equation (4.10) in a cleaner form:

Lemma 4.3. Equation (4.10) is equivalent to

(4.11) d

(
bu

k1 − b
du+

bv
k2 − b

dv

)
= 0 .

Proof. Noting that

1

k1 − k2

b− k2
b− k1

+
1

k2 − k1

b− k1
b− k2

=
1

b− k1
+

1

b− k2
,

Equation (4.10) becomes(
bv
b− k2
k1 − k2

− (b− k2)
k1,v

k1 − k2

)
bu

b− k1
+

(
bu
b− k1
k2 − k1

−

(b− k1)
k2,u

k2 − k1

)
bv

b− k2
= buv ,

so
1

k1 − k2

k2 − b

k1 − b
(bv − k1,v)bu −

1

k1 − k2

k1 − b

k2 − b
(bu − k2,u)bv = buv ,

so
buv

k1 − b
+ (b− k1)v

bu
(k1 − b)2

=
buv

k2 − b
+ (b− k2)u

bv
(k2 − b)2

,

which is equivalent to (
bu

k1 − b

)
v

=

(
bv

k2 − b

)
u

.

This last equation proves the lemma. �

We have now proven the following:

Lemma 4.4. s = bX + N , with b ∈ R \ {0}, is an isothermic sphere congruence
enveloped by span{X,N} if and only if b is as in (4.5) and is a solution to Equations
(4.10) and (4.11).
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Lemma 4.3 implies that both sides of (4.6) being equal to zero is the condition for
s to be an isothermic sphere congruence. This provides Demoulin’s equation:

D :=

(√
g11√
g22

k1,u
k1 − k2

)
v

+

(√
g22√
g11

k2,v
k1 − k2

)
u

= 0 .

Because of the ∓ freedom in choosing b in (4.5), we have the following corollary.

Corollary 4.5. Whenever we have one isothermic sphere congruence bX + N with
b ∈ R \ {0} for a non-umbilic immersion x, then there is a second isothermic sphere
congruence. We call these two isothermic sphere congruences an Ω pair.

4.6. Definition of Ω surfaces. Although we have only considered the case b ∈
R \ {0} so far, the following definition includes the cases b = 0 and b = ∞ as well.

Definition 4.6. The Legendre immersion Λ = span{X,N} is an Ω surface if there
exists an isothermic sphere congruence s enveloped by Λ (congruences with principal
curvature spheres are excluded).

Since span{X,N} is determined by x alone, we can also refer to x itself as an Ω
surface.

Remark 4.7. Suppose a surface x lifts to a Legendre immersion Λ = span{X,N}
enveloping an isothermic sphere congruence s. Then the sphere congruence resulting
from s is enveloped by another surface x̂ (with lift X̂ and corresponding Legendre

immersion span{X̂, s}). This defines a transformation between x and x̂. This trans-
formation takes curvature line coordinates of x to curvature lines coordinates of x̂,
so it is a Ribaucour transformation. (We referred to X and X̂ as g and ĝ in Remark
4.1.)

4.7. The second fundamental form for s (b = ∞ case). In this case, s = X,

and the normal bundle N p⊥

(u,v)[s] with 1-dimensional fibres is as in Section 4.2, with

fibres determined by the span of the lift N of n. Thus isothermicity of s = X implies
isothermicity of the x in R3. We also conclude, conversely, that the following lemma
holds, first proven by Demoulin:

Lemma 4.8. All isothermic surfaces are Ω surfaces.

Like in Lemma 4.4 and Corollary 4.5, the only other possible isothermic sphere
congruence is given by the mean curvature b = 1

2
(k1 + k2) = H0. When we take that

other choice b = H0, and when H0 ̸= 0, we do indeed have this second isothermic
sphere congruence, by the following Lemma 4.9. Thus Corollary 4.5 holds when
b = ∞, i.e. s = X, and H0 ̸= 0, as well.

Lemma 4.9. When g11 = g22 and b = 1
2
(k1 + k2) = H0 ̸= 0, Demoulin’s equation

holds, and becomes

(4.12) k1,vH0,u − k2,uH0,v = H0,uv(k1 − k2) .

Proof. The Codazzi equations for curvature line coordinates are as in (2.22).

k1,uv =
g11,uv
2g11

(k2 − k1)−
g11,ug11,v
2g211

(k2 − k1) +
g11,v
2g11

(k2,u − k1,u) =

g11,uv
2g11

(k2 − k1)−
g11,ug11,v
2g211

(k2 − k1) +
k1,v

k2 − k1
(k2,u − k1,u) ,
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k2,uv =
g22,uv
2g22

(k1 − k2)−
g22,ug22,v
2g222

(k1 − k2) +
k2,u

k1 − k2
(k1,v − k2,v) .

Now,

−1
2
(k1,uv + k2,uv)(k2 − k1)

2 = −1
2
(k2 − k1)(−k2,u(k1,v − k2,v) + k1,v(k2,u − k1,u)) ,

and this is exactly the same equation as (4.12), and confirms Demoulin’s equation. �

4.8. The second fundamental form for s (b = 0 case). Because we have divided
by b at some places in the above computations, we deal with the only remaining case
b = 0 here separately. This is the case that

s = N

and

k21g11 = k22g22 .

(When this property is satisfied, we can call the surface a Laguerre isothermic surface.)
If k1 were zero, then the equation immediately above implies k2 is also zero, so we
would have umbilic points, which have been excluded, allowing us to conclude that

k1 ̸= k2 , K := k1k2 ̸= 0 .

The conditions for Y + span{s} ∈ N [s] are

(Y,N) = (Y,Nu) = (Y,Nv) = 0 .

Then

(Y, suv) = (Y,Nuv) = (Y,−1
2
k1,vXu − 1

2
k2,uXv − 1

2
(k1 + k2)Xuv) =

(
Y,

k1,vk2
k1 − k2

Xu +
k2,uk1
k2 − k1

Xv

)
=

(
Y,

k1,vk2
k1(k2 − k1)

Nu +
k2,uk1

k2(k1 − k2)
Nv

)
= 0 ,

and thus diagonality of the second fundamental form is automatic.
Two possibilities occur:

(1) H0 = 0 and g11 = g22, and b = ∞ gives the second isothermic sphere congru-
ence (i.e. the point sphere congruence).

(2) H0 ̸= 0, and the other b as in (4.5) is KH−1
0 ∈ R \ {0}.

One special case of this second possibility (2) is that x is the parallel surface at
distance t of an isothermically parametrized minimal surface, and we find that K/H0

is then constant, and

t = H0/K , and k21g11 = k22g22 .

So in this case, the other choice of b = K/H0 in (4.5) is constant, and then clearly,
via (4.6), Demoulin’s equation holds.
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4.9. Demoulin’s equation in general spaceforms M3.

Lemma 4.10. Demoulin’s equation is independent of choice of spaceform.

Proof. In the case of M0 = R3, Demoulin’s equation is D = 0. When changing to the
spaceform Mκ for general κ, we have

k̂j = t · kj + 2κ(x · n0) , ĝ11 = t−2g11 , ĝ22 = t−2g22 ,

with
t = 1 + κ|x|2

(see the proof of Proposition 2.28). So(√
ĝ11√
ĝ22

k̂1,u

k̂1 − k̂2

)
v

+

(√
ĝ22√
ĝ11

k̂2,v

k̂1 − k̂2

)
u

=

(√
g11√
g22

2κ(x · xu)k1 + 2κ(x · n0,u) + tk1,u
t(k1 − k2)

)
v

+(√
g22√
g11

2κ(x · xv)k2 + 2κ(x · n0,v) + tk2,v
t(k1 − k2)

)
u

=(√
g11√
g22

0 + tk1,u
t(k1 − k2)

)
v

+

(√
g22√
g11

0 + tk2,v
t(k1 − k2)

)
u

= D .

So Demoulin’s equation holds for M0 = R3 if and only if it holds for any Mκ. �
Similarly, Equation (4.4) with b as in Equation (4.5) is invariant under choice of

spaceform, so we also have the following lemma.

Lemma 4.11. With x and n given by any choice of spaceform, and with κj and gii
determined by that spaceform, the form of b for isothermic s = bX +N in Equation
(4.5) remains valid.

Example 4.12. With Lemma 4.11 now available to us, we can check that flat fronts
in H3 are Ω. With φ as in Section 3.10, and setting C := coshφ and S := sinhφ, we
have

g11 = C2 , g22 = S2 , k1 = S/C , k2 = C/S .(
C

S

(S/C)u
(S/C)− (C/S)

)
v

+

(
S

C

(C/S)v
(S/C)− (C/S)

)
u

= 0 ,

so Demoulin’s equation holds.
Furthermore, by Lemma 4.11,

b =
(S/C)C ∓ (C/S)S

C ∓ S
= ±1 ,

so
s = N ±X ,

and these are exactly the two hyperbolic Gauss maps (so the two Gauss maps lie
in the two sphere congruences, respectively). This means that the isothermic sphere
congruences are the two horosphere congruences, and the two hyperbolic Gauss maps
are conformal maps, i.e. holomorphic.

We have now shown that:
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Lemma 4.13. Flat fronts are Ω surfaces.

Note that flat fronts are not isothermic in general, because(
log

cosh2 φ

sinh2 φ

)
uv

̸= 0

in general, so (see Section 2.5):

Corollary 4.14. Not all Ω surfaces x are isothermic.

4.10. Harmonic separation, Moutard lifts of isothermic sphere congruences.
Now we consider the notion of harmonic separation. Four vectors v⃗1, v⃗2, v⃗3, v⃗4 are
said to be harmonically separated if their cross ratio is −1, i.e.

cr(v⃗1, v⃗2, v⃗3, v⃗4) = −1 .

Lemma 4.15. The two isothermic sphere congruences of an Ω surface separate the
curvature sphere congruences harmonically.

Proof. Any sphere congruence, as at the beginning of Section 4.3, is of the form

bX +N .

The four values of b under consideration, for one curvature sphere congruence, then
one isothermic sphere congruence, then the other curvature sphere congruence, then
the other isothermic sphere congruence, are

b1 = k1 , b2 =
k1
√
g11 + k2

√
g22√

g11 +
√
g22

, b3 = k2 , b4 =
k1
√
g11 − k2

√
g22√

g11 −
√
g22

.

Then the cross ratio is

(b2 − b1)(b3 − b2)
−1(b4 − b3)(b1 − b4)

−1 =(
−k1 +

k1
√
g11 + k2

√
g22√

g11 +
√
g22

)(
k2 −

k1
√
g11 + k2

√
g22√

g11 +
√
g22

)−1

·(
k1
√
g11 − k2

√
g22√

g11 −
√
g22

− k2

)(
k1 −

k1
√
g11 − k2

√
g22√

g11 −
√
g22

)−1

= −1 .

�
The next technical lemma is for the purpose of establishing Corollary 4.17.

Lemma 4.16. cr(K1, aK1 + bK2, K2, cK1 − dK2) = −1 implies the 2-dimensional
vectors (a, b) and (c, d) are parallel.

Proof.
−1 = cr(K1, aK1 + bK2, K2, cK1 − dK2) =

cr(K1, K1 + (b/a)K2, K2, K1 + (−d/c)K2) =

cr(0, b/a,∞,−d/c) = −bc/(ad) .
�

Corollary 4.17. If K1, K2 are the principal curvature sphere congruences, and s1,
s2 are the isothermic sphere congruences, then we can choose the lifts sj so that

s1 = aK1 + bK2 and s2 = aK1 − bK2
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The next remark will be used in the proof of Lemma 4.19.

Remark 4.18. Theorem 2.2 in [31] is the following: Suppose that (, ) is a scalar product
on a finite-dimensional real vector space V and that U is a subspace of V .

(1) Then U⊥⊥ = U and dimU + dimU⊥ = dimV .
(2) The scalar product (, ) is nondegenerate on U if and only if it is nondegenerate

on U⊥. If the form is nondegenerate on U , then V is the direct sum of U and
U⊥.

(3) If V is the orthogonal direct sum of two spaces U and W , then the scalar
product (, ) is nondegenerate on U and W , and W = U⊥.

The next lemma provides us with a third alternative for determining Ω surfaces,
other than just direct application of the definition of Ω surfaces or confirmation of
Demoulin’s equation. We can instead investigate whether there exists a section s
having a Moutard lift.
In this lemma, we consider a section s = s(u, v) of a Legendre immersion Λ =

Λ(u, v). We say that s is a Moutard lift if there exist coordinates u, v for which s
satisfies

suv||s .
Nondegeneracy of s = s(u, v) is assumed, which means that s contains no principal
curvature spheres. (This is analogous to the assumption of immersedness in Lemma
2.19.) Like in Lemma 3.26, we can then check that neither su nor sv lie in the null
plane given by Λ, so in particular

(su, su) > 0 and (sv, sv) > 0 .

Lemma 4.19. Let s = s(u, v) be a nondegenerate section of a Legendre immersion
Λ(u, v). Then s can be scaled to a Moutard lift if and only if it is isothermic.

Proof. To prove one direction: Assume s is a Moutard lift, so suv = αs for some scalar
α. Then

(Nu, sv) = −(N, suv) = −α(N, s) = 0

for all N ∈ N [s]. In particular,
(su, sv) = 0 .

This implies we have curvature line coordinates u, v for s.
Then (su, su)v = 2(su, suv) = 0 because suv is parallel to s, which implies (su, su)

is independent of v. Similarly, (sv, sv) is independent of u. Thus we can scale the
diagonal entries of the first fundamental form, by a change of coordinates of the form
u→ ũ(u) and v → ṽ(v), so that they are equal to each other. In fact, such a change of
coordinates can be chosen so that the metric for s becomes du2+ dv2 (or the identity
in matrix form).
To prove the opposite direction: Assume s is isothermic with isothermic coordinates

u, v. We can rescale s so that |ds|2 = du2+dv2 without affecting the Moutard equation
suv = αs, although the scalar α will change. Taking the envelopes g, ĝ as in Remark
4.1, g, ĝ ⊥ s, ds. The assumption that we have curvature line coordinates implies,
using Remark 4.18,

suv ∈ (span{s, g, ĝ})⊥ = span{s, su, sv} .
Now

0 = 1
2
(1)v =

1
2
(|su|2)v = (su, suv)
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implies suv ⊥ su. Similarly, suv ⊥ sv. So

suv ∈ (span{s, su, sv})⊥ = span{s, g, ĝ} .
Therefore suv is parallel to s. �

Note that, in Lemma 4.19, the coordinates u, v for which the Moutard equation
suv = αs holds are the isothermic coordinates.

Remark 4.20. Regarding the second half of the above proof, note that once

(4.13) suv = asu + bsv + cs

holds for one particular choice of lift s, it holds again for any choice αs (although the
coefficients a, b and c will change). Then, as we already know

suv ∈ span{su, sv, s} ,
we have the following way to test whether s is an isothermic sphere congruence: We
are given that there exist a, b and c so that (4.13) holds. Now, if αs is the actual
Moutard lift, so (αs)uv||s, it follows that a = −(logα)v and b = −(logα)u. Thus
au = bv is the test equation for s being isothermic. Then, once that holds, we find
that

α = e−
∫
adv = e−

∫
bdu .

Before stating more results on Moutard lifts, we prepare the next two lemmas.
Regarding the next lemma, see also Lemma 3.26.

Lemma 4.21. Let u, v be coordinates for a Legendre immersion Λ = Λ(u, v) that are
curvature line coordinates for the projection of Λ to a 3-dimensional spaceform. If
K1, K2 are the principal curvature spheres with respect to u, v, respectively, then

K1,u, K2,v ∈ span{K1, K2} .

Proof. K1 = r(N + k1X) for some scalar function r, thus

K1,u = ru(N + k1X) + r(Nu + k1,uX + k1Xu) =

ru(N + k1X) + rk1,uX ∈ span{X,N} = span{K1, K2} .
The argument is similar for K2,v. �

As we saw in Section 3.8,

span{K1, K1,v, K1,vv} ⊥ span{K2, K2,u, K2,uu} ,
and thus we have:

Lemma 4.22. span{K1,v}, span{K2,u}, span{K1, K2} are all independent vector sub-
spaces.

Proof. It suffices to note thatK1, K1,v, K2, K2,u are all perpendicular, and |K1,v|2 > 0,
|K2,u|2 > 0. (These last two inequalities were seen in Section 3.8.) �

The next lemma also shows us that, generically, existence of one isothermic sphere
congruence implies existence of a second one. This is something we also saw in
Corollary 4.5, but now we phrase the result in terms of Moutard lifts.

Lemma 4.23. If aK1 + bK2 is Moutard, then so is aK1 − bK2.
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Proof. By Lemma 4.21, there exist scalars e, f , g and h such that

K1,u = eK1 + fK2 , K2,v = gK1 + hK2 .

By assumption, we have that aK1 + bK2 and (aK1 + bK2)uv are parallel, and we also
have

(aK1 + bK2)uv = (auv + ave+ bug + aev + bgu + afg + bge)K1+

(buv + avf + buh+ afv + bhu + afh+ bgf)K2+

(ae+ au)K1,v + (bh+ bv)K2,u .

Then Lemma 4.22 implies ae+ au = bh+ bv = 0, so

(aK1 + bK2)||(aK1 + bK2)uv =

((bg)u + g(af + be))K1 + ((af)v + f(ah+ bg))K2 ,

which gives

(4.14) b(bg)u + b2ge = a(af)v + a2fh .

Now, changing aK1 + bK2 to aK1 − bK2, we obtain

(aK1 − bK2)uv = (−(bg)u + g(af − be))K1 + ((af)v + f(ah− bg))K2 ,

and we want this to be parallel to aK1 − bK2. For this, we need

(−b)(−bg)u + (−b)2ge = a(af)v + a2fh ,

which holds, as it is equivalent to (4.14). �
Remark 4.24. If we rescale K1 and K2 so that a = b = 1 in Lemma 4.23, then the
argument in the proof of Lemma 4.23 shows e = h = 0, so

K1,u||K2 and K2,v||K1 .

4.11. Flat connections and T-transforms. With the wedge product for R4,2 as
described in Remark 2.43, the following lemma can be proven in just the same way
as Lemma 2.46 was.

Lemma 4.25. For an isothermic sphere congruence s with isothermic coordinates
u, v, Γλ = d+ λτ is flat for any choice of λ, where the retraction form τ of s is

τ :=
2

(su, su)
s ∧ (−sudu+ svdv) .

Like in the proof of Lemma 2.46,

[τ ∧ τ ] = dτ = 0

here as well.

Remark 4.26. Note that τ is invariant of the choice of lift s (see also Remark 2.45).

Definition 4.27. A Calapso transform T ∈ O4,2 (also called a T -transform) is a
solution of

(4.15) dT = T · λτ .

Note that such a solution T exists because dτ = [τ ∧ τ ] = 0.
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Remark 4.28. τ ∈ o4,2 implies T ∈ O4,2 if the initial condition for (4.15) is chosen in
O4,2. Then

(v⃗, w⃗) = (T v⃗, T w⃗)

for all v⃗, w⃗ ∈ R4,2. Thus

(T v⃗, w⃗) = (T v⃗, T · T−1w⃗) = (v⃗, T−1w⃗) .

Lemma 4.29. If s is a Moutard lift, then Ts is also a Moutard lift.

Proof. Note that τs = 0, and (s ∧ sv)su = 0. Then

(Ts)uv = (λT (τ(∂u))(s) + Tsu)v = (Tsu)v =

λT (τ(∂v))(su) + Tsuv = Tsuv
is parallel to Ts. �
Remark 4.30. In fact, in the proof of Lemma 4.29, we have seen that s and Ts even
have the same factor function in the Moutard equation.

Corollary 4.31. Ts is also isothermic.

Proof. This follows from Lemma 4.19. �
Remark 4.32. Note that the retraction form for Ts becomes TτT−1. seen by direct
computation.

Remark 4.33. If, in addition to being isothermic, s is also a curvature sphere congru-
ence for some Legendre immersion Λ, then Ts is a curvature sphere congruence for
TΛ as well.

4.12. Retraction forms for pairs of isothermic sphere congruences. We now
notate the two isothermic sphere congruences of an Ω surface x (or rather, its lift to
a Legendre immersion Λ in R4,2, an Ω surface in Lie sphere geometry) by s±, with
corresponding retraction forms

τ± =
2

(s±u , s
±
u )
s± ∧ (−s±u du+ s±v dv)

and corresponding solutions T± of

dT± = T± · λτ± ,
respectively. So

Λ = span{s+, s−} .

Lemma 4.34. The connection

Γλ,t := d+ λ(tτ+ + (1− t)τ−)

is flat for any choices of t and λ.

Proof. The proof goes along the same lines as the proof of Lemma 4.25. We need

(tτ+(∂u) + (1− t)τ−(∂u))v − (tτ+(∂v) + (1− t)τ−(∂v))u = 0 ,

but this follows directly from Lemma 4.25 applied to τ+ and τ− separately. We also
need

{(tτ+(∂u) + (1− t)τ−(∂u))(tτ
+(∂v) + (1− t)τ−(∂v))−

(tτ+(∂v) + (1− t)τ−(∂v))(tτ
+(∂u) + (1− t)τ−(∂u))}Z = 0
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for all Z ∈ R4,2. Lemma 4.25 implies it suffices to show

τ+(∂u)τ
−(∂v) + τ−(∂u)τ

+(∂v)− τ−(∂v)τ
+(∂u)− τ+(∂v)τ

−(∂u) = 0 ,

which follows from a computation using

(s+u , s
−
v ) = −(s+, s−uv) = (s+v , s

−
u ) .

(This computation simplifies somewhat when using Moutard lifts for s±.) �
Lemma 4.35. For the right choices of Moutard lifts s±, and the right choices of
coordinates u, v,

τ+ − τ− = d(s+ ∧ s−) ,
that is,

(τ+ − τ− − d(s+ ∧ s−))Z = 0

for all Z ∈ R4,2.

Proof. By Corollary 4.17, Lemma 4.23 and Remark 4.24, we can normalize the lifts
of the principal curvature spheres K1 and K2 so that

(4.16) s+ = K1 +K2 , s− = K1 −K2

are Moutard lifts of the isothermic sphere congruences, and then

(K1)u = βK2 and (K2)v = γK1

for some functions β and γ, by Remark 4.24. As seen in the proof of Lemma 4.19,
||s+u ||2 = ||s+v ||2 can be taken to be constant (i.e. independent of u and v), so we can
rescale u, v so that ||s±u ||2 = ||s±v ||2 = 2. Then

τ+ − τ− − d(s+ ∧ s−) =

s+ ∧ (−s+u du+ s+v dv)− s− ∧ (−s−u du+ s−v dv)−
s+ ∧ (s−u du+ s−v dv) + s− ∧ (s+u du+ s+v dv) =

−s+ ∧ ((s+ + s−)udu+ (s− − s+)vdv)+

s− ∧ ((s+ + s−)udu+ (s+ − s−)vdv) =

−2(s+ ∧ (K1,udu−K2,vdv)− s− ∧ (K1,udu+K2,vdv)) =

−2(s+ ∧ (βK2du− γK1dv)− s− ∧ (βK2du+ γK1dv)) =

−2
(
β(s+ − s−) ∧K2du− γ(s+ + s−) ∧K1dv

)
=

−2 (β(2K2) ∧K2du− γ(2K1) ∧K1dv) = 0 .

�

By Equation (4.16), we also then have:

Corollary 4.36. For the right choices of lifts s±,

s+ ∧ s− = −2K1 ∧K2 .

Corollary 4.37. For the right choices of Moutard lifts s±, and the right choices of
coordinates u, v,

τ+ − τ− = −2d(K1 ∧K2) .
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4.13. T -transforms of pairs of isothermic sphere congruences. We now wish
to show that, when

(4.17) T+(u0, v0) = T−(u0, v0)

for some value (u0, v0), then, where the T± are defined as in (4.15) with τ replaced
by τ±, respectively,

(4.18) T+(span{s+, s−}) = T−(span{s+, s−}) = span{T+s+, T−s−} ,
so that the two deformations, either by T+ or by T−, of the sphere congruences
(sections of span{s+, s−}) give the same Legendre immersions. Thus this constitutes
a 1-dimensional deformation of the original Legendre immersion. In particular, by
Corollary 4.31, the deformed Legendre immersions are also Ω.

Lemma 4.38. Under suitable initial conditions for T±,

(4.19) T+(1− 1
2
λs+ ∧ s−) = T−(1− 1

2
λs− ∧ s+) =: T̂ ,

(4.20) T+ = T−(1− λs− ∧ s+) , T− = T+(1− λs+ ∧ s−) .

Proof.

d(T+(1− 1
2
λs+ ∧ s−)) = T+(λτ+(1− 1

2
λs+ ∧ s−)− 1

2
λd(s+ ∧ s−)) =

T+(1− 1
2
λs+ ∧ s−) · λ(τ+ − 1

2
d(s+ ∧ s−)) .

A corresponding equation holds for τ− as well. So

T+(1− 1
2
λs+ ∧ s−)

and
T−(1− 1

2
λs− ∧ s+)

satisfy the same differential equation, by Lemma 4.35. If we choose the initial condi-
tions of T± appropriately, we have (4.19). Equation (4.20) is immediate from

(1− 1
2
λs− ∧ s+)−1 = 1− 1

2
λs+ ∧ s− .

�
If fact, from Equation (4.19), we have this corollary:

Corollary 4.39. T+s+ = T−s+ and T+s− = T−s−.

This corollary is actually a stronger statement than the relations in (4.18) we first
set out to prove.

Lemma 4.40. When T± ∈ O4,2, then also T̂ ∈ O4,2.

Proof. For Z1, Z2 ∈ R4,2,

((1− 1
2
λs+ ∧ s−)Z1, (1− 1

2
λs+ ∧ s−)Z2) =

(Z1, Z2) +
1
4
λ2((s+ ∧ s−)Z1, (s

+ ∧ s−)Z2)−
1
2
λ(((s+ ∧ s−)Z1, Z2) + (Z1, (s

+ ∧ s−)Z2)) = (Z1, Z2) .

So 1− 1
2
λs+ ∧ s− ∈ O4,2. Similarly, 1− 1

2
λs− ∧ s+ ∈ O4,2. �

Lemma 4.41. span{T+s+, T+s−} is a Legendre immersion.
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Proof. We need only check the contact condition now:

(d(T+s+), T+s−) = (T+λτ+s+ + T+ds+, T+s−) =

(T+ds+, T+s−) = (ds+, s−) = 0 .

�

4.14. The case of flat surfaces in H3. In this section, we describe some properties
of flat fronts in H3.

Theorem 4.42. Suppose Λ is an Ω surface with isothermic sphere congruences s+

and s−, and that s+ and s− are each enveloped by a constant sphere S̃+ and S̃−,
respectively. Then Λ projects to a flat surface in some H3. The converse also holds.

Proof. The spheres S̃+ and S̃− are given by vectors S+ and S− in the light cone L5

of R4,2. Then

(s±,S±) = (s±u ,S±) = (s±v ,S±) = 0 .

Now we need to see that if we project to a correctly chosen H3, we can have S+

and S− both giving a single sphere ∂H3 (with opposite orientations), and then we
need to see that the resulting surface x is flat in that H3.
An O4,2 isometric motion can take any S+ and S− to any other two lightlike vectors

Ŝ+ and Ŝ− such that (S+,S−) = (Ŝ+, Ŝ−), so we can take

Ŝ+ =


0
0
0
0
1/2
1/2

 and Ŝ− =


0
0
0
0

(S+,S−)
−(S+,S−)

 .

Then we can rescale Ŝ± as we please, as this will not change the spheres they represent.
So without loss of generality,

(4.21) S+ =


0
0
0
0
1
1

 , S− =


0
0
0
0
1
−1

 .

We take

p =


0
0
0
0
0
1

 ,
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so that {p}⊥ has signature (−,+,+,+,+), and then

q =


0
0
0
0
1
0


will give H3 (the same H3 asMκ =M−1 in (2.4), but with the fifth coordinate ofM−1

in (2.4) shifted to the first coordinate here). Then S± both represent ∂H3, i.e. the
same ideal boundary sphere of H3, but with opposite orientations.

Now Λ = span{s+, s−} gives the Legendre lift of the surface x in this H3, and
(ds+, ds+) and (ds−, ds−) are conformally related. Also, s+ ⊥ S+ and s− ⊥ S−.
We can rescale s± without affecting conformality of (ds±, ds±), so without loss of
generality

(4.22) s+ =


s+0
s+1
s+2
s+3
1
1

 , s− =


s−0
s−1
s−2
s−3
1
−1

 .

The vector (s+0 , s
+
1 , s

+
2 , s

+
3 ) represents the hyperbolic Gauss map G, and the vector

(s−0 , s
−
1 , s

−
2 , s

−
3 ) represents the other hyperbolic Gauss map G∗, where G and G∗ are

as in Section 2.22. Conformality of (ds±, ds±) implies

−(s±0,u)
2 + (s±1,u)

2 + (s±2,u)
2 + (s±3,u)

2 = −(s±0,v)
2 + (s±1,v)

2 + (s±2,v)
2 + (s±3,v)

2 ,

−s±0,us±0,v + s±1,us
±
1,v + s±2,us

±
2,v + s±3,us

±
3,v = 0 .

This means that G and G∗ are holomorphic maps, and this implies that the surface
x, when projected to the H3 above, is flat (see Section 2.22).

To show the converse, consider a flat surface x in the H3 determined by

p =


0
0
0
0
0
1

 and q =


0
0
0
0
1
0

 .

We have already established in Example 4.12 that the surface is Ω, and it remains only
to note that, for s± = N ∓X as in Example 4.12, we have (s+,S+) = (s−,S−) = 0
with S± as in (4.21). �

We can now define the notion of polynomial conserved quantities P± for the con-
nections Γ± = d + λτ±, respectively, just like in Section 2.16. The next corollary
employs notation defined in Lemma 4.34.

Corollary 4.43. An Ω surface x is a flat surface in some H3 if and only if x has
two order-zero (i.e. constant in λ) conserved quantities S± ∈ L5 for Γ+ = Γλ,1,
Γ− = Γλ,0, respectively.
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Remark 4.44. The S± will be constant with respect to the coordinates u and v for
the surface as well, and thus

τ+S+ = τ−S− = 0 ,

as we will see in the proof of Corollary 4.43 just below.

Proof. Suppose x is flat. Then there exist constants S± ∈ L5 enveloping the isother-
mic sphere congruences s±, by Theorem 4.42. So

(4.23) d(T± · S±) = T± · λτ±S± = T± · λ · 0 .
Thus x has two order-zero conserved quantities S±, because

Γ±S± = (d+ λτ±)S± = 0 .

Conversely, suppose S± ∈ L5 are two order-zero conserved quantities, i.e.

Γ±S± = (d+ λτ±)S± = 0 .

Because this is true for all real λ, it follows that S± are constant and τ±S± = 0, and
thus S± ⊥ s±, s±u , s

±
v . Hence the constants S± give fixed spheres that envelop s±,

respectively. Then Theorem 4.42 implies x is a flat surface. �
Theorem 4.45. T±-transforms of a flat surface in H3 are again flat in H3.

Proof. As in Corollary 4.43, there exist constant conserved quantities S±. By (4.23)
and the fact that T±,λS± = S± at one point (because of (4.17)),

T±,λS± = S±

at all points, and for all values of λ. Then

0 = (s±,S±) = (T±s±, T±S±) = (T±s±,S±)

implies T+s+ and T−s− are each always enveloped by the same constant sphere given
by S±, respectively. They are also isothermic, by Corollary 4.31. Then Corollary 4.43
implies all the deformed surfaces (the T±-transforms, or equivalently T̂ -transforms)
are flat in H3. �
4.15. The gauging principle. We consider a gauge theoretic approach here, which
is useful when one studies discrete analogs of Ω surfaces, as we do in a subsequent
text.
Let us first state the gauging principle in vague terms, without any specification

of the spaces in which various objects lie: P = P (λ) is a conserved quantity for a
connection ∇ = ∇λ if

∇P = 0 .

Then for any transformation g, we have the gauging g∇g−1gP = 0, i.e.

(g∇g−1)(gP ) = 0 .

This means that gP is a conserved quantity of g∇g−1. We can refer to g simply as a
“gauge”.
We will illustrate this gauging principle here. Let Kj, s

±, τ± be as in previous
sections, with the lifts Kj chosen so that Equation (4.16) and Corollaries 4.36 and
4.37 hold, and u, v so that ||su||2 = ||sv||2 = 2.

Lemma 4.46. (K1 ∧K2)
2 = 0 and d(K1 ∧K2)(K1 ∧K2) = 0.
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Proof. This result follows from noting that

Image(K1 ∧K2) ⊂ span{K1, K2} ,
and K1 ∧K2 restricted to span{K1, K2} is zero, and, for A ∈ R4,2 with Â := (K1 ∧
K2)A ∈ span{K1, K2},

d(K1 ∧K2)(K1 ∧K2)(A) = (dK1 ∧K2 +K1 ∧ dK2)(Â) = 0 .

�
We take, for λ ∈ R,

gλ := exp(λK1 ∧K2) = 1 + λK1 ∧K2 +
∞∑
n=2

1
n!
λn(K1 ∧K2)

n = 1 + λK1 ∧K2

as our gauge.

Lemma 4.47. gλ ◦ d ◦ (gλ)−1 = d− λd(K1 ∧K2). (”◦” denotes composition.)

Proof. We have

gλ ◦ d ◦ (gλ)−1 = d+ gλd((gλ)−1) = d− (dgλ)(gλ)−1 =

d− λd(K1 ∧K2)(1− λK1 ∧K2) ,

and the result follows from Lemma 4.46. �
Corollary 4.48. gλ ◦ (d+ λ̂τ+) ◦ (gλ)−1 = d+ (λ̂+ λ/2)τ+ − (λ/2)τ−, for λ, λ̂ ∈ R.

Proof. We have

gλ ◦ (d+ λ̂τ+) ◦ (gλ)−1 = d− λd(K1 ∧K2) + λ̂gλ ◦ τ+ ◦ (gλ)−1 =

d+ 1
2
λ(τ+ − τ−) + λ̂gλ ◦ τ+ ◦ (gλ)−1 ,

by Lemma 4.46 and Corollary 4.37. Now,

gλ ◦ τ+ ◦ (gλ)−1 = (1 + λK1 ∧K2) ◦ τ+ ◦ (1− λK1 ∧K2) =

(1− λ
2
s+∧s−)((−(s+, ·)s+u +(s+u , ·)s+)du+((s+, ·)s+v − (s+v , ·)s+)dv)(1+ λ

2
λs+∧s−) =

(1− λ
2
s+ ∧ s−)((−(s+, ·)s+u + (s+u , ·)s+)du+ ((s+, ·)s+v − (s+v , ·)s+)dv)(1) =

(1)((−(s+, ·)s+u + (s+u , ·)s+)du+ (s+, ·)s+v − (s+v , ·)s+)dv)(1) = τ+ ,

so
gλ ◦ (d+ λ̂τ+) ◦ (gλ)−1 = d+ 1

2
λ(τ+ − τ−) + λ̂τ+ .

The result follows. �
Corollary 4.49. The connections d + λτ+ and d + λτ− are related via the gauge g
by

g−2λ ◦ (d+ λτ+) ◦ (g−2λ)−1 = d+ λτ− .

Remark 4.50. In the case of flat surfaces in H3, for which we have lightlike constant
conserved quantities S± as in Corollary 4.43,

(d+ λτ+)S+ = 0

is gauge equivalent to
(d+ λτ−)P+ = 0 ,

where, using Corollary 4.36,

P+ := g−2λS+ = (1− 2λK1 ∧K2)S+ = (1 + λs+ ∧ s−)S+ = S+ − λ(s−,S+)s+ ,
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since (s+,S+) = 0. Similarly,
(d+ λτ−)S− = 0

is gauge equivalent to
(d+ λτ+)P− = 0 ,

for some linear conserved quantity P−. So S+, P+, S−, P− are all conserved quantities.
Note that S± are lightlike constant conserved quantities, while P± are linear conserved
quantities.

Remark 4.51. If an Ω surface Λ has one timelike constant conserved quantity p for
the connection d+ λτ coming from some isothermic sphere congruence s ∈ Λ, then s
projects to an isothermic surface in the Möbius geometry given by {p}⊥ ≈ R4,1, since
(d+ λτ)p = 0 implies (s, p) = 0.

Remark 4.52. Note that, by (4.19) and Corollary 4.36,

(g−λ)−1T+g−λ = T− ,

so g−λ acts as a gauge between T+ and T−.
In fact, T+ and T− themselves are gauge transformations of a different type, so we

have interrelated gauge transformations, because T± gauge the trivial connection d
to the Γ± = d+ λτ± connections, respectively, as follows:

T± : (R4,2,Γ±) → (R4,2, d)

via
d(T±y) = T±dy + dT± · y = T±(d+ λτ±)y = T±Γ±y .

4.16. Guichard surfaces. Guichard surfaces are Ω, as we are about to see in Lemma
4.54 below, and can be defined as those surfaces x in R3 that satisfy Calapso’s equation

(4.24) cg11g22(k1 − k2)
2 = g22 − ϵ2g11 ,

for some choice of curvature line coordinates u, v, where c is a constant, ϵ is 1 or i,
and

g11 = xu · xu , g12 = xu · xv = 0 , g22 = xv · xv ,
and k1 and k2 are the principal curvatures. (Equation (4.24) actually includes the
case of isothermic surfaces as well, when taking c = 0 and ϵ = 1.)
In fact, however, the notion of Guichard surfaces is sensible in Möbius geometry,

so one need never reduce to a 3-dimensional spaceform.

Remark 4.53. It was shown by Calapso [30] that Equation (4.24) is equivalent to the
existence of a Guichard dual, which is a surface with parallel curvature directions and
principal curvatures k∗i satisfying

1

k1k∗2
+

1

k2k∗1
= constant .

Lemma 4.54. Guichard surfaces are Ω.

Proof. We take a Guichard surface and give it curvature line coordinates so that
Calapso’s equation (4.24) holds. We need to show that Calapso’s equation implies
Demoulin’s equation(√

g11√
g22

k1,u
k1 − k2

)
v

+ ϵ2
(√

g22√
g11

k2,v
k1 − k2

)
u

= 0
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holds, for either ϵ = 1 or ϵ = i. The reason for also considering ϵ = i will be explained
in Section 4.19. We take up just the case ϵ = 1 here. Using the Codazzi equations
(2.22), the left-hand side of Demoulin’s equation becomes(√

g11√
g22

(
(log(k1 − k2))u +

1
2
(log g22)u

))
v

−
(√

g22√
g11

(
(log(k1 − k2))v +

1
2
(log g11)v

))
u

,

which, using that the Calapso equation implies

log(k1 − k2) =
1
2
log(g22 − g11)− 1

2
log c− 1

2
log g11 − 1

2
log g22 ,

becomes

1
2

(√
g11√
g22

(log(g22 − g11))u

)
v

− 1
2

(√
g22√
g11

(log(g22 − g11))v

)
u

+

−1
2

(√
g11√
g22

(log g11)u

)
v

+ 1
2

(√
g22√
g11

(log g22)v

)
u

=

1
2

(√
g11√
g22

(
log

(
g22
g11

− 1

))
u

)
v

− 1
2

(√
g22√
g11

(
log

(
1− g11

g22

))
v

)
u

,

and then a direct computation shows this is zero. �
Noting that tubular surfaces are defined as those surfaces for which one principal

curvature is constant (see the upcoming Definition 4.64), we have the following lemma:

Lemma 4.55. Nontubular non-CMC linear Weingarten surfaces are Guichard.

Proof. By assumption, we have the linear Weingarten equation (see the definition of
linear Weingarten surfaces at the beginning of Section 4.18)

αK − 2βH + γ = 0 .

Because the surface is not CMC, α is not zero, so without loss of generality we can
take α = 1, and the linear Weingarten equation becomes

(k1 − β)(k2 − β) = ρ := β2 − γ ,

and ρ ̸= 0 because the surface is non-tubular. We give the surface curvature line
coordinates u, v.

The case ρ > 0: Choose f so that

k1 − β =
√
ρ tanh f , k2 − β =

√
ρ coth f .

Using the Codazzi equations (2.22), we have

k1,v =
√
ρ

fv

cosh2 f
=
g11,v
2g11

(k2 − k1) =
√
ρ(coth f − tanh f) · 1

2
(log g11)v ,

implying
fv

cosh f
=

(log g11)v
2 sinh f

,

and in turn implying
log(cosh f) = 1

2
log g11 + h(u) ,

where h(u) is some function depending only on u. We can rescale the u coordinate
so that h(u) = c1 for some constant c1. Thus

c2 cosh
2 f = g11
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for some constant c2. We can then scale u by a constant scalar factor so that

g11 = cosh2 f .

Similarly, we can arrange that

g22 = sinh2 f .

Now

cg11g22(k1 − k2)
2 − g22 + ϵ2g11 =

c · cosh2 f · sinh2 f · (√ρ tanh f −√
ρ coth f)2 − sinh2 f + ϵ2 cosh2 f ,

and this is equal to zero when we set c = −1/ρ and ϵ = 1, thus Calapso’s equation
holds and the surface is Guichard.
The case ρ < 0: In this case we can similarly arrange that

k1 − β =
√
−ρ tan f , k2 − β = −

√
−ρ cot f

and

g11 = cos2 f , g22 = sin2 f .

Calapso’s equation again holds, now using ϵ = i. �
We have the following immediate corollary:

Corollary 4.56. All nontubular linear Weingarten surfaces are Ω.

4.17. Christoffel duals. The following lemma is particularly useful for understand-
ing discrete Ω surfaces, as we will see in a subsequent text.

Lemma 4.57. Consider a Legendre immersion Λ from M2 to the null planes in L5,
and suppose there exist sections (i.e. particular lifts of sphere congruences) σ± ∈ Λ
such that

dσ+ ∧ dσ− = 0 .

Then

(1) σ± are isothermic with the same isothermic coordinates u, v on M2 (and in
particular, Λ is an Ω surface),

(2) there exists a scalar function f such that σ+
u = fσ−

u and σ+
v = −fσ−

v (and
then σ± are called Christoffel duals),

(3) σ+
uv ∈ span{σ+

u , σ
+
v }, σ−

uv ∈ span{σ−
u , σ

−
v } (and because of this, σ+ and σ− are

each called a Christoffel lift).

Proof. Take u, v to be conformal coordinates for σ+. Because dσ+∧dσ− = 0, we have

σ+
u ∧ σ−

v − σ+
v ∧ σ−

u = 0

and also

σ−
u = ασ+

u − βσ+
v , σ−

v = γσ+
u − ασ+

v

for some scalar functions α, β, γ. Then, because

(σ−
u , σ

+
v ) = (σ−, σ+

v )u − (σ−, σ+
uv) = −(σ−, σ+

uv) =

−(σ−, σ+
u )v + (σ−

v , σ
+
u ) = (σ−

v , σ
+
u ) ,

we have

γ = −β .
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We can also now see that u, v are conformal coordinates for σ− as well. Set E :=
(σ+

u , σ
+
u ). The compatibility condition σ−

uv = σ−
vu gives (σ−

uv − σ−
vu, σ

+
u ) = (σ−

uv −
σ−
vu, σ

+
v ) = 0, and thus

(4.25) (αv + βu)σ
+
u + (αu − βv)σ

+
v + β(σ+

uu − σ+
vv) + 2ασ+

uv = 0 ,

implying

0 = (αv + βu)E + βEu + αEv = (αu − βv)E − βEv + αEu ,

so
0 = (βE)u + (αE)v = (−βE)v + (αE)u ,

and so E(α + iβ) is holomorphic with respect to u + iv. For any vector field N
lying in the bundle with fibres consisting of the vector spaces (span{σ+

u , σ
+
v })⊥ with

nondegenerate signature (+,+,−,−), Equation (4.25) implies

(4.26) 2α(σ+
uv, N) + β(σ+

uu − σ+
vv, N) = 0 .

Define a+ ib, a, b ∈ R, by
(a+ ib)2 = E(α + iβ) ,

so a+ ib is holomorphic as well. It follows that

d(bdu+ adv) = d(−adu+ bdv) = 0 ,

so we can make a conformal change of coordinates (u, v) → (ũ, ṽ) so that

dũ = bdu+ adv , dṽ = −adu+ bdv .

Also,

∂ũ =
b

a2 + b2
∂u +

a

a2 + b2
∂v , ∂ṽ =

−a
a2 + b2

∂u +
b

a2 + b2
∂v .

A direct computation gives

σ+
ũṽ =

1

(a2 + b2)2
(
−abσ+

uu − a2σ+
uv + b2σ+

uv + abσ+
vv

)
− a

a2 + b2

(
b

a2 + b2

)
u

σ+
u +

− a

a2 + b2

(
a

a2 + b2

)
u

σ+
v +

b

a2 + b2

(
b

a2 + b2

)
v

σ+
u +

b

a2 + b2

(
a

a2 + b2

)
v

σ+
v ,

and then it follows from (4.26) that (σ+
ũṽ, N) = 0, so ũ, ṽ are isothermic coordinates

for σ+. Similarly, (σ−
ũṽ, N) = 0, and ũ, ṽ are isothermic coordinates for σ− as well.

Also,

σ−
ũ =

bσ−
u + aσ−

v

a2 + b2
=
b(ασ+

u − βσ+
v )− a(βσ+

u + ασ+
v )

a2 + b2
=

−b
E
σ+
u − a

E
σ+
v = −a

2 + b2

E
σ+
ũ ,

and similarly

σ−
ṽ =

a2 + b2

E
σ+
ṽ ,

so item 2 of the lemma holds with

f =
−E

a2 + b2
.

Because σ+
ũṽ is perpendicular to the entire space (span{σ+

u , σ
+
v })⊥, and in particular

(σ±
ũṽ, N) = 0 even for fields N in (span{σ+

u , σ
+
v })⊥ such that N ̸⊥ σ±, it follows that

σ+
ũṽ ∈ span{σ+

u , σ
+
v }. Similarly, σ−

ũṽ ∈ span{σ−
u , σ

−
v }. �
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Figure 4.1. Physical models of the psuedosphere in R3, which has
constant negative Gaussian curvature, and hence is a linear Weingarten
surface (owned by the geometry group at the Technical University of
Vienna)

Figure 4.2. Physical models of other surfaces of revolution in R3 with
constant Gaussian curvature, which are again linear Weingarten sur-
faces (owned by the geometry group at the Technical University of Vi-
enna)

4.18. Linear Weingarten surfaces. Up to now, we have given some special atten-
tion to flat surfaces in H3, but now we consider a more general class of surfaces called
linear Weingarten surfaces. Linear Weingarten surfaces in a spaceform M3 are those
whose Gauss and mean curvatures K and H (with respect to M3) satisfy

aH + bK + c = 0

for some constants a, b, c.

Theorem 4.58. For an Ω surface x with isothermic sphere congruences s± and Le-
gendre lift Λ = span{s+, s−}, suppose there exist constant conserved quantities

Q± ∈ R4,2 , i.e. (s±, Q±) = 0 ,
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and suppose

(Q+, Q−) ̸= 0 , (s+, Q−) ̸= 0 , (s−, Q+) ̸= 0 ,

and the subspace V = span{Q+, Q−} has signature (+,−). Then Λ projects to a
linear Weingarten surface in a spaceform.

Proof. Take an orthonormal pair p, q ∈ V such that (p, p) = −1 and (q, q) = 1 and

Q+ = p+ βq for some β ∈ R \ {0} ,

and neither p nor q are parallel to Q−. We can normalize Q− so that

(Q+, Q−) = −2 .

We can also scale s± appropriately so that

(s±, Q∓) = −2 .

Take α−, β− ∈ R \ {0} so that

Q− = α−p+ β−q .

Writing

s± = G± + ℘± for G± ⊥ V and ℘± ∈ V ,

it follows that

(4.27) α− = 2 + ββ− .

There exist A±, B± such that ℘± = A±p+B±q, and then

℘+ = (2 + β−B+)α
−1
− p+B+q , ℘− = (2 + βB−)p+B−q .

Now, (s±, Q±) = 0 implies B+ = 2S−1 and B− = −2α−S
−1 are constant, with

S = α−β − β−. Since B± exist, we know S ̸= 0. Then

℘+ = (2βp+ 2q)/S , ℘− = (−2β−p− 2α−q)/S .

The properties (X, p) = (N, q) = 0 and (X, q) = (N, p) = −1 give

X = 1
2
(β−s

+ + βs−) , N = 1
2
(α−s

+ + s−) .

Then by Lemma 4.15,

cr(κ1X +N, s+, κ2X +N, s−) = −1 ⇒

cr(κ1X +N,−β−1X +N, κ2X +N,−α−β
−1
− X +N) = −1 ⇒

cr(κ1,−β−1, κ2,−α−β
−1
− ) = −1 ⇒

(κ1 − (−β−1))(−β−1 − κ2)
−1(κ2 − (−α−β

−1
− ))(−α−β

−1
− − κ1)

−1 = −1 ⇒

Kextββ− +H(β− + β(2 + ββ−)) + ββ− + 2 = 0 ,

where Kext = κ1κ2 is the extrinsic Gaussian curvature. The final implication above
uses (4.27). Thus the surface is linear Weingarten. �
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Figure 4.3. Two surfaces in a deformation through a one-parameter
family of linear Weingarten surfaces of Bryant type in H3, the first of
which is a flat surface (see [65])

Figure 4.4. Two further surfaces in that deformation starting in Fig-
ure 4.3 through a one-parameter family of linear Weingarten surfaces
of Bryant type in H3, the second of which is a CMC 1 surface (see [65])

The assumptions in Theorem 4.58 that (Q+, Q−) ̸= 0 and that V has signature
(+,−) create restrictions on which types of linear Weingarten surfaces are obtained
in that theorem, i.e. not all types of linear Weingarten surfaces are included there.
In fact, the only condition that is really needed is that span{Q+, Q−} is not a null
plane. Once could then restrict to Riemannian geometries by assuming there exists
a timelike p ∈ span{Q+, Q−}.
Furthermore, we need to consider the case that s± are complex conjugate as well,

and also Ω0 surfaces, to produce all linear Weingarten surfaces. We come back to this
in Section 4.19.

Definition 4.59. Those linear Weingarten surfaces that satisfy an equation of type

α(±H + 1) + β(Kext − 1) = 0
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for some α, β ∈ R (|α| + |β| > 0) are called linear Weingarten surfaces of Bryant
type.

The reason for distinguishing the linear Weingarten surfaces as in Definition 4.59
is that they are the ones with Weierstrass type representations. See [56], [77], for
example.

Corollary 4.60. The linear Weingarten surfaces of Bryant type in Theorem 4.58
correspond to the case that at least one of Q± is lightlike.

Proof. If (Q+, Q+) = 0, i.e. without loss of generality β = 1, we have

(Kext − 1)β− + 2H(β− + 1) + 2(β− + 1) = 0 ⇒
(Kext − 1)β− + 2(H + 1)(1 + β−) = 0 ,

and this the equation for linear Weingarten surfaces of Bryant type. �
The next corollary was already established in Corollary 4.43.

Corollary 4.61. Flat surfaces in H3 correspond to the case that both of Q+ and Q−

are lightlike.

Remark 4.62. The case of CMC surfaces. For CMC surfaces, s+ = X is isothermic.
By Corollary 4.49

g−2λ · (d+ λτ+) · (g−2λ)−1 = d+ λτ− ,

i.e. g−2λ is the gauge for the gauge transformation taking Γ+ = d + λτ+ to Γ− =
d+ λτ− (and, put more simply, g−2λ is the gauge transformation taking Γ+ to Γ−).

g−2λ · (d+ λτ+) · (g−2λ)−1Q− = (d+ λτ−)Q− = 0

implies
(d+ λτ+)((g−2λ)−1Q−) = 0 ,

and now (g−2λ)−1q− is a linear conserved quantity for s+ = X. This linear conserved
quantity was seen in Theorem 2.54.

4.19. Complex conjugate s±, and Ω0 surfaces. For the arguments about Ω sur-
faces in Section 4.3, we could also consider the case that the metric in (4.4) is Lorentz
conformal, i.e.

(b− k1)
2 = −(b− k2)

2 .

This gives that

b =
k1
√
g11 ∓ ik2

√
g22√

g11 ∓ i
√
g22

,

resulting in s± being complex conjugate to each other. Consideration of this case
requires us to complexify R4,2. In this case, Demoulin’s equation becomes

(4.28)

(√
g11√
g22

k1,u
k1 − k2

)
v

−
(√

g22√
g11

k2,v
k1 − k2

)
u

= 0 .

We will call these surfaces Ω as well, and we call the s± isothermic sections.
We could also consider the case that the metric in (4.4) is degenerate, i.e.

(b− k1)
2(b− k2)

2 = 0 ,

and then without loss of generality that b = k1. We are now considering a principal
curvature sphere congruence, of course. To understand what isothermicity is, and
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what Demoulin’s equation is, in this case, one should be careful about what the
normal bundle to s = k1X + N might be. Instead of considering that, let us just
take existence of a Moutard lift for s = k1X + N as a working definition, and then
compute the resulting Demoulin equation, as follows:
There exists a scalar factor function α so that

(αs)uv||s ,

and this implies

suv = hs− (logα)usv − (logα)vsu

for some function h = h(u, v). Now, because s = k1X + N and su = k1,uX, h must
be zero, and

αX + βXv = 0 ,

where

γ = k1,uv + (logα)uk1,v + (logα)vk1,u , β = k1,u + (logα)u(k1 − k2) ,

and so γ = β = 0. This implies

(logα)u =
−k1,u
k1 − k2

= −(log(k1 − k2))u −
k2,u

k1 − k2

and

k1,uv +
k1,u

k2 − k1
k1,v + (logα)vk1,u = 0 .

Then the Codazzi equations (2.22) imply

(logα)v =
−k1,uv
k1,u

− 1
2

g11,v
g11

and

(logα)u = −(log(k1 − k2))u − 1
2
(log g22)u ,

so

logα = − log(k1,u)− 1
2
log g11 + f1(u) = − log(k1 − k2)− 1

2
log g22 + f2(v) ,

where f1(u), resp. f2(v), is some function depending only on u, resp. v. We can
reparametrize the v coordinate so that f2(v) = c2 is constant. Thus, taking the
exponential of this equation, we have

k1,u
k1 − k2

·
√
g11√
g22

= f3(u)

for some function f3(u) depending only on u, so

(4.29)

(√
g11√
g22

· k1,u
k1 − k2

)
v

= 0 ,

and this is Demoulin’s equation for Ω0 surfaces.

Definition 4.63. An Ω0 surface is a surface where one of the curvature sphere con-
gruences is isothermic (in the sense that Demoulin’s equation (4.29) holds, or, equiv-
alently, a Moutard lift exists).
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In regard to Definition 4.63, we can imagine that the two isothermic sphere con-
gruences, as in Corollary 4.5 and Definition 4.6, for Ω surfaces are now coinciding,
becoming a single isothermic principal curvature sphere congruence and producing
an Ω0 surface.

Tubular surfaces and channel surfaces are examples of Ω0 surfaces, and we explain
these examples now.

Definition 4.64. A surface is tubular if one principal curvature is constant.

Thus a surface is tubular if (k1−b)(k2−b) = 0, where kj are the principal curvatures
of the surface and b is some constant. This amounts to the linear Weingarten condition
with the linear Weingarten equation being (H is the mean curvature, and K is the
extrinsic Gaussian curvature)

0 = K − 2bH + b2 .

Remark 4.65. Here we make five comments on tubular and Ω0 surfaces:

• When a surface is linear Weingarten, the surface generally comes with a pair
of isothermic sphere congruences s±. If the surface is also tubular, then s+

and s− coincide, and the surface is Ω0.
• There are examples of Ω0 linear Weingarten surfaces that are not tubular.
For example, a surface of revolution of constant Gauss curvature 1 in R3 is
multiply Ω, and both Ω and Ω0, but not tubular. However, this surface being
nontubular is possible only because the surface is both Ω and Ω0, as Corollary
4.68 will show.

• The class of all Lie applicable surfaces is the same as the union of the classes
of all Ω surfaces (including the complex conjugate case) and all Ω0 surfaces
(see [92], [43] and volume III of [4]).

• When the ambient space is R3, and the surface x(u, v) is parametrized by
curvature line coordinates (u, v), and k1 = b ̸= 0 for the principal curvature
associated to the u-direction (b is constant), and n is the unit normal vector
to the surface, the Rodrigues equation implies

(x+ b−1n)u = 0 ,

so
c(v) = x+ b−1n

is a curve depending only on v, and is called the soul of the tubular surface x.
• Taking the ambient space to be S3 and taking x ∈ S3 with unit normal n ∈ S3,
setting

s := k1

 1
xt

0

+

 0
nt

1

 ,

we have su = 0 (because k1 is constant), and s is a sphere congruence de-
pending on only the one parameter v. So x is a particular case of a channel
surface, which we now define.

Definition 4.66. A surface x is a channel surface if it can be enveloped by a 1-
parameter family of spheres.

We are now in a position to consider the converse of Theorem 4.58:
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Theorem 4.67. The converse to Theorem 4.58 also holds. That is, when allowing
the case of complex conjugate isothermic sections s± and also allowing the case of Ω0

surfaces, a surface is linear Weingarten if and only if the lift Λ of the surface to Lie
sphere geometry has a pair of isothermic sections s± with constant conserved quan-
tities Q± (or a single isothermic sphere congruence with a single constant conserved
quantity in the Ω0 case).

Proof. We can extend Theorem 4.58 to the cases of complex conjugate isothermic
sections and of Ω0 surfaces, by computations analogous to those in the proof of that
theorem, giving one direction of the theorem being proven here.
To prove the converse, assume

αK + 2βH + γ = 0 .

(1) If

α ̸= 0 and δ :=
√
β2 − αγ ̸= 0 ,

define

Q± = αq + (β ∓ δ)p , s± = δ−1((δ ∓ β)X ± αN) .

When β2 − αγ > 0, the s± will be real, and when β2 − αγ < 0, the s± will be
complex conjugate.

(2) If α = 0, define

Q+ = βq + 1
2
γp , Q− = p , s+ = HX +N , s− = X .

Then, in both cases (1) and (2), one can check that (s±, Q±) = 0 and ds+ ∧ ds− = 0,
which implies s± are a dual pair of isothermic sphere congruences (see Lemma 4.57).
If

α ̸= 0 and δ = 0 ,

then without loss of generality, we may assume k1 = −β is constant. Defining

s = k1X +N ,

it is immediate that Demoulin’s equation (4.29) for Ω0 surfaces holds. In this case
the constant conserved quantity will be

q − k1p .

This completes the proof of the theorem. �

The above proof provides the following corollary, since in the case (1) that

s± = δ−1((δ ∓ β)X ± αN) and δ ̸= 0 ,

we cannot have the vector s+ parallel to the vector s−.

Corollary 4.68. If an Ω0 surface is both linear Weingarten and not Ω, then it is
tubular.

We also have this corollary:

Corollary 4.69. Calapso transformations of linear Weingarten surfaces are again
linear Weingarten.
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Proof. Take a linear Weingarten surface and its lift Λ to an Ω or Ω0 surface (we know
Λ is Ω or Ω0, by Corollary 4.56). By Theorem 4.67, Λ has a pair of isothermic sections
s± (or possibly a single section s = k1X +N in the Ω0 case) with constant conserved
quantities Q± ∈ R4,2 (or possibly a single conserved quantity for s, in the Ω0 case).
Like as argued in Equation (4.23), T±Q± are also constant, and satisfy

(T±s±, T±Q±) = 0 ,

so T±Q± are constant conserved quantities for T±s±, respectively. Then, applying
Corollary 4.31 and Equation (4.18), we have concluded that the Calapso transforma-
tion

span{T+s+, T−s−}
of Λ has a pair of isothermic sections T±s± with constant conserved quantities T±Q±.
By Theorem 4.67, the result follows. �
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5. Closing remark

With all that we have described in this text, it is now possible to consider discrete
Ω surfaces. As noted in the introduction, this will be done in a separate text.
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[95] U. Pinkall, Dupin’sche hyperflächen, doctoral thesis, Freiburg Univ., 1981.
[96] U. Pinkall, Dupin hypersurfaces, Math. Annalen 270 (1985), 427–440.
[97] U. Pinkall and K. Polthier, Computing discrete minimal surfaces and their conjugates, Ex-

perim. Math. 2(1) (1993), 15–36.
[98] U. Pinkall and I. Sterling, On the classification of constant mean curvature tori, Annals of

Math. 130, 407–451 (1989).
[99] K. Polthier, Unstable periodic discrete minimal surfaces, Nonlinear Partial Diff. Equations,

Editors: S. Hildebrandt and H. Karcher, Springer-Verlag 2002, 127–143.
[100] K. Polthier and W. Rossman, Discrete constant mean curvature surfaces and their index, J.

Reine. Angew. Math. 549 (2002), 47–77.
[101] H. Pottmann, A. Asperl, M. Hoffer and A. Kilian, Architectural geometry, Bentley Inst. Press

(2007).
[102] P. Roitman, Flat surfaces in hyperbolic 3-space as normal surfaces to a congruence of geodesics,

Tohoku Math. J. 59 (2007), 21–37.
[103] W. Rossman, Discrete Constant Mean Curvature Surfaces via Conserved Quantities, Math for

Industry GCOE Lecture Note, Kyushu Univ., Vol. 25 (2010), 1–130.
[104] , Realization of constant mean curvature surfaces via a computer-aided integrable sys-

tems method (in Japanese), Sugaku 60 (2008), 95–103.
[105] , Conserved quantities in the theory of discrete surfaces, Proc. of symp. on the diff.

geom. of submanifolds, Valenciennes, France (2007), 1–16.
[106] , Constant mean curvature surfaces (in Japanese), Kashika no gijutsu to gendai kika-

gaku, Iwanami shoten (2010), 93–132.
[107] , Discrete constant mean curvature surfaces via conserved quantities in any space form,

Progress in surface theory, Oberwolfach Report 24/2007 (2007), 26–28.
[108] W. Rossman and N. Schmitt, Simultaneous unitarizability of SLn(C)-valued maps, and con-

stant mean curvature k-noid monodromy, Ann. Scuola Norm. Sup. Pisa Cl. Sci 5(V) (2006),
549–577.

[109] W. Rossman and M. Toda, Corresponding constant mean curvature surfaces in hyperbolic and
Euclidean 3-spaces, Pac. J. Appl. Math. 3 (2011), 37–41.



138

[110] W. Rossman, M. Umehara and K. Yamada, Irreducible constant mean curvature 1 surfaces in
hyperbolic space with positive genus, Tohoku J. Math. 49 (1997), 449–484.

[111] , Period Problems for Mean Curvature 1 Surfaces in H3 (with application to surfaces of
low total curvature), Adv. Stud. Pure Math. 51 (2008), Surveys on Geometry and Integrable
Systems, 335–387.

[112] W. Rossman and M. Yasumoto, Weierstrass representation for semi-discrete minimal surfaces,
and comparison of various discretized catenoids, J. Math-for-Industry 4 (2012), 109–118.

[113] K. Saji, M. Umehara and K. Yamada, The geometry of fronts, Ann. of Math. 169 (2009),
491-529.

[114] , Behavior of corank one singular points on wave fronts, Kyushu J. Math. 62 (2008),
259–280.

[115] , The duality between singular points and inflection points on wave fronts, Osaka J.
Math. 47 (2010), 591–607.

[116] , Coherent tangent bundles and Gauss-Bonnet formulas for wave fronts, J. Geom. Anal.
22 (2012), 383–409.

[117] , A2-singularities of hypersurfaces with non-negative sectional curvature in Euclidean
space, Kodai Math. J. 34 (2011), 390–409.

[118] S. Santos, Special isothermic surfaces of type n, Doctoral Thesis, Bath University, 2007.
[119] T. Sasaki, K. Yamada and M. Yoshida, Derived Schwarz maps of the hypergeometric differential

equation and a parallel family of flat fronts, Int. J. Math. 19 (2008), 847–863.
[120] T. Sasaki and M. Yoshida, Hyperbolic Schwarz maps of the Airy and the confluent hyperge-

ometric differential equations and their asymptotic behaviors, J. Math. Sci. Univ. Tokyo 15
(2008), 195–218.

[121] , Singularities of flat fronts and their caustics, and an example arising from the hyper-
bolic Schwarz map of a hypergeometric equation, Results Math. 56 (2009), 369–385.

[122] O. Schramm, Circle packings with the combinatorics of the square grid, Duke Math J. 86(2)
(1997), 347–389.

[123] A. J. Small, Surfaces of constant mean curvature 1 in H3 and algebraic curves on a quadric,
Proc. Amer. Math. Soc. 122 (1994), 1211–1220.

[124] J. Stillwell, The four pillars of geometry, Undergraduate texts in mathematics, Springer, 2005.
[125] M. Umehara and K. Yamada, Complete surfaces of constant mean curvature-1 in the hyperbolic

3-space, Annals of Math. 137 (1993), 611–638.
[126] , Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J. 35 (2006),

13–40.
[127] H. Urakawa, A discrete analogue of the harmonic morphisn and Green kernel comparison

theorems, Glasgow Math. J. 42 (2000), 319–334.
[128] W. Wunderlich, Zur Differenzengeometrie der Flachen konstanter negativer Krummung, Os-

terreich. Akad. Wiss. Math.-Nat. Kl. S.-B. IIa., 160 (1951), 39–77.


