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Abstract. — The sixth Painlevé equation is hiding extremely rich geometric struc-
tures behind its outward appearance. This article tries to give as a total picture as
possible of its dynamical natures, based on the Riemann-Hilbert approach recently
developed by the authors, using various techniques from algebraic geometry. A good
part of the contents is extended to Garnier systems, while this article is restricted to
the original sixth Painlevé equation.

1. Introduction

The sixth Painlevé equation PVI = PVI(κ) is among the six kinds of differential
equations that were discovered by Painlevé [60] and his student Gambier [15] around
the turn of the twentieth century. It is a second-order nonlinear ordinary differential
equation with an independent variable x ∈ P1 − {0, 1,∞} and an unknown function
q = q(x),
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aspect contents nature

laws equations, symmetry, . . . algebraic

phenomena solutions, trajectories, . . . transcendental

Table 1. Two aspects of Painlevé equation

depending on parameters κ = (κ0, κ1, κ2, κ3, κ4) in a 4-dimensional affine space

K = {κ = (κ0, κ1, κ2, κ3, κ4) ∈ C
5 : 2κ0 + κ1 + κ2 + κ3 + κ4 = 1}. (2)

This highly nonlinear and seemingly rather ugly equation is only a small visible
part of a more substantial entity. The large invisible part has extremely rich geometric
structures that are related to symplectic geometry，moduli spaces of stable parabolic
connections，moduli spaces of representations of a fundamental group，Riemann-
Hilbert correspondence, geometry of cubic surfaces，braid and modular groups，sim-
ple isolated singularities and their resolutions of singularities, affine Weyl groups，
discrete dynamical systems, and so on. The aim of this survey article is to discuss
various aspects of these illuminating structures, trying to give as a total picture as
possible of the sixth Painlevé equation.

Among other features, Painlevé equation is primarily a dynamical system and a
dynamical system in general is characterized by two aspects: laws and phenomena.
Mathematically, laws refer to equations that govern the dynamics, symmetries of
the system, etc., while phenomena refer to solutions of the equations, behaviors of
trajectories, etc. These two aspects often show a sharp contrast. For example, in
classical dynamics, the simple laws of Newton create extremely rich and complicated
phenomena. The Painlevé dynamics is also in this case, being algebraic in its laws and
transcendental in its phenomena (see Table 1). For comparison, we should remark
that there exists an interesting dynamics whose laws are already transcendental, like
a dynamics on a K3 surface recently explored by McMullen [45], who showed that
the existence of Siegel disks implies the transcendence of the K3 surface.

Generally speaking, the two pricipal approaches to dynamical systems are perhaps:

(L) Lyapunov’s methods, (C) conjugacy methods.

In Lyapunov’s methods (L), we examine, control, or confine the behaviors of trajec-
tories by estimating suitable functions called “Lyapunov functions”. Main tools of
the methods are estimations by inequalities. On the other hand, in the conjugacy
methods (C), we try to find a “conjugacy map” that converts the difficult dynamical
system we want to study to a more tractable one, to extract informations from the
latter, and to send feedback to the former (see §2.2 for more details). Our approach
to the Painlevé equation, which we call the Riemann-Hilbert approach, falls into this
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category (C), making use of Riemann-Hilbert correspondence as a conjugacy map
between Painlevé flow and isomonodromic flow.

Of course, the Riemann-Hilbert approach is closely related to the isomonodromic
approach represented by the classical works of Fuchs [14], Schlesinger [66], Garnier
[17], Jimbo, Miwa and Ueno [33, 34] and others, but differs from the latter in its
definitive employment of the method of conjugacy maps and in its extensive use of a
complete solution to the Riemann-Hilbert problem. The Riemann-Hilbert approach a

priori has a global nature once Riemann-Hilbert correspondence is formulated appro-
priately, while the isomonodromic approach mostly stands on the infinitesimal point
of view and pays little attention to the target space of Riemann-Hilbert correspon-
dence, namely, moduli space of monodromy representations. In the Riemann-Hilbert
appraoch, we consciously distinguish the Painlevé flow on the moduli space of stable
parabolic connections and the isomonodromic flow on the moduli space of monodromy
representations, and build a bridge between them via the Riemann-Hilbert correspon-
dence.

This approach has been explored by Iwasaki [27, 28, 29, 30], Hitchin [21], Kawai
[36, 37], Boalch [5], Dubrovin and Mazzocco [12] and others. Recently it was thor-
oughly developed by Inaba, Iwasaki and Saito [25, 26]. The exposition of this article
is largely based on the contents of the last papers. We focus our attension on the
original case of PVI in the merit of presenting, for the most basic model, those ma-
terials which can be expected to be universal throughout various generalizations. A
good part of the contents is extended to Garnier systems, a several-variable version
of PVI; see [26].

In addtion to the general methods represented by approaches (L) and (C), which are
conceivable in general situations, there are also various particular methods applicable
to various particular dynamical systems. For example, for the class of dynamical
systems that are called completely integrable systems, there exist

(CI) Completely integrating methods,

which are characterized by such keywords as τ -functions, bilnear equations, Lax pairs,
separations of variables, combinatorics and representation theory, etc. Painlevé equa-
tions are usually thought of as a member of this class and many works have been
done from this point of view. See Conte [8], Noumi [52] and the references therein.
But we shall not touch on this aspect in this article. Among other things, we wish
to lay a sound foundation on the sixth Painlevé equation to such an extent that it
can be a basis for the investigations into the transcendental natures of PVI. To do
so, many things should be done, even within the general framework of dynamical sys-
tems, before entering into those subjects which are particular to integrable systems.
Therefore the integrable aspects should be discussed later and elsewhere.

Lyapunov-type approaches to Painlevé equations will not completely be discussed
in this article. There have been long traditions as well as recent developments of
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establishing Painlevé property by these methods. We refer to Painlevé [60], Hukuhara
[22] (see Okamoto and Takano [59] for a part of these unpublished lectures), Joshi
and Kruskal [35], Steinmetz [68], Iwasaki, Kimura, Shimomura and Yoshida [31],
Gromak, Laine and Shimomura [19] and the references therein.

Table of Contents

1. Introduction
2. Painlevé Equation as a Dynamical System
3. Moduli Spaces of Parabolic Connections (Phase Spaces)
4. Riemann-Hilbert Correspondence (Conjugacy Map)
5. Isomonodromic flow and Painlevé flow
6. Family of Affine Cubic Surfaces
7. Bäcklund Transformations (Symmetry)
8. Nonlinear Monodromy (Poincaré Return Maps)
9. Singularities and Riccati Solutions (Classical Trajectories)

10. Canonical Coordinates
11. Summary

The plan of this article is as follows: In Section 2 we introduce a general for-
malism of dynamical systems and push PVI into this framework. We present the
Guiding Diagram that encodes major dynamical natures of PVI. Section 3 is de-
voted to the construction of moduli spaces of stable parabolic connections, which, in
the dynamical context, means the construction of phase spaces of PVI. In Section 4,
after setting up moduli spaces of monodromy representations, we formulate Riemann-
Hilbert correspondence, RH, and settle Riemann-Hilbert problems in suitable ways.
In the dynamical context, theses parts correspond to the construction of conjugacy
maps. In Section 5 we formulate isomonodromic flows FIMF and Painlevé flows FPVI

in such a manner that RH yields analytic conjugacy from FPVI to FIMF. Section 6 is
devoted to the construction of a family of affine cubic surfaces, which enables us to
describe all the previous constructions more explicitly. In Section 7 we give a char-
acterization of Bäcklund transformations, namely, the symmetries of PVI, in terms of
Riemann-Hilbert correspondence. Section 8 describes the nonlinear monodromy or
the Poincaré return map of PVI that extracts the global natures of trajectories of PVI.
In Section 9 we characterize the classical components of PVI, called the Riccati flows,
in terms of singularities on cubic surfaces and their resolutions of singularities. In
Section 10 we construct canonical coordinate systems of moduli spaces (phase spaces)
which make it possible to write down the Painlevé dynamics explicitly. This article
is closed with a brief summary, especially with the Closing Diagram, in Section 11.
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Figure 1. Dynamical system with Painlevé property

2. Painlevé Equation as a Dynamical System

A total picture of the sixth Painlevé equation is most clearly described in the
framework of dynamical systems, or, more specifically as a time-dependent Hamilto-
nian system with Painlevé property. So we begin by establishing a general formalism
of dynamical systems, based on which we shall develop our whole story.

2.1. General Formalism of Dynamical Systems. —

Definition 2.1 (Time-Dependent Dynamical System)
A time-dependent dynamical system (M,F) is a fibration π : M → T of complex

manifolds together with a complex foliation F on M that is transverse to each fiber
Mt = π−1(t), t ∈ T . The total space M is referred to as the phase space, while the
base space T is called the space of time-variables. Moreover, the fiber Mt is called
the space of initial conditions at time t.

The space of initial conditions becomes a meaningful concept if the dynamical
system enjoys Painlevé property. It is this property that makes it possible to think
of Poincaré return maps or the nonlinear monodromy, which is the discrete dynam-
ical system on a space of initial conditions that represents the global natures of a
continuous dynamical system.
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Definition 2.2 (Geometric Painlevé Property). — We say that a dynami-
cal system (M,F) has geometric Painlevé property (GPP) if for any path γ in T and
any point p ∈Mt, where t is the initial point of γ, there exists a unique F -horizontal
lift γ̃p of γ with initial point at p (see Figure 1). Here a curve in M is said to be
F -horizontal if it lies in a leaf of F .

Remark 2.3 (Uniqueness). — Under the transversality assumption, the lifting
problem is reduced to solving a Cauchy problem for a regular ODE along the curve
γ. Hence the local existence and uniquness of the lift γ̃p always hold, due to the
classical Cauchy theorem on ODE’s. The question in Definition 2.2 is the existence
of the global lift γ̃p for any path γ in T .

Definition 2.4 (Poincaré Return Map). — If (M,F) has geometric Painlevé
property, then any path γ in T with initial point t and terminal point t′ induces an
isomorphism

γ∗ : Mt →Mt′ , p �→ p′, (3)

where p′ is the terminal point of the lift γ̃p. When γ is a loop in T with base point at
t, we have an automorphism γ∗ of Mt, which is called the Poincare return map along
the loop γ. Since γ∗ depends only on the homotopy class of γ, we have the group
homomorphism

π1(T, t)→ AutMt, γ �→ γ∗,

which we call the nonlinear monodromy of the dynamical system (M,F).

Definition 2.5 (Hamiltonian System). — A dynamical system (M,F) with
Painlevé property is said to be Hamiltonian if π : M → T is a fibration of symplectic
manifolds and the map (3) is a symplectic isomorphism for any path γ in T . If
(M,F) is Hamiltonian, then there exists a unique closed 2-form Ω on M , called the
fundamental 2-form for (M,F), such that

(1) the form Ω restricted to each fiber Mt yields the symplectic structure Ωt on
Mt,

(2) the form Ω vanishes along the foliation F , that is,

ιvΩ = 0, (4)

for any F -horizontal vector field v, where ιvΩ = Ω(v, ·) stands for the inner
product of Ω by v.

Remark 2.6 (Differential Equations). — The condition (4), when expressed in
terms of canonical local coordinates on M , leads to a Hamiltonian system of differ-
ential equations.

There are two definitions of Painlevé property; one is the geometric definition given
in Definition 2.2, which is addressed to a foliation, and the other is the analytic one
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Figure 2. Conjugacy map

addressed to a nonlinear differential equation. As for the latter, a differential equation
is said to have Painlevé property if any solution has no movable singularities other
than movable poles. This traditional but rather ambiguous definition can be made
rigorous by the following definition.

Definition 2.7 (Analytic Painlevé Property). — A nonlinear differential equa-
tion in a domain X is said to have analytic Painlevé property (APP) if any meromor-
phic solution germ at any point x ∈ X has an analytic continuation as a meromorphic
function, along any path γ in X emanating from x.

Here is a relation between geometric and analytic Painlevé properties.

Remark 2.8 (GPP Versus APP). — Given a dynamical system (foliation), as-
sume that its phase space is an algebraic variety. Then, in terms of affine algebraic
coordinates, the foliation is expressed as a differential equation and the geometric
Painlevé property for the foliation implies the analytic Painlevé property for the dif-
ferential equation.

In this sense the algebraicity of phase space is an important issue. Remark 2.8 will
be applied to the Hamiltonian system of differential equaitons in Remark 2.6 and in
particular to the Painlevé equation (see Theorem 10.12).

2.2. Conjugacy Maps. — As is mentioned in the Introduction, one of the major
approaches in dynamical system theory is to find out a conjugacy map that converts
a “difficult” dynamical system to an “easy” one; to extract as much information as
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“difficult” dynamics “easy” dynamics conjugacy map

1 KdV flow isospectral flow scattering map

2 quadratic dynamics angle-doubling map Böttcher function

3 Painlevé flow isomonodromic flow Riemann-Hilbert map

Table 2. Examples of conjugacy maps

possible from the latter; and to send feedback to obtain nontrivial (hopefully striking)
results on the former.

Definition 2.9 (Conjugacy). — A conjugacy map Φ between two dynamical sys-
tems (M,F) and (M ′,F ′) is a commutative diagram as in Figure 2 such that

(1) the map Φ is an isomorphism that preserves geometric structures under con-
sideration, e.g., measure, topology, analytic structure, Hamiltonian structure,
etc.,

(2) the foliation F is the pull-back of F ′ by Φ, that is, Φ∗F ′ = F .

It is expected that a good conjugacy map should be highly transcendental, re-
flecting the difficulty of the “difficult” dynamical system. This transcendental nature
would make the problem not so tractable but at the same time so attractive. A few
examples of conjugacy maps are presented in Table 2, with some explanations below.

Example 2.10 (Examples of Conjugacy). —

(1) The KdV flow is conjugated to an isospectral flow by the scattering map, whose
inversion is the Gel’fand-Levitan-Marchenko procedure; a seminal discovery by
Gardner, Green, Kruskal and Miura [16] which opened up the soliton theory.

(2) The quadratic dynamics Pc(z) = z2+c on C−Kc is conjugated to the standard
angle-doubling P0(z) = z2 on C− D̄ by the Böttcher function, where Kc is the
filled Julia set of Pc and D̄ is the closed unit disk. Using this fact, Douady and
Hubbard [11] made deep studies on Julia sets and the Mandelbrot set for the
quadratic dynamics on C.

(3) The Painlevé flow on a moduli space of stable parabolic connections is conju-
gated to an isomonodromic flow on a moduli space of monodromy representa-
tions by a Riemann-Hilbert correspondence.

The third example is exactly what is focused on in this article. As is mentioned in
the Introduction, our approach is closely related with the isomonodromic deformation
theory. But the latter has been mainly concerned with infinitesimal deformations of
linear differential equations, without paying serious attensions to the global structure
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of Riemann-Hilbert correspondence, RH, especially to its target space, moduli space
of monodromy representations. Let us repeat to say that our objective is to set
up the source and target spaces of RH firmly; to establish a precise correspondence
between them via RH; to interrelate two dynamics on both sides; and to understand
the dynamics of PVI through all these procedures. A similar situation seems to have
occurred with KdV: While the machinary of inverse scattering method had been
known since 1967 ([16]), it was not so soon that the precise correspondence was
established between a class of potentials (of Schrödinger equations) and a class of
scattering data, as in Deift and Trubowitz [9].

According to Definition 2.9, a conjugacy map Φ must be an isomorphism, namely,
a biholomorphism in the case of holomorphic dynamics. However we sometimes come
across such cases where this condition is too restrictive, that is, where the injectivity
of Φ slightly fails to hold. To cover those cases, we make the following definition.

Definition 2.11 (Quasi-Conjugacy). — A quasi-conjugacy map Φ between two
dynamical systems (M,F) and (M ′,F ′) is a commutative diagram as in Figure 2
such that the following conditions are satisfied:

(1) the map Φ is a surjective, proper, holomorphic map,
(2) there exists an F ′-invariant, analytic-Zariski closed, proper subset Z ′ ⊂ M ′

such that Φ : M − Z →M ′ − Z ′ is a biholomophism that preserves geometric
structures under consideration, where Z = Φ−1(Z ′),

(3) the foliation F restricted to M − Z is the pull-back of F ′ on M ′ − Z ′,
(4) Φ maps F -trajectories in Z to F ′-trajectories in Z ′.

Here the time-correspondence φ : T → T ′ is assumed to be biholomorphic.

The properness condition on the map Φ in Definition 2.11 has a significant meaning
for the geometric Painlevé property. Indeed the following lemma follows from the
properness of Φ.

Lemma 2.12 (Properness and GPP). — Let Φ : (M,F)→ (M ′,F ′) be a quasi-
conjugacy map. Assume that the target dynamics (M ′,F ′) has geometric Painlevé
property, then so does the source dynamics (M,F).

Proof. Let γ be any compact path in T with initial point t, and let p be any
point on Mt. By GPP for (M ′,F ′), the path φ(γ) in T ′ is lifted to K ′ = φ̃(γ)Φ(p)

emanating from Φ(p) ∈ M ′
φ(t). Since K ′ is compact, the properness of Φ implies

that K = Φ−1(K ′) is also compact. By conditions (3) and (4) of Definition 2.11,
the Cauchy problem for constructing the lift γ̃p has a solution within K. Since K is
compact, the solution γ̃p exists globally over γ. Hence GPP for (M,F) follows. �

Lemma 2.12 is a guiding principle in establishing Painlevé property by the conjugacy
method: The GPP for a difficult dynamical system follows from that for an easy one.
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Figure 3. Guiding Diagram for PVI

It will turn out that the Riemann-Hilbert correspondence is a conjugacy map (in
the strict sense) for generic values of κ ∈ K, but is only a quasi-conjugacy map for
nongeneric values of κ ∈ K, due to the presence of what we call the Riccati locus
(see Definition 4.9). This locus carries classical trajectories that can be linearlized in
terms of Gauss hypergeometric equations (see Theorem 5.15).

2.3. Application to Painlevé Equation. — We apply the general formalism
developed in the previous subsections to the Painlevé equation PVI(κ). In Figure 3
we present the Guiding Diagram that will serve as guidelines on what we shall develop
in the sequel. The main ingredients of the diagram are stated as follows.

Ingredients of Guiding Diagram. (Figure 3)

– T is the configuration space of mutually distinct ordered four points in P1,

T = { t = (t1, t2, t3, t4) ∈ P
1 × P

1 × P
1 × P

1 : ti �= tj for i �= j },
which serves as the space of time-variables (see also Remark 2.13).

– M(κ) is the moduli space of rank-two stable parabolic connections on P1 having
four regular singular points with fixed local exponents κ ∈ K (see Definitions
3.1 and 3.6). It serves as the phase space of PVI(κ) as a dynamical system (the
Painlevé flow in Theorem 5.10).

– Mt(κ) is the moduli space of stable parabolic connections with singular points
fixed at t ∈ T . It serves as the space of initial conditions at time t for the
Painlevé flow.
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– Rt(a) is the moduli space of monodromy representations (up to Jordan equiv-
alence)

ρ : π1(P1 − {t1, t2, t3, t4}, ∗)→ SL2(C)

with a fixed local monodromy data a ∈ A (see Definition 4.2). It serves as the
space of initial conditions at time t for the isomonodromic flow (see Definition
5.1).

– R(a) is the disjoint union of Rt(a) over t ∈ T , that is,

πa : R(a) =
∐
t∈T

Rt(a)→ T, (5)

which serves as the phase space of the isomonodromic flow (see Definition 5.1).
– RHκ is the Riemann-Hilbert correspondence that associates to each stable

parabolic connection its monodromy representation (see Definition 4.5). It
plays the role of a (quasi-)conjugacy map between the Painlevé flow and the
isomonodromic flow.

– S(θ) is an affine cubic surface, which is a concrete realization of the moduli
space Rt(a) of monodromy representations (see Theorem 6.5).

Some further explanations should be added about the objects on the moduli space
M(κ). Each point Q ∈ M(κ) is representing a rank-two stable parabolic connection
on P1 with four singular points, which is a refined notion of a Fuchsian system with
four regular singular points on P1, consisting of a data on an algebraic vector bundle,
a logarithmic connection on it, a prescribed determinantal structure, and a parabolic
structure at the singular points (see Definition 3.1). The map πκ : M(κ) → T is
the canonical projection associaitng to each connection Q its ordered regular singular
points t = (t1, t2, t3, t4).

As for the space of time variables, the following remark should be in order at this
stage.

Remark 2.13 (Reduction of Time Variables). — The original Painlevé equa-
tion (1) has only one time-variable x, while our dynamical system has four time-
variables t = (t1, t2, t3, t4). The transition from t to x is achieved by a symplectic
reduction that is explained as follows. The group of Möbius transformations PSL2(C)
acts on T diagonally and this action can be lifted symplectically to the phase space
M(κ) in such a manner that the lifted action is commutative with the Painlevé flow.
So the space of time-variables T can be reduced to the quotient space

T/PSL2(C) ∼= P
1 − {0, 1,∞}.

It is well known that a natural coordinate of the quotient space is given by the cross
ratio

x =
(t1 − t3)(t2 − t4)
(t1 − t2)(t3 − t4) , (6)
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which gives the independent variable of the original Painlevé equation (1). This
reduction amounts to just taking the normalization t1 = 0, t2 = 1, t3 = x, t4 = ∞.
The transition from t to x brings slightly larger symmetry to the Painlevé equation
(see Remark 7.6).

For the most part, we shall work with four time-variables t = (t1, t2, t3, t4), but
occasionally we shall make use of three time-variables t = (t1, t2, t3) upon putting
t4 =∞, when such a convention is more convenient.

3. Moduli Spaces of Parabolic Connections

In our dynamical approach to Painlevé equation, first of all, we have to set up an
appropriate phase space of PVI as a dynamical system. It is realized as the moduli
space of certain stable parabolic connections on P1. Following Inaba, Iwasaki and
Saito [26] we shall briefly sketch its construction.

Before entering into the subject, we should remark that there exist related works
by Arinkin and Lysenko [1, 2], who introduced moduli spaces of SL(2)-bundles with
connections on P1 in the context of Painlevé equation. Unfortunately, they treated the
moduli spaces mostly as stacks and restricted themselves to generic parameters in K
to avoid reducible or resonant connections. For a total understanding of the Painlevé
equation, however, the locus of nongeneric parameters often plays a significant part.
In order to cover all parameters, we should take parabolic structures into account
(see Remark 3.4 for this and for another reason). Moreover, in order to develop a
good moduli theory in the framework of geometric invariant theory [47], we need the
concept of stability. These demands lead us to consider stable parabolic connections.

3.1. Parabolic Connections. — In what follows, a vector bundle will be identified
with the locally free sheaf associated to it. For a vector bundle E on P

1 and a point
x ∈ P1, we denote by E|x the fiber of E over x (not the stalk at x), namely we have
E|x = E/E(−x) with E(−x) = E ⊗OP1(−x).

Definition 3.1 (Parabolic Connection). — Given any (t, κ) ∈ T × K, a (t, κ)-
parabolic connection is a quadruple Q = (E,∇, ψ, l) such that the following conditions
are satisfied:

(1) E is a rank-two vector bundle over P1.
(2) ∇ : E → E ⊗ Ω1

P1(Dt) is a connection, where Dt is the divisor

Dt = t1 + t2 + t3 + t4.

(3) ψ : detE → OP1(−t4) is a horizontal isomorphism, where OP1(−t4) ⊂ OP1

is equipped with the connection dt4 induced from the exterior differentiation
d : OP1 → Ω1

P1 .
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singularity t1 t2 t3 t4

first exponent −λ1 −λ2 −λ3 −λ4

second exponent λ1 λ2 λ3 λ4 − 1

difference κ1 κ2 κ3 κ4

Table 3. Riemann scheme: first exponents correspond to parabolic structures

(4) l = (l1, l2, l3, l4), where li is a 1-dimensional subspace of the fiber E|ti over ti
such that

(Resti(∇)− λi idE|ti
)|li = 0,

namely, li is an eigenline of Resti(∇) with eigenvalue λi, where Resti(∇) ∈
End(E|ti) is the residue of ∇ at ti and the parameter λi is defined so that

κi =

{
2λi (i = 1, 2, 3),

2λ4 − 1 (i = 4).
(7)

The data l is called the parabolic structure of the parabolic connection Q.

Remark 3.2 (Riemann Scheme). — An eigenvalue of −Resti(∇) is called a local
exponent of ∇ at ti. By condition (4) of Definition 3.1, one exponent at ti is −λi

corresponding to the parabolic structure li (the first exponent). By condition (3) the
eigenvalues of Resti(∇) are sumed up to the residue Resti(dt4) of the connection dt4

on the line bundle OP1(−t4). Since

Resti(dt4) =

{
0 (i = 1, 2, 3),

1 (i = 4),

the exponents of ∇ at each singular point are given as in Table 3. Formula (7) means
that κi is the difference of the second exponent from the first exponent at ti. For
brevity κi is often referred to as the local exponent at ti. We remark that the fourth
singular point t4 is somewhat distinguished from the others.

Remark 3.3 (Determinantal Structure). — In condition (3) of Definition 3.1,
the horizontal isomorphism ψ : detE → OP1(−t4) is referred to as the determinantal
structure of the parabolic connection Q. Here the choice of OP1(−t4) as the target
line bundle of ψ is just for convenience. More generally, a determinantal structure
relative to L is conceivable for any line bundle L with a connection dL, meaning a
horizontal isomorphism ψ : detE → L.

There are at least two advantages of taking parabolic structures into account.
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0 0	 	
0 −−−−→ E(−ti) −−−−→ Ẽ −−−−→ li −−−−→ 0∥∥∥ 	 	
0 −−−−→ E(−ti) −−−−→ E −−−−→ E|ti −−−−→ 0	 	

E|ti/li E|ti/li	 	
0 0

Figure 4. Diagram related to an elementary transformation

Remark 3.4 (Advantages of Parabolic Structures). —

(1) The Reimann-Hilbert approach and the isomonodromic approach become fea-
sible for all parameters κ ∈ K. Without parabolic structures, people usu-
ally avoid nongeneric parameters for “technical” reasons, but they cannot be
ruled out becuase many interesting phenomena occur at nongeneric parameters
both moduli-theoretically and special-function-theoretically. Moreover, what
is called the technical difficulty is in fact an essential difficulty.

(2) The technique of elementary transformations becomes available. Here elemen-
tary transformations are certain kinds of gauge transformations canonically
associated to parabolic structures (see Definition 3.5). They, together with
the powerful technique of Langton [38], play an important part in solving the
Riemann-Hilbert problem (see Remark 4.13). They also serve as some portions
of the Bäcklund transformations (see Definition 7.2).

Definition 3.5 (Elementary Transformation). — Let Q = (E,∇, ψ, l) be a
parabolic connection with a determinantal structure ψ : detE → L and a parabolic
structure l = (l1, l2, l3, l4). The elementary transform of Q at ti is the parabolic
connection Q̃ = (Ẽ, ∇̃, ψ̃, l̃) defined in the following manner (see also Figure 4).

(1) The bundle Ẽ is the subsheaf Ẽ = Ker[E → E|ti/li ], where E → E|ti/li is
the composite of the canonical projections E → E/E(−ti) = E|ti and E|ti →
E|ti/li.

(2) The connection ∇̃ = ∇|Ẽ : Ẽ → Ẽ ⊗ Ω1
P1(Dt) is the restriction of ∇ to the

subsheaf Ẽ ⊂ E. This is well-defined because condition (4) of Definition 3.1
implies that ∇ maps Ẽ into Ẽ ⊗ Ω1

P1(Dt).
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(3) The determinantal structure ψ̃ = ψ|det Ẽ : det Ẽ → L̃ := L(−ti) is the re-
striction of ψ to the subsheaf det Ẽ ⊂ detE, where L(−ti) = L ⊗ OP1(−ti)
is equipped with the connection dL ⊗ dti with dti being the connection on
OP1(−ti) ⊂ OP1 induced from the exterior differentiation d : OP1 → Ω1

P1 . This
is well-defined becuase one has det Ẽ = (detE)(−ti) and ψ maps (detE)(−ti)
to L(−ti) by condition (4) of Definition 3.1.

(4) The parabolic structure l̃j at tj is defined by

l̃j =

{
E(−ti)/Ẽ(−ti) (j = i),

lj (j �= i),

where l̃i is well-defined, since l̃i = E(−ti)/Ẽ(−ti) ⊂ Ẽ/Ẽ(−ti) = Ẽ|ti .

There are other types of elementary transformations defined in similar manners;
see [26]. Elementary transformations were intensively studied by Maruyama [42] and
others. For parabolic structures appearing in various moduli problems, we refer to
Maruyama and Yokogawa [43], Nakajima [48], Inaba [24] and the references therein.
See also Huybrechts and Lehn [23], Nitsure [51] Simpson [67] for related moduli
problems.

3.2. Stability. — To obtain a good moduli space, namely, to avoid non-Hausdorff
phenomena, we require a concept of stability for parabolic connections.

Definition 3.6 (Stability). — A weight is a sequence of mutually distinct rational
numbers

α = (α1, α
′
1, . . . , α4, α

′
4) such that 0 < αi < α′

i < 1.

Given a weight α, a parabolic connection Q = (E,∇, ψ, l) is said to be α-stable if for
any proper subbundle F ⊂ E such that ∇(F ) ⊂ F ⊗ Ω1

P1(Dt), one has

pardegF
rankF

<
pardegE
rankE

, (8)

where pardegE and pardegF , called the parabolic degrees, are defined by

pardegE = degE +
4∑

i=1

{αi dim(E|ti/li) + α′
i dim li} = degE +

4∑
i=1

(αi + α′
i),

pardegF = degF +
4∑

i=1

{αi dim(F |ti/li ∩ F |ti) + α′
i dim(li ∩ F |ti), }

The concept of α-semistability is defined in a similar manner by weakening the condi-
tion (8) so that it allows equality. A weight α is said to be generic if every α-simistable
object is α-stable. Hereafter the weight will be assumed to be generic.
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3.3. Moduli Space of Stable Parabolic Connections. — Based on arguments
from geometric invariant theory, we can establish the following result [26].

Theorem 3.7 (Moduli Space). — Fix a generic weight α.

(1) There exists a fine moduli schemeMt(κ) of stable (t, κ)-parabolic connections.
(2) The moduli space Mt(κ) is a smooth, irreducible, quasi-projective surface.
(3) As a relative setting, there exists a family of moduli spaces

π :M→ T ×K, (9)

such that π is a smooth morphism whose fiber over (t, κ) ∈ T×K is justMt(κ).
(4) Fixing an exponent κ ∈ K, one can also speak of the family

πκ :M(κ)→ T. (10)

We insist that the fibration (10) gives a precise phase space of PVI(κ) as a time-
dependent dynamical system . In this regard the following remark should be in order.

Remark 3.8 (Connections on Trivial Vector Bundle)
In the isomonodromic approach to PVI, people usually work with linear Fuchsian

systems of the form

dY

dz
= A(z) Y, A(z) =

4∑
i=1

Ai

z − ti , (11)

namely, Fuchsian connections on the trivial vector bundle, and derive the Schlesinger
system [66],

∂Ai

∂ti
=

∑
k �=i

[Ai, Ak]
tk − ti ,

∂Ai

∂tj
=

[Ai, Aj ]
tj − ti (i �= j), (12)

and then recast it to the Painlevé equation. In that case they are supposing that
the totality of the connections in (11) forms a phase space of PVI(κ). However, it
is only isomorphic to a Zariski-open proper subset of the true phase space, that is,
our moduli spaceM(κ), and some trajectories actually escape from this open subset.
Thus, with such a näıve setting of phase space as in (11), the geometric Painlevé
property is not fulfilled, (although the analytic Painlevé property for the system (12)
holds true as was proved(1) by Malgrange [40] and Miwa [46]). This is why we had
to consider connections on nontrivial vector bundles together with the extra data
of parabolic structures, in order to build a complete phase space. In our setting,
the geometric Painlevé property holds quite naturally and then the analytic Painlevé
property follows from this and the algebraicity of the phase space (see Theorem 5.12,
Remark 2.8 and Theorem 10.12).

(1)under generic conditions on exponents
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3.4. Parabolic φ-Connection. — As the moduli spaceMt(κ) is quasi-projective,
it is natural to pose the following problem.

Problem 3.9 (Compactification). — Compactify the moduli space Mt(κ) in a
natural manner.

This problem is settled by introducing the notion of parabolic φ-connection, which
is a generalized object of parabolic connections, allowing some degeneracy in the exte-
rior differential part. This procedure reminds us of semi-classical limits of Schrödinger
equations as the Plank constant tends to zero; we compactify the moduli space by
adding some “semi-classical” objects.

Definition 3.10 (Parabolic φ-Connection). — For a fixed (t, κ) ∈ T × K, a
(t, κ)-parabolic φ-connection is a sextuple Q = (E1, E2, φ,∇, ψ, l) such that the fol-
lowing conditions are satisfied:

(1) E1 and E2 are rank-two vector bundles over P1 of the same degree degE1 =
degE2.

(2) φ : E1 → E2 is an OP1 -homomorphism.
(3) ∇ : E1 → E2 ⊗ Ω1

P1(Dt) is a C-linear map such that

∇(fs) = φ(s)⊗ df + f∇(s) for f ∈ OP1 , s ∈ E1.

(4) ψ : detE2 → OP1(−t4) is a horizontal isomorphism in the sense that

(ψ ⊗ 1)(φ(s1) ∧∇(s2) +∇(s1) ∧ φ(s2)) = dt4(ψ(φ(s1) ∧ φ(s2))) for s1, s2 ∈ E1.

(5) l = (l1, l2, l3, l4), where li is a 1-dimensional subspace of the fiber E1|ti over ti
such that

(Resti(∇)− λi φ|ti)|li = 0,

where Resti(∇) ∈ Hom(E1|ti , E2|ti) is the residue of ∇ at ti and λi is defined
by formula (7).

We remark that a parabolic φ-connection is isomorphic to a parabolic connection
if φ is an isomorphism, while it is thought of as a degenerate object if φ is not an
isomorphism.

3.5. Stability. — Again, to get a good moduli space, we need a concept of stability
for parabolic φ-connections. The following definition may be intricate at first glance,
but works well in practice.

Definition 3.11 (Stability). — A weight is a sequence α = (α1, α
′
1, . . . , α4, α

′
4) of

mutually distinct rational numbers, together with positive integers β1, β2, γ, such
that

(β1 + β2)αi < (β1 + β2)α′
i < β1, γ � 0.
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A (t, κ)-parabolic φ-connection Q = (E1, E2, φ,∇, ψ, l) is said to be (α, β, γ)-stable
if for any proper subbundle (F1, F2) ⊂ (E1, E2) such that φ(F1) ⊂ F2 and ∇(F1) ⊂
F2 ⊗ Ω1

P1(Dt), one has

pardeg(F1, F2)
β1rankF1 + β2rankF2

<
pardeg(E1, E2)

β1rankE1 + β2rankE2
, (13)

where pardeg(E1, E2) and pardeg(F1, F2) are define by

pardeg(E1, E2) = β1 degE1(−Dt) + β2 (degE2 − γ rankE2)

+(β1 + β2)
4∑

i=1

{αi dim(E1|ti/li) + α′
i dim li} ,

pardeg(F1, F2) = β1 degF1(−Dt) + β2 (degF2 − γ rankF2)

+(β1 + β2)
4∑

i=1

{αi dim(F1|ti/li ∩ F1|ti) + α′
i dim(li ∩ F1|ti)} ,

The concept of (α, β, γ)-semistability is defined in a similar manner by weakening the
condition (13) so that it allows equality. A weight (α, β, γ) is said to be generic if every
(α, β, γ)-simistable object is (α, β, γ)-stable. Hereafter the weight will be assumed to
be generic.

3.6. Moduli Space of Stable Parabolic φ-Connections. — Again, based on
arguments from geometric invariant theory, we have the following result [26].

Theorem 3.12 (Moduli Space). — Fix a generic weight (α, β, γ).

(1) There is a coarse moduli schemeMt(κ) of stable (t, κ)-parabolic φ-connections.
(2) The moduli space Mt(κ) is a smooth, irreducible, projective surface.
(3) The moduli spaceMt(κ) is embedded into the compactified spaceMt(κ) by the

natural map

Mt(κ) ↪→Mt(κ), (E,∇, ψ, l) �→ (E,E, id,∇, ψ, l),
the image of which is the open subscheme of all stable (t, κ)-parabolic φ-
connections Q = (E1, E2, φ,∇, ψ, l) such that φ : E1 → E2 is an isomorphism.

(4) As a relative setting, there exists a family of moduli spaces

π :M→ T ×K,
such that π is a smooth, projective morhism whose fiber over (t, κ) ∈ T ×K is
just the compactified moduli space Mt(κ).

(5) There exists a commutative diagram

M embedding−−−−−−−→ M
π

	 	π

T ×K T ×K.
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Σ2

E1 E2 E3 E4

E0

t1 t2 t3 t4

π

P1

∞-section

Figure 5. 8-point Blow-up of Hirzebruch surface of degree 2

3.7. Realization of Moduli Spaces. — The moduli space Mt(κ) of stable
parabolic (t, κ)-connections, together with its compactification Mt(κ), admits a
concrete realization in terms of the Hirzebruch surface Σ2 of degree 2. The surface
Σ2 is the P

1-bundle over P
1 whose cross section at infinity, denoted by F0, has

self-intersection number −2. Moreover Σ2 − F0 is isomorphic to the line bundle
Ω1

P1(Dt) over P1. Given any t = (t1, t2, t3, t4) ∈ T and i ∈ {1, 2, 3, 4}, let Fi denote
the fiber over ti of the fibration Σ2 → P1. Then we have the following theorem from
Inaba, Iwasaki and Saito [26].

Theorem 3.13 (Realization of Moduli Spaces). — Let (t, κ) ∈ T ×K be fixed.

(1) Mt(κ) is an 8-point blow-up of the Hirzebruch surface Σ2 of degree 2, blown
up at certain two points on each fiber Fi, i = 1, 2, 3, 4. The location of the
blowing-up points, possibly infinitely near, is determined by the value of κ.

(2) Mt(κ) has a unique effective anti-canonical divisor

Yt(κ) = 2E0 + E1 + E2 + E3 + E4 ∈
∣∣∣−KMt(κ)

∣∣∣ ,
where Ei is the strict transform of Fi for i = 0, 1, 2, 3, 4. Each irreducible
component Ei of Yt(κ) satisfies the condition

KMt(κ) ·Ei = 0 (i = 0, 1, 2, 3, 4).

(3) Mt(κ) is obtained from Mt(κ) by removing Yt(κ)red.
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Note that Mt(κ) is an example of generalized Halphen surfaces (see Definition
3.14), which were introduced and classified by Sakai [65]; namely, a surface of type
D

(1)
4 in his classification.

Definition 3.14 (Generalized Halphen Surface). — A smooth, projective, ra-
tional surface S is called a generalized Halphen surface if S has an effective anti-
canonical divisor

Y ∈ | −KS | such that KS · Yi = 0 (i = 1, . . . , r), (14)

where Y1, . . . , Yr are the irreducible components of Y .

This notion was introduced to construct discrete Painlevé equations as Cremona
transformations of generalized Halphen surfaces and to obtain continuous Painlevé
equations as their continuous limits (Cremona approach in Remark 3.17).

Furthermore, the pair (Mt(κ), Yt(κ)) is an instance of Okamoto-Painlevé pairs (see
Definition 3.15), which were introduced and classified by Saito, Takebe and Terajima
[61, 62]; namely, a pair of type D̃4 (or of type I∗0 in Kodaira’s notation) in their
classification.

Definition 3.15 (Okamoto-Painlevé Pair). — A pair (S, Y ) is called a general-
ized Okamoto-Painlevé pair if S is a smooth, projective surface and Y ∈ |−KS | is an
effective anti-canonical divisor satisfying the condition (14). It is called an Okamoto-
Painlevé pair if moreover S−Yred contains an affine plane C2 as a Zariski open subset
and F := S − C2 is a (reduced) divisor with normal crossings.

This notion was introduced to construct continous Painlevé equations as Kodaira-
Spencer deformations of Okamoto-Painlevé pairs (Kodaira-Spencer approach in Re-
mark 3.17).

Definitions 3.14 and 3.15 were invented by speculating on the meanings of the
spaces constructed by Okamoto [55]. Here is a comparison of our moduli spaces with
his spaces.

Remark 3.16 (Comparison with Okamoto’s space). — Theorem 3.13 implies
that our phase space Mt(κ) is isomorphic to the space constructed by Okamoto
[55]. He constructed it by hand, chasing trajectories of differential equation (1)(2),
blowing up the points where distinct trajectories meet together and removing the ver-
tical leaves. Our construction is more theoretical and intrinsic(3). More importantly,
our moduli-theoretical construction immediately allows us to consider the Riemann-
Hilbert correspondence from the constructed space (to a moduli space of monodromy
representations), since each point of which represents a parabolic connection. This

(2)to be more precise, a Hamitoninan system associated to equation (1)
(3)Painlevé property follows from our construction, while it was presupposed in his construction.
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means that we are in a happy situation that the construction of the phase space
immediately results in the construction of a natural conjugacy map.

Digressively, we take this opportunity to collect the major approaches to Painlevé
equations we have ever encountered. Gathering those mentioned in the Introduction
and those remarked after Definitions 3.14 and 3.15, we have (at least) five approaches.

Remark 3.17 (Approaches to Painlevé Equations). —

(1) Isomonodromic (Fuchs) approach (2) Lyapunov approach

(3) Cremona approach (4) Kodaira-Spencer approach

(5) Riemann-Hilbert approach

As is mentioned in the Introduction, the isomonodromic approach and the Riemann-
Hilbert approach are close relatives. In this context, the meaning of our moduli-
theoretical construction is that we were able to match Okamoto’s spaces with the
isomonodromic picture, which had hitherto existed independently, in the framework
of Riemann-Hilbert approach. On the other hand, his spaces have a priori had their
raison d’être in the Cremona and Kodaira-Spencer approaches, since these approaches
originate from searches for their intrinsic meanings.

4. Riemann-Hilbert Correspondence

In the Riemann-Hilbert approach, undoubtedly, the Riemann-Hilbert correspon-
dence plays a central part, as a (quasi-)conjugacy map between the Painlevé flow and
the isomonodromic flow. We start with some basic notions concerning monodromy
representations.

4.1. Monodromy Representations. — Given t ∈ T , we consider representations
of the fundamental group π1(P1−Dt, ∗) into SL2(C), where the divisor Dt is identified
with the 4-point set {t1, t2, t3, t4}. Recall that two representations ρ1 and ρ2 are said
to be isomorphic if there exists a matrix P ∈ SL2(C) such that

ρ2(γ) = Pρ1(γ)P−1 for any γ ∈ π1(P1 −Dt, ∗).
For a precise formulation of the Riemann-Hilbert correspondence, we need the concept
of Jordan equivalence of representations, which is closely related to the categorical-
quotient construction in algebraic geometry. We insist that the usual equivalence
up to isomorphisms is not appropriate, because the set of all representations up to
isomorphisms is not an algebraic variety. A more substantial reason will gradually be
clear in the course of discussions: by a categorical-quotient formulation, the Riemann-
Hilbert correspondence will become a resolution of singularities.

Definition 4.1 (Jordan Equivalence). — A semisimplification of a representa-
tion ρ is the associated graded of a composition series of ρ. Two representations ρ1
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γ1 γ2 γ3

γ4

t1 t2 t3

Figure 6. The loops γi; the fourth point t4 is outside γ4, invisible.

and ρ2 are said to be Jordan equivalent if they have isomorphic simisimplifications,
that is, if either

(1) they are both irreducible and isomorphic, or
(2) they are both reducible and their semisimplifications ρ′1⊕ρ1/ρ

′
1 and ρ′2⊕ρ2/ρ

′
2

are isomorphic, where ρ′1 and ρ′2 are 1-dimensional subrepresentations of ρ1

and ρ2, respectively.

If there is no danger of confusion, a representation and its Jordan equivalence class
will be denoted by the same symbol. For each t ∈ T let Rt denote the set of all
Jordan equivalence classes of SL2(C)-representarions of π1(P1 −Dt, ∗). We can also
speak of the family

R =
∐
t∈T

Rt. (15)

Definition 4.2 (Local Monodromy Data). — We put A := C4 and consider the
map

πt : Rt → A, ρ �→ a = (a1, a2, a3, a4), ai = Tr ρ(γi). (16)

where γi ∈ π1(P1 − Dt, ∗) is a loop surrounding the point ti anti-clockwise, leaving
the remaining three points outside, as in Figure 6. Note that ai is well-defined, that
is, it depends only on the Jordan equivalence class of ρ and does not depend on the
choice of loop γi. We call a the local monodromy data of ρ. For each a ∈ A let Rt(a)
denote the fiber of the map (16) over a. As the relative setting of (16) over T , we
have the family

π : R→ T ×A,
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where R is defined by (15). For a fixed a ∈ A we also have the family πa : R(a)→ T

as in (5).

4.2. Riemann-Hilbert Correspondence. — To formulate the Riemann-Hilbert
correspondence, we first set it up in the parameter level.

Definition 4.3 (Riemann-Hilbert Correspondence in Parameter Level)
We consider the correspondence of local exponents to local monodromy data

rh : K → A, κ = (κ0, κ1, κ2, κ3, κ4) �→ a = (a1, a2, a3, a4). (17)

From Table 3 the monodromy matrix ρ(γi) along the loop γi has eigenvalues
exp(±2π

√−1λi) and hence has trace 2 cos 2πλi. Then (7) and (16) imply that in
terms of exponents κ ∈ K, the local monodromy data of ρ is expressed as

ai =

{
2 cosπκi (i = 1, 2, 3),

−2 cosπκ4 (i = 4).
(18)

The map (17) with (18) is called the Riemann-Hilbert correspondence in the parameter
level.

Definition 4.4 (Riemann-Hilbert Correspondence). — Given t ∈ T , any sta-
ble parabolic connection Q = (E,∇, ψ, l) ∈ Mt, upon restricted to P1 −Dt, induces
a flat connection

∇|P1−Dt
: E|P1−Dt

→ E|P1−Dt
⊗ Ω1

P1−Dt
.

Let ρ be the Jordan equivalence class of its monodromy representation. Then the
Riemann-Hilbert correspondence at time t is defined by the holomorphic map

RHt :Mt →Rt, Q �→ ρ.

By Definition 4.3 there exists a commutative diagram of holomorophic maps

Mt
RHt−−−−→ Rt

πt

	 	πt

K −−−−→
rh

A,

(19)

where πt : Mt → K is the map sending each parabolic connection to its local expo-
nents and the map πt : Rt → A is defined by (16). As the relative setting of (19) over
T , we have the commutative diagram

M RH−−−−→ R
π

	 	π

T ×K −−−−→
id×rh

T ×A.
(20)
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Since rh : K → A is an infinite-to-one map, so is the base map of (20). This fact
makes the analysis of (20) somewhat difficult. To avoid this, we consider instead the
fiber product R defined by

R −−−−→ R
π

	 	π

T ×K −−−−→
id×rh

T ×A.
(21)

We now set up three versions of Riemann-Hilbert correspondence that will be used
in what follows.

Definition 4.5 (Three Versions of Riemann-Hilbert Correspondence)

(1) From (20) and (21) we have the commutative diagram of holomorphic maps

M RH−−−−→ R
π

	 	π

T ×K T ×K,

(22)

which is called the full-Riemann-Hilbert correspondence.
(2) Fix an exponent κ ∈ K and put a = rh(κ) ∈ A. Then (20) restricts to the

diagram

M(κ) RHκ−−−−→ R(a)

πκ

	 	πa

T T,

(23)

which is referred to as the κ-Riemann-Hilbert correspondence.
(3) Moreover, upon fixing a time t ∈ T , diagram (23) further restricts to the map

RHt,κ :Mt(κ)→Rt(a), (24)

which is referred to as the (t, κ)-Riemann-Hilbert correspondence.

Among the three versions above, the importance of (23) and (24) is obvious: (23)
will serve as a (quasi-)conjugacy map of Painlevé flow to isomonodromic flow, while
(24) will give a correspondence between the spaces of initial-conditions for these two
dynamics. On the other hand, although it is not yet clear, (22) will play an important
part in constructing Painlevé flows based on “codimension-two argument” (see Lemma
4.16 and Remark 5.11).

The Riemann-Hilbert problem usually asks the surjectivity of Riemann-Hilbert
correspondence. But the injectivity and properness are also important issues in our
situation.
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Problem 4.6 (Riemann-Hilbert Problem). — We formulate the problems for
RHκ in (23).

(1) Is RHκ surjective? This question is fundamental for the whole development of
the story.

(2) To what extent RHκ is injective? This question is important for the setup of
RHκ as a (quasi-)conjugacy map between the Painlevé flow and the isomon-
odromic flow.

(3) Is RHκ a proper map? This question is important becuase the properness of
RHκ leads to the geometric Painlevé property of the Painlevé flow (see Lemma
2.12).

In what follows, Riemann-Hilbert problem will often be abbreviated to RHP. Those
for RH, RHκ and RHt,κ will be referred to as full-RHP, κ-RHP and (t, κ)-RHP,
respectively.

4.3. Affine Weyl Group of Type D
(1)
4 . — Before stating our solution to the

Riemann-Hilbert problem, we introduce an affine Weyl group of type D(1)
4 acting on

the parameter space K (see Definition 4.7) and characterize the singularities of Rt(a)
in terms of the affine Weyl group structure (see Lemma 4.8). In connection with the
singularity structure, we introduce the concept of Riccati loci (see Defintion 4.9).

Definition 4.7 (Affine Weyl Group). — The parameter space K in (2) is an
affine space modeled on the four-dimensional linear space

K = {k = (k0, k1, k2, k3, k4) ∈ C
5 : 2k0 + k1 + k2 + k3 + k4 = 0},

endowed with the inner product 〈k, k′〉 = k1k
′
1 + k2k

′
2 + k3k

′
3 + k4k

′
4. Let σi be the

orthogonal affine reflection on K having {κ ∈ K : κi = 0} as its reflecting hyperplane.
We observe that the group generated by σ0, σ1, σ2, σ3, σ4 is an affine Weyl group of
type D(1)

4 (see Figure 7),

W (D(1)
4 ) = 〈σ0, σ1, σ2, σ3, σ4〉.

The i-th basic reflection σi is expressed as

σi(κj) = κj − κicij , (25)

where C = (cij) is the Cartan matrix of type D(1)
4 . Let Wall ⊂ K denote the union

of the reflecting hyperplanes of all reflections in W (D(1)
4 ).

We remark that a more intrinsic presentation of Definition 4.7 is possible along the
line of Arinkin and Lysenko [3], as the Weyl group on the Picard lattice of the moduli
space Mt(κ).

Let Rs
t(a) be the singular locus and R◦

t (a) = Rt(a) −Rs
t(a) be the smooth locus

of Rt(a), respectively. The affine Weyl group structure allows us to describe the
singularities of Rt(a).
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σ0

σ2

σ4σ3

σ1

C =


2 −1 −1 −1 −1
−1 2 0 0 0
−1 0 2 0 0
−1 0 0 2 0
−1 0 0 0 2



Figure 7. Dynkin diagram and Cartan matrix of type D
(1)
4

Lemma 4.8 (Singularity). — Let κ ∈ K and put a = rh(κ) ∈ A.

(1) The surface Rt(a) is smooth, that is, Rs
t(a) = ∅ if and only if κ �∈Wall.

(2) If κ ∈Wall, the singular locus Rs
t(a) consists of at most four rational double

points.

The possible types of singularities onRt(a) will be classified completely in Theorem
9.4. In connection with the singular loci of the surfaces Rt(a), we make the following
definition.

Definition 4.9 (Riccati/Non-Riccati Loci). — The Riccati loci are defined by

Rr =
∐

(t,κ)∈T×K
Rs

t(rh(κ)), Mr = RH−1(Rr).

By Lemma 4.8 the disjoint union may be taken only over T ×Wall. The non-Riccati
loci

R◦ = R−Rr, M◦ =M−Mr.

are the complements to the Riccati loci. These loci are restricted to the subspaces
R(a), Rt(a), M(κ), Mt(κ) with a = rh(κ) in an obvious manner: The Riccati loci
for them are defined by

Rr(a) =
∐
t∈T

Rs
t(a), Mr(κ) = RH−1

κ (Rr(a)),

Rr
t(a) = Rs

t(a), Mr
t(κ) = RH−1

t,κ(Rr
t(a)).

The corresponding non-Riccati loci are the complements to them:

R◦(a) = R(a)−Rr(a), M◦(κ) = M(κ)−Mr(κ),

R◦
t (a) = Rt(a)−Rr

t(a), M◦
t (κ) = Mt(κ)−Mr

t(κ).

It will turn out that Riccati loci are closely related to the so-called Riccati solutions
of the Painlevé equation. This fact motivates the terminology Riccati locus (see §5.5).
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4.4. Solution to Riemann-Hilbert Problem. — We are now in a position to
state our solution to the Riemann-Hilbert problem [26].

Theorem 4.10 (Solution to Full-RHP). —

(1) RH :M→R is a surjective proper holomorphic map, and
(2) RH :M◦ →R◦ is a biholomorophism.

Restricting this theorem to each κ ∈ K, we have the following corollary.

Corollary 4.11 (Solution to κ-RHP). — Let κ ∈ K and put a = rh(κ) ∈ A.

(1) RHκ :M(κ)→R(a) is a surjective proper holomorphic map, and
(2) RHκ :M◦(κ)→R◦(a) is a biholomorphism.

Furthermore, at each (t, κ)-level we have the following theorem.

Theorem 4.12 (Solution to (t, κ)-RHP). — Let (t, κ) ∈ T × K and put a =
rh(κ) ∈ A.

(1) If κ �∈Wall, then RHt,κ :Mt(κ)→Rt(a) is a biholomorphic map, and
(2) if κ ∈Wall, then RHt,κ :Mt(κ)→Rt(a) is a minimal resolution of singular-

ities having the Riccati locus Mr
t(κ) as its exceptional divisor.

These theorems can be generalized to stable parabolic connections of higher rank,
with more regular singular points, and even on a curve of higher genus. We present
an essence of the proof, focusing on the surjectivity of RH, which remains valid for
such generalizations.

Remark 4.13 (How to Prove). — Given a Jordan equivalence class of represen-
tations,

(1) choose a “good” representative from the given equivalence class and form the
flat connection associated to it. Since we are working with Jordan equivalence,
we can take a semisimple representation ρ0 as the good representative.

(2) Extend the flat connection to a logarithmic connection by Deligne’s canonical
extension [10] and provide it with a parabolic structure. If the initial repre-
sentation ρ0 is irreducible, the resulting parabolic connection Q0 is stable and
so we are done. If ρ0 is reducible, we cannot stop here because Q0 may be
unstable and we should proceed to step (3).

(3) If ρ0 is reducible, take steps (1) and (2) relatively, so that we obtain a family
of parabolic connections Q = {Qc}c∈C parametrized by some curve C, with
Qc0 = Q0 at the reference point c0 ∈ C, such that the monodromy of Qc is
irreducible for every c ∈ C − {c0}. Then use Langton’s technique in Theorem
4.14 in order to recast Q0 to a stable parabolic connection.

(4) The family Q in step (3) is constructed as follows. Notice that reducible
representations occur only on a Zariski-closed proper subset B ⊂ A. Let
c0 ∈ B be the local monodromy data of ρ0, take a curve C ⊂ A that meets B
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only at c0, and prolong the representation ρ0 along the curve C. Taking steps
(1) and (2) relatively, we obtain the desired family Q.

Here is the version of Langton’s technique [38] that is needed in the current situ-
ation.

Theorem 4.14 (Langton’s Technique). — Let Q = {Qc}c∈C be a family of
parabolic connections parametrized by a curve C. By some applications of elementary
transformations, Q can be transformed to a family of stable parabolic connections,
if the monodromy of Qc is irreducible for every c ∈ C − {c0}. This means that
the possible singularity of Q at c0 can be removed by elementary tramsformations,
provided that all the nearby connections are irreducible.

Langton’s theorem reminds us of the removable singularity theorem of Riemann in
complex variable and that of Uhlenbeck in gauge theory. Riemann’s classical theorem
asserts that an isolated singularity of a holomorphic function can be removed, if the
function is bounded around the singular point. Uhlenbeck’s theorem [70] states that
an isolated singularity of a Young-Mills connection can be removed by applying a
gauge transformation, if the curvature of the connection is L2-bounded around the
singular point. Langton’s theorem can be regarded as an algebraic-geometry version
of such removable singularity principles, where the boundedness condition is replaced
by the irreducibility of representations.

Remark 4.15 (Family of (−2)-Curves). — By Theorem 4.12, for any (t, κ) ∈
T ×Wall, the (t, κ)-Riemann-Hilbert correspondence RHt,κ :Mt(κ)→Rt(a) gives a
minimal resolution of singularities whose exceptional divisor is just the Riccati locus
Mr

t(κ). Each irreducible component ofMr
t(κ) is a (−2)-curve, that is, a smooth curve

C ⊂Mt(κ) such that

C � P
1, C · C = −2.

Conversely any (−2)-curve in Mt(κ) arises in this manner, since it must be sent
to a singular point by RHt,κ. Considering this situation relatively for the family
πκ :M(κ)→ T , we see that each irreducible component of the Ricatti locusMr(κ) ⊂
M(κ) is a family of (−2)-curves over T , namely,

πκ : C → T, Ct ⊂Mt(κ) : (−2)-curve. (26)

To apply Hartog’s extension theorem later, we state the following simple lemma.

Lemma 4.16 (Codimension Two). — The Riccati locus Mr is of codimension
two in M.

This is intuitively clear: By Lemma 4.8 the Riccati locusMr can lie only over the
codimension-one subset T ×Wall ⊂ T ×K with respect to the fibration (9). On the
other hand Remark 4.15 implies that for each (t, κ) ∈ T ×Wall, the Riccati locus
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Figure 8. Isomonodromic flow

Mr
t(κ) is of codimension one in Mt(κ). In total, Mr is of codimension two in M.

Lemma 4.16 will be used in Remark 5.11.

5. Isomonodromic Flow and Painlevé Flow

From our dynamical point of view, we should consiously distingush the Painlevé
flow on the moduli space of stable parabolic connections from the isomonodromic
flow on the moduli space of monodromy representations and throw a bridge between
these two dynamics via the Riemann-Hilbert correspondence. We begin with the
isomonodromic flow.

5.1. Isomonodromic Flow. — Fix a base point t ∈ T and take the loops γi ∈
π1(P1−Dt, ∗) as in Figure 6. Let U be a sufficiently small simply-connected neighbor-
hood of t in T . Then, having {γi} as common generators, all the fundamental groups
π1(P1 − Ds, ∗) with s ∈ U are identified with the reference group π1(P1 − Dt, ∗).
Passing to moduli spaces of representations, we have isomorphisms

ψs
t : Rt(a)→Rs(a) (s ∈ U). (27)

This means that the fibration πa : R(a) → T is locally trivial, where a local trivial-
ization over U is given by ψt : Rt(a)×U →R(a)|U , (ρ, s) �→ ψs

t (ρ). Then there exists
the trivial foliation on R(a)|U whose leaves are the slices ψ({ρ}×U) parametrized by
ρ ∈ Rt(a). These local foliations for various simply-connected open subsets U ⊂ T

are patched together to form a global foliation on R(a). Moreover, patching together
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various local isomorphisms of the form (27), we can associate to each path � in T an
isomorphism

�∗ : Rt(a)→Rs(a), (28)

where t and s are the initial and terminal points of �, respectively. Note that the
isomorphism �∗ depends only on the homotopy class of the path �.

Definition 5.1 (Isomonodromic Flow). — The foliation on R(a) induced from
the local triviality of the fibration π : R(a) → T is called the a-isomonodromic flow
and is denoted by FIMF(a) (see Figure 8). It is a time-dependent Hamiltonian dynam-
ics in the sense of Definition 2.5. Namely each fiber Rt(a) is a symplectic manifold,
whose symplectic structure ΩRt(a) will be described in §5.2, and the isomorphism (28)
is a symplectic isomorphism. The dynamical system (R(a),FIMF(a)) is denoted by
IMF(a), whose fundamental 2-form ΩR(a) is defined by the following conditions:

(1) ΩR(a) is restricted to the symplectic structure ΩRt(a) on Rt(a) for every t ∈ T .
(2) ιvΩR(a) = 0 for any FIMF(a)-horizontal vector filed v.

We give relative versions of Definition 5.1, which will also be used later.

Definition 5.2 (Family of Isomonodromic Flows). —

(1) There exists a (unique) family IMF = (R,FIMF) of isomonodromic flows over
A, where FIMF is a relative foliation on the fibration R → A that restricts
to the foliation FIMF(a) on each fiber R(a). Moreover there exists a relative
2-form ΩR on R that restricts to the fundamental 2-form ΩR(a) on R(a).

(2) By the fiber-product morphism (21), IMF is pulled back to a relative foliation
IMF = (R,FIMF) on R, with the corresponding relative 2-form ΩR.

Although it is almost trivial from the purely topological nature of the isomon-
odromic flow, the following lemma is worth stating explicitly.

Lemma 5.3 (Geometric Painlevé Property). — For each a ∈ A, the isomon-
odromic flow IMF(a) has geometric Painlevé property.

It is clear from the construction that the Riccati locus Rr(a) and the non-Riccati
locus R◦(a) are stable under the isomonodromic flow IMF(a).

Definition 5.4 (Riccati/Non-Riccati Flow). — For each a ∈ A (actually for
each a ∈ rh(Wall)),

(1) the isomonodromic flow IMF(a) restricted to the Riccati locus Rr(a) is referred
to as the Riccati flow and is denoted by IMFr(a), and

(2) the isomonodromic flow IMF(a) restricted to the non-Riccati locus R◦(a) is
referred to as the non-Riccati flow and is denoted by IMF◦(a).
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C1
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C2 C3
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Xt � C = ∂D

Lρ = Ad ◦ ρ

Figure 9. The Riemann sphere with four disks deleted

5.2. Symplectic Structure on Rt(a). — The symplectic nature of moduli spaces
of monodromy representations was first discussed by Goldman [18]. It has been used
to study Painlevé-type equations by Iwasaki [27, 28], Hitchin [21], Kawai [36, 37],
Boalch [5] and others. Now we recall the topological description of the symplectic
structure ΩRt(a) on the smooth locus of Rt(a) (under some generic condition on a).
A more comprehensive sheaf-cohomological description, which allows for every values
of a ∈ A, can be found in Inaba, Iwasaki and Saito [26].

In general, given a topological space X , let R(X) denote the set of all Jordan
equivalence classes of SL2(C)-representations of π1(X). In stead of using the 4-
punctured Riemann sphere P1−Dt, we employ a homotopically equivalent domain(4)

D obtained from P1 by deleting four disjoint open disks centered at t1, t2, t3, t4. The
boundary C of D consists of four disjoint circles C1, C2, C2, C4, (see Figure 9). Then
R(D) is identified with Rt = R(P1 −Dt), while R(C) is identified with A = C4

a by
the isomorphism

R(C)→ A, ρ �→ a = (Tr ρ(C1), Tr ρ(C2), Tr ρ(C3), Tr ρ(C4)).

Restricting representations of π1(D) to π1(C), we have the restriction mapping

r : R(D)→R(C), ρ �→ ρ|C .
Then Rt(a) is identified with the fiber r−1(a) over a ∈ A = R(C) and the Zariski
tangent space of Rt(a) at a point ρ ∈ Rt(a) is given by

TρRt(a) = Ker [ (dr)ρ : TρR(D)→ Tr(ρ)R(C) ],

Let Lρ be the locally constant system on D associated to the representation Ad◦ρ,
where Ad : SL2(C)→ GL(sl2(C)) is the adjoint representation of SL2(C). Then the

(4)somewhat confusing notation: D should not be confused with Dt.
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standard infinitesimal deformation theory tells us that the Zariski tangent spaces
TρR(D) and Tr(ρ)R(C) are identified with the first cohomology groups H1(D,Lρ)
and H1(C;Lρ), and that the tangent map (dr)ρ is identified with the homomorphism
j∗ in the cohomology long exact sequence

H0(C;Lρ)
δ∗

−−−−→ H1(D,C;Lρ)
i∗−−−−→ H1(D;Lρ)

j∗−−−−→ H1(C;Lρ)

for the space pair (D,C) with coefficients in Lρ. Thus we have an isomorphism

TρRt(a) ∼= Ker [ j∗ : H1(D;Lρ)→ H1(C;Lρ) ], (29)

Moreover the cohomology long exact sequence yields another isomorphism induced
by i∗,

TρRt(a) ∼= H1(D,C;Lρ)
δ∗H0(C;Lρ)

. (30)

By the Poincaré-Lefschetz duality, there exists a nondegenerate bilinear form

H1(D;Lρ)⊗H1(D,C;Lρ)
cup product−−−−−−−→ H2(D,C;Lρ ⊗ Lρ)
Killing form−−−−−−−→ H2(D,C; CD) ∼= C,

which induces a nondegenerate pairing between the righthand sides of (29) and
(30), and hence a nondegenerate skew-symmetric bilinear form on the tangent space
TρRt(a),

ΩRt(a), ρ : TρRt(a)× TρRt(a)→ C.

In this manner we have obtained an alomost symplectic structure ΩRt(a) on Rt(a),
which in fact is a symplectic structure. This fact, namely, the closedness of ΩRt(a) is
trivial in our 4-point case where Rt(a) is a surface. It can be proved in the general
n-point situation.

5.3. Nonlinear Monodromy of Isomonodromic Flow. — Given a base point
t ∈ T , we consider isomorphisms (28) when the �’s are loops in T with base point at
t. Then they become automorphisms of Rt(a) and yield a group homomorphism

π1(T, t)→ AutRt(a), � �→ �∗, (31)

which is nothing but the nonlinear monodromy of the isomonodromic flow IMF(a)
(see Definition 2.4). This homomorphism can clearly be described in terms of braid
groups on three strings (see Dubrovin and Mazzocco [12] and Iwasaki [30]). To recall
this description, it is convenient to put t4 at infinity and redefine the time-variable
space as the configuration space of distinct ordered three points in C, that is,

T = { t = (t1, t2, t3) ∈ C
3 : ti �= tj for i �= j }. (32)

Then the fundamental group π1(T, t) is isomorphic to the pure braid group P3 on
three strings. If T is replaced by the configuration space of distinct unordered three
points in C, then π1(T, t) is isomorphic to the ordinary braid group B3 on three
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strings (see e.g. Birman [4]). Recall that there exists the natural exact sequence
1→ P3 → B3 → S3 → 1, where S3 represents the permutations of t1, t2, t3. For later
convenience, we employ the following terminology.

Definition 5.5 (Full-Monodromy and Half-Monodromy)
Monodromy in terms of pure braids are referred to as full-monodromy, while mon-

odromy in terms of ordinary braids are referred to as half-monodromy, respectively.

Using half-monodromy will be convenient for shorter presentation and the full-
monodromy is just obtained by restricting the ordinary braid group to its pure sub-
group. The full-monodromy in (31) makes sense for each individual IMF(a), while
the half-monodromy only makes sense for IMF. To describe the half-monodromy, we
introduce the following natural action of B3 on Rt.

Definition 5.6 (Action of Braids on Representations)
The action of the braid group B3 on the moduli Rt of monodromy representations,

B3 ×Rt →Rt, (β, ρ) �→ ρβ ,

is defined by the following condition, which we call the global isomonodromy condition,

ρβ(γβ) = ρ(γ). (33)

Here γ �→ γβ is the natural action of β ∈ B3 on π1(Xt, ∗) defined as in Definition 5.7,
where we put

Xt = C− {t1, t2, t3}.

Definition 5.7 (Action of Braids on Fundamental Group)
Let βi be the braid as indicated in Figure 10, where (i, j, k) is any cyclic permu-

tation of (1, 2, 3). Then the braid group B3 is generated by the basic braids β1, β2,
β3. On the other hand the fundamental group π1(Xt, ∗) is the free group generated
by the loops γ1, γ2, γ3 in Figure 6. Thus we have

B3 = 〈β1, β2, β3〉, π1(Xt, ∗) = 〈γ1, γ2, γ3〉.
In terms of these generators, the action of B3 on π1(Xt, ∗) is given as in Figure 11.
Namely the action of the i-th basic braid βi : (γi, γj , γk) �→ (γ′i, γ

′
j , γ

′
k), is expressed

as

γ′i = γ−1
i γjγi, γ′j = γ′i, γ′k = γk.

where the composition of loops is taken from right to left.

The following theorem is clear from the manner in which the action is defined as
in (33).
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t′i

tj tk

βi

t′j t′k

ti

Figure 10. Basic braid βi, where (i, j, k) is a cyclic of (1, 2, 3)

ti tj tk

γi γj γk

t′j t′kt′i
γ′kγ′i

γ′j

Xt

Xt

Xt

Figure 11. The braid action βi : (γi, γj , γk) �→ (γ′
i, γ

′
j , γ

′
k)
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Theorem 5.8 (Nonlinear Monodromy). — The half-monodromy of IMF is given
by the B3-action on Rt in Definition 5.6 and the full-monodromy of IMF(a) is the
P3-action on Rt(a) that is the restriction of the B3-action above to P3 (seeTable 4).

half-monodromy full-monodromy

B3 � Rt P3 � Rt(a)

Table 4. Half-monodromy of IMF and full-monodromy of IMF(a)

As in Dubrovin and Mazzocco [12] and Iwasaki [30], we make the following remark.

Remark 5.9 (Reduction to Modular Group). — It is well known that the cen-
ter Z(B3) of B3 is the infinite cyclic group 〈(βiβj)3〉 generated by (βiβj)3 and the
quotient group B3/Z(B3) is isomorphic to the full modular group Γ � PSL(2,Z). An
inspection shows that our braid group action is trivial on the center Z(B3). Hence
it is reduced to an action of the full modular group Γ on Rt. In view of Remark
2.13, this reduction is quite possible since the fundamental group of P1 − {0, 1,∞} is
isomorphic to the level-two principal congruence subgroup Γ (2) of Γ . The resulting
modular group action will be described explicitly in Definition 8.1.

5.4. Painlevé Flow. — From our point of view, the Painlevé flow should be defined
as the pull-back of the isomonodromic flow by the Riemann-Hilbert correspondence.
This standpoint was first adopted by Iwasaki [27, 28], though things were still looked
at locally. Currently a completely global formulation is feasible, now that we have
such a neat result as in Theorem 4.10.

Theorem 5.10 (Painlevé Flow). — For any κ ∈ K, put a = rh(κ) ∈ A.

(1) There exists a unique holomorphic foliation FPVI(κ) on M(κ) such that the κ-
Riemann-Hilbert correspondence RHκ :M(κ)→R(a) gives a quasi-conjugacy

RHκ : (M(κ), FPVI(κ))→ (R(a), FIMF(a)). (34)

The dynamical system PVI(κ) = (M(κ),FPVI(κ)) is called the κ-Painlevé flow.
(2) The quasi-conjugacy map (34) induces a conjugacy map

RHκ : (M◦(κ), FPVI(κ))→ (R◦(a), FIMF(a)),

when restricted to the Riccati locus.
(3) The fundamental 2-form ΩM(κ) for the κ-Painlevé flow PVI(κ) is the unique

holomorophic 2-form on M(κ) that satisfies the condition

ΩM(κ) = RH∗
κ ΩR(a) on M◦(κ).

The point of Theorem 5.10 is explained in the following manner.
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Remark 5.11 (Codimension-Two Argument). — If κ ∈ K−Wall, this theorem
immediately follows from Corollary 4.11, since in this case there is no Riccati locus
and RHκ : M(κ) → R(a) is biholomorphic. However, if κ ∈ Wall, things are not
so simple because RHκ fails to be injective on the Riccati locus Mr(κ), which is of
codimension one in M(κ). In this case it is not immediately clear as to whether the
Painlevé flow extends to the Riccati locus. To avoid this difficulty, we should consider
the full-Riemann-Hilbert correspondence RH :M→R in (22). By Definition 5.2 we
have relative foliation FIMF and relative 2-form ΩR on R. Since RH :M◦ →R◦ is
biholomorphic by Theorem 4.10, FIMF and ΩR can be pulled back to a holomorphic
relative foliation FPVI and a holomorphic relative 2-form ΩM on M◦. Since the
complementMr =M−M◦ is of codimension two inM (see Lemma 4.16), Hartog’s
extension theorem implies that FPVI and ΩM can be extended to the whole spaceM
holomorophically. Restricting these extensions to each M(κ) yields a holomorphic
flow FPVI(κ) and a holomorphic 2-form ΩM(κ) onM(κ). These are just what we have
been seeking.

Theorem 5.12 (Geometric Painlevé Property). — For any κ ∈ K the Painlevé
flow PVI(κ) enjoys geometric Painlevé property.

This theorem readily follows from the geometric Painlevé property for the isomon-
odromic flow IMF(a) with a = rh(κ) (see Lemma 5.3) and from the fact that RHκ is
a quasi-conjugacy map between PVI(κ) and IMF(a), especially from the properness
of RHκ (see Lemma 2.12).

It is clear that the Riccati locus Mr(κ) and the non-Riccati locus M◦(κ) are
stable under the Painlevé flow PVI(κ). As a counterpart of Definition 5.4 we make
the following definition.

Definition 5.13 (Riccati/Non-Riccati Flow). — For each κ ∈ K (actually for
each κ ∈Wall),

(1) the Painlevé flow PVI(κ) restricted to the Riccati locus Mr(κ) is referred to
as the Riccati flow and is denoted by Pr

VI(κ), and
(2) the Painlevé flow PVI(κ) restricted to the non-Riccati locusM◦(κ) is referred

to as the non-Riccati flow and is denoted by P◦
VI(κ).

The assertion (2) of Theorem 5.10 is now restated as follows.

Theorem 5.14 (Conjugacy for Non-Riccati Flows). — For any κ ∈ K put a =
rh(κ) ∈ A. The Riemann-Hilbert correspondence RHk yields a conjugacy between the
non-Riccati Painlevé flow P◦

VI(κ) and the non-Riccati isomonodromic flow IMF◦(a).
Inparicular the nonlinear monodromy of P◦

VI(κ) is faithfully represented by that of
IMF◦(a), where the latter is described by Theorem 5.8 restricted to the non-Riccati
loci.
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The discussions of this subsection are summarized as follows. The Riemann-Hilbert
correspondence gives an analytic quasi-conjugacy between the Painlevé flow and the
isomonodromic flow. It gives an analytic conjugacy in the strict sense outside the
Riccati locus, while it collapses the Riccati locus to a family of singularities. Thus we
have almost arrived at the situation described in the Guiding Diagram in Figure 3,
though subtle details on the Riccati flow are not depicted there. One point yet to be
discussed in Figure 3 is the isomorphism Rt(κ) � S(θ), which will be established in
Theorem 6.5.

5.5. Riccati Flows and Hypergeometric Equations. — This subsection is de-
voted to the linearization of Riccati-Painlevé flows. This procedure will clearly explain
why Riccati flows are called so. Throughout this subsection we fix κ ∈Wall.

The Riccati-Painlevé flow Pr
VI(κ) is confined in the Riccati locus Mr(κ). By Re-

mark 4.15 each irreducible component C ⊂ Mr(κ), which is stable under the flow, is a
family of (−2)-curves over T as in (26). Thus Pr

VI(κ) restricts to a dynamical system
on the P1-bundle πκ : C → T . For this, we have the following theorem.

Theorem 5.15 (Hypergeometric Equation). — On each irreducible component
of Mr(κ) the Riccati-Painlevé flow Pr

VI(κ) is linearizable in terms of a Gauss hyper-
geometric equation.

To understand what this means, we should recall the following famous theorem.

Theorem 5.16 (Fuchs-Poincaré). — Let F (x, y, z) be a polynomial of (y, z) whose
coefficients are meromorphic functions of x in a domain U ⊂ C. Let g be the genus
of the algebraic curve

Cx = { (y, z) ∈ C
2 : F (x, y, z) = 0 }

at a generic point x ∈ U . If the first-order nonlinear differential equation

F (x, y, y′) = 0, y′ = dy/dx, (35)

has analytic Painlevé property, then there exists the following trichotomy.

(1) if g = 0 then (35) can be reduced to a Riccati equation

y′ = a(x) y2 + b(x) y + c(x), (36)

(2) if g = 1 then (35) can be reduced to the differential equation of an elliptic curve

(y′)2 = 4 y3 − g2 y − g3,
(3) if g ≥ 2 then (35) can be solved by algebraic quadratures.

This theorem means that first-order dynamical systems with Painlevé property are
classified by the genera of spaces of initial-conditions. In the case of genus zero, it
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asserts that the dynamics is governed by a Riccati equation. The Riccati equation
(36) is linearized as

y = − 1
a(x)

Y ′

Y
, a(x)Y ′′ − {a′(x) + a(x) b(x)}Y ′ + a2(x) c(x)Y = 0. (37)

Let us return to the situation in Theorem 5.15, where we were discussing the
Riccati-Painlevé flow Pr

VI(κ) restricted to an irreducible component C ⊂ Mr(κ). Then
obviously we are in the genus-zero case of Theorem 5.16(5). If we use the coordinate
expression of PVI(κ), we can see that in our case the linear equation (37) is (essentially)
a Gauss hypergeometric equation. Here the coordinate expression of PVI(κ) will be
given in Theorem 10.10. Since using coordinate expressions is not beautiful, we may
pose the following problem.

Problem 5.17 (Linearization). — For each irreducible component C ⊂ Mr(κ),
show that there exist a rank-two vector bundle E on (P1)4 and an integrable connec-
tion ∇ on it, having regular singularities along the diagonal (P1)4 − T , such that the
Riccati-Painlevé flow Pr

VI(κ) restricted to C is the flat projective connection induced
from the flat linear connection (E,∇)|T .

Of course we have to solve it conceptually without using coordinate expressions.
In any case, it is now clear that classifying Riccati solutions amounts to classifying
irreducible components of Riccati loci. We may consider this problem at a fixed
t ∈ T . So the problem is to classify (−2)-curves on moduli spaces Mt(κ), κ ∈Wall.
Originally, the relation between Riccati solutions to Painlevé equations and (−2)-
curves on spaces of initial-conditions was clarified by Saito and Terajima [63] and
Sakai [65]. In particular Saito and Terajima gave a complete classification of (−2)-
curves. We can now amplify their viewpoint by the picture of resolution of singularities
by Riemann-Hilbert correspondence. To do so we should pose the following problem.

Problem 5.18 (Classification of (−2)-Curves). — Given any (t, κ) ∈ T×Wall,
classify all (−2)-curves onMt(κ) in connection with the resolution of singularities by
the Riemann-Hilbert correspondence RHt,κ :Mt(κ)→Rt(a).

This problem will be settled in Theorem 9.4. This subsection is closed with the
following historical remark.

Remark 5.19 (History). — Attempts at generalizing Theorem 5.16 to second-
order equations led Painlevé to discover his famous equations.

(5)To apply Theorem 5.16, we should recast the bundle πκ : C → T to a �
1-bundle over U =

�
1 − {0, 1,∞} by using the symplectic reduction in Remark 2.13.
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6. Family of Affine Cubic Surfaces

All the constructions described so far can be made more explicit if we consider a
family of affine cubic surfaces defined as a certain categorical quotient. We present
the construction of the family, following Iwasaki [30]. Throughout this section we fix
a time t ∈ T .

6.1. Categorical Quotient. — Let Homt = Hom(π1(P1 −Dt, ∗), SL2(C)) be the
set of all representations of π1(P1 −Dt, ∗) into SL2(C). Then Homt is naturally an
affine algebraic variety and admits the adjoint action

Ad : SL2(C)×Homt → Homt, (P, ρ) �→ Ad(P )ρ,

defined by (Ad(P )ρ)(γ) = Pρ(γ)P−1 for γ ∈ π1(P1 − Dt, ∗). It is known (see e.g.
Simpson [67]) that the moduli space Rt of Jordan equivalence classes of representa-
tions is isomorphic to the categorical quotient

Homt//Ad = Spec C[Homt]Ad.

If the generators γi of π1(Xt, ∗) are chosen as in Figure 6, then Homt can be identified
with

R = {M = (M1,M2,M3,M4) ∈ SL2(C)4 : M4M3M2M1 = I },
through the map Homt → R, ρ �→M defined byMi = ρ(γi). With this identification,
the moduli space of representations Rt is isomorphic to the categorical quotient

R//Ad = Spec C[R]Ad, (38)

where Ad represents the diagonal adjoint action of SL2(C) on R.
The invariant ring C[R]Ad has generators (x, a) = (x1, x2, x3, a1, a2, a3, a4) given

by {
xi = Tr(MjMk) ({i, j, k} = {1, 2, 3}),
ai = TrMi (i = 1, 2, 3, 4).

Note that a = (a1, a2, a3, a4) ∈ A is just the local monodromy data defined in (16).
We may refer to x = (x1, x2, x3) ∈ C3

x as the global monodromy data, since xi comes
from the monodromy matrix MjMk along the global loop γiγj surrounding the two
points ti and tj simultaneously. The generators (x, a) have only one algebraic relation
f(x, θ(a)) = 0, known as Fricke’s relation, where f(x, θ) is the cubic polynomial of x
with coefficients θ = (θ1, θ2, θ3, θ4) defined by

f(x, θ) = x1x2x3 + x2
1 + x2

2 + x2
3 − θ1x1 − θ2x2 − θ3x3 + θ4. (39)

In terms of local monodromy data a ∈ A, the coefficients θ = θ(a) are expressed as

θi =

{
aia4 + ajak (i = 1, 2, 3),

a1a2a3a4 + a2
1 + a2

2 + a2
3 + a2

4 − 4 (i = 4).
(40)
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Let Θ := C4
θ denote the complex 4-space parametrizing the coefficients θ of f(x, θ).

6.2. Correspondences of Parameters. — So far we have encountered three kinds
of parameters, that is, the parameters κ ∈ K of PVI, which is nothing but the expo-
nents of parabolic connections; the local monodromy data a ∈ A; and the coefficients
θ ∈ Θ of the cubic polynomial f(x, θ). Relations among them are depicted in Table
5, where κ �→ a is given by (18) and a �→ θ is given by (40), respectively.

parameters of local mono- parameters

Painlevé VI dromy data of cubics

K −→ A −→ Θ

∈ ∈ ∈

κ �−→ a �−→ θ

Table 5. Correspondences of parameters

In many respects the parameters of cubics θ ∈ Θ are more essential than the local
monodromy data a ∈ A. One reason for this lies in the following observation due to
Terajima [69].

Lemma 6.1 (Basis of W (D(1)
4 )-Invariants). — As a function of exponents κ ∈

K, the coefficients θ = (θ1, θ2, θ3, θ4) of the cubic polynomial f(x, θ) form a basis of
W (D(1)

4 )-invariants.

Here, by θ being a basis of W (D(1)
4 )-invariants, we mean that any W (D(1)

4 )-
invariant entire functions on K is an entire function of θ. So far the map rh : K → A

in (17) has been called the Riemann-Hilbert correspondence in the parameter level
(see Definition 4.3). However, in view of Lemma 6.1 the following revised definition
would be more appropriate.

Definition 6.2 (Riemann-Hilbert Correspondence in Parameter Level)
From now on the composite K → Θ of two maps K → A in (17) and A→ Θ in (40)

is referred to as the Riemann-Hilbert correspondence in the parameter level. Hereafter
we write rh : K → Θ.

6.3. Family of Affine Cubic Surfaces. — The cubic equation f(x, θ) = 0 defines
a family of affine cubic surfaces, that is, the variety

S = { (x, θ) ∈ C
3
x ×Θ : f(x, θ) = 0 },

together with the projection π : S → Θ, (x, θ) �→ θ. The previous discussions imply
that the categorical quotient R//Ad in (38) is realized as the fiber product of S and
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A over Θ relative to the natural projections π : S → Θ and A→ Θ. Namely we have
isomorphisms

Rt � R//Ad � S ×Θ A. (41)

We write fθ(x) = f(x, θ) regarding it as a polynomial of x depending on parameters
θ. For each θ ∈ Θ the fiber of π : S → Θ over θ is an affine cubic surface

S(θ) = { x ∈ C
3 : fθ(x) = 0 }.

Now (41) means that Rt(a) is isomorphic to the cubic surface S(θ) provided that θ
is given by (40) in terms of a. Thus we have the following definition.

Definition 6.3 (Reformulation of RH). — The isomorphism (41) and Defini-
tion 6.2 allow us to reformulate the t-Riemann-Hilbert correspondence (19) as the
commutative diagram

Mt
RHt−−−−→ S

πt

	 	π

K −−−−→
rh

Θ

In a similar manner the (t, κ)-Riemann-Hilbert correspondence (24) is reformulated
as

RHt,k :Mt(κ)→ S(θ), θ = rh(κ). (42)

Definition 6.4 (Poincaré Residue). — A natural symplectic structure or an area
form on the cubic surface S(θ) is the Poincaré residue defined by

ωθ =
dxi ∧ dxj

(∂fθ/∂xk)
,

where (i, j, k) is any cyclic permutation of (1, 2, 3); it does not depends on the cyclic
permutation chosen. The smooth and singular loci of S(θ) are denoted by S◦(θ) and
Ss(θ), respectively. Then the Poincaré residue ωθ is holomorphic on S◦(θ), having
singularities along Ss(θ).

A complete characterization of the singular locus Ss(θ) will be presented in Section
9. The following theorem is due to Iwasaki [30].

Theorem 6.5 (Moduli of Representations and Cubic Surface)
For any (t, a) ∈ T × A, let θ = θ(a) be defined by (40). Then there exists an

identification of symplectic manifolds

i : (Rt(a), ΩRt(a)) � (S(θ), ωθ). (43)

The main ingredient of the proof is the de Rham theorem. At the end of this
section, the following remark would be of some interests.
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Remark 6.6 (Moduli of Cubic Surfaces). — It is well known in classical al-
gebraic geometry that the isomorphism classes of cubic surfaces in P3 have a
4-dimensional moduli space and that there exists a 4-parameter family of general
cubic surfaces, known as Cayley’s normal form [7]. Some computations imply that
our family S and Cayley’s normal form, as modified by Naruki and Sekiguchi [49, 50],
have a common algebraic cover and hence our family captures general moduli (see
Iwasaki [29] and Terajima [69]). Thus the family S can be taken as another normal
form than Cayley’s. It is remarkable that general sixth Painlevé equations are
connected with general cubic surfaces through the Riemann-Hilbert correspondence.

7. Bäcklund Transformations

Symmetries of the Painlevé equation are called Bäcklund transformations. Näıvely,
a Bäcklund transformation is a birational transformation that converts one Painlevé
equation PVI(κ) to another Painlevé equation PVI(κ′), where κ and κ′ may differ.
More precisely, it is a birational map from one phase space M(κ) to another phase
space M(κ′) that commutes with the Painlevé flows. There are at least two ap-
proaches to understand Bäcklund transformations.

Remark 7.1 (Two Approaches to Bäcklund Transformations)

(1) birational canonical transformations,
(2) covering transformations of the Riemann-Hilbert correspondence.

The first approach (1) has been employed by such authors as Lukashevich and
Yablonski [39] Fokas and Ablowitz [13] and Okamoto [58] in the style of explicit
calculations. In particular, Okamoto discovered that PVI admits affine Weyl group
symmetries of type D(1)

4 . He expressed them as birational canonical transformations
of Hamiltonian systems; Noumi and Yamada [54] systematized them by a symmetric
description in terms of a new Lax pair; Arinkin and Lysenko [3] geometrized them
as isomorphisms between moduli spaces of SL2(C)-connections; Sakai [65] also ge-
ometrized them in his Cremona framework; Saito and Umemura [64] characterized
them as flops. In fact, these various viewpoints are too diverse to be tagged with the
same label.

Nonetheless, they still have a common feature to the effect that they look only
on a one-side of the Riemann-Hilbert correspondence, that is, the moduli space of
parabolic connections or its relatives (spaces where PVI is defined), with no attentions
to the moduli space of representations. On the other hand, the second approach
(2) is interested in the interaction between the source space and the target space
of Riemann-Hilbert correspondence, asking what the Bäcklund transformations look
like through the telescope of Riemann-Hilbert correspondence. In this section we take
approach (2), following the exposition of Inaba, Iwasaki and Saito [25].
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Mt(κ)
sσ−−−−→ Mt(σ(κ))

RHt,κ

	 	RHt,σ(κ)

S(θ) −−−−−→
identity

S(σ(θ))

Figure 12. Bäcklund transformations

Take any κ ∈ K and put θ = rh(κ) ∈ Θ. Given any element σ ∈ W (D(1)
4 ), we

consider the Riemann-Hilbert correspondences (42) for the parameter κ and for its
σ-translate σ(κ),

RHt,κ :Mt(κ)→ S(θ), RHt,σ(κ) :Mt(σ(κ))→ S(σ(θ)).

By our solution to the Riemann-Hilbert problem (see Theorem 4.12), both of them
are biholomorphic maps if κ �∈ Wall, and are minimal resolutions of singularities if
κ ∈Wall, respectively; in any case they are bimeromorhpic morphisms. On the other
hand, by the W (D(1)

4 )-invariance of θ (see Lemma 6.1), we have θ = σ(θ) and hence
the cubic surfaces S(θ) and S(σ(θ)) are identical. Therefore there exists a unique
bimeromorphic map

sσ :Mt(κ)→Mt(σ(κ)) (44)

that makes the diagram in Figure 12 commute, that is, the unique lift that covers
the identity on S(θ) = S(σ(θ)) through the Riemann-Hilbert correspondence. In the
sprit of approach (2) it is natural to define the concept of Bäcklund transformations
in the following manner.

Definition 7.2 (Bäcklund Transformation). — By a Bäcklund transformation,
we mean the lift sσ of an element σ ∈ W (D(1)

4 ) as in (44). The group of Bäcklund
transformations is, by definition, the group consisting of all those lifts sσ with σ ∈
W (D(1)

4 ), that is,

G = 〈 sσ |σ ∈W (D(1)
4 ) 〉 = 〈s0, s1, s2, s3, s4〉 �W (D(1)

4 ).

where si is the lift of the basic reflection σi for i = 0, 1, 2, 3, 4 (see (25) and Figure
7); we refer to si as the i-th basic Bäcklund transformation. For each t ∈ T the
group G acts on the moduli space Mt over K in such a manner that there exists the
commutative diagram

Mt
G−−−−→ Mt

πt

	 	πt

K −−−−−→
W (D

(1)
4 )

K
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Remark 7.3 (Advantage and Disadvantage). — The following two advantages
of Definition 7.2 are clear.

(1) The character of Bäcklund transformations is transparent, as the covering
transformations of the Riemann-Hilbert correspondence, in the sense of Figure
12.

(2) The origin of the affine Weyl group structure of Bäcklund transformations is
clear: It just comes from the fact that the Riemann-Hilbert correspondence in
the parameter level rh : K → Θ is a branched W (D(1)

4 )-covering.

There is also a disadvantage of this definition.

(3) The birational character of Bäcklund transformations is far from trivial, be-
cause our definition makes use of the Riemann-Hilbert correspondence which
is highly transcendental. From Definition 7.2 we only know that Bäcklund
transformations are bimeromorphic, while their birationality is a priori clear
from the viewpoints of approach (1).

So we are obliged to discuss the relation between these two approaches and to unify
them. In this respect, Inaba, Iwasaki and Saito [25] proved the following result.

Theorem 7.4 (Coincidence of Two Approaches). — The two approaches in
Remark 7.1 coincide. Namely the Bäcklund transformations in the sense of Definition
7.2 are exactly those which have been known as the birational canonical transforma-
tions.

We remark that a different proof of this theorem was given later by Boalch [6].
There exists an explicit formula for the basic Bäcklund transformations si in terms of
certain canonical coordinates onM(κ) (see Theorem 10.13). We can calculate the lift
si of σi, overcoming the transcendental nature of the Riemann-Hilbert correspondence
(see [25]). As a matter of fact, s1, s2, s3, s4 are easy to handle and the true difficulty
lies in the treatment of s0. As for this the following remark might be helpful.

Remark 7.5 (Gauge Transformations). — Let W ′ be the subgroup of W (D(1)
4 )

stabilizing the local monodromy data a = a(κ) as a function of κ (see (17) and
(18)). The subgroup G′ ⊂ G corresponding to W ′ is called the group of gauge
transformations. Note that a Bäcklund transformation is a gauge transformation if
and only if it does not change monodromy.

(1) s1, s2, s3, s4 are very simple gauge transformations; see e.g. [25].
(2) s0 is not a gauge transformation. It is an interseting problem to characterize

it in the level of a concrete transformation of objects in moduli spaces. There
seem to be some hints in Boalch [6]. On the other hand, Arinkin and Lysenko
[3] was able to pinpoint it in the level of an abstract isomorphism between
moduli spaces.

As is mentioned in [3, 54], the following remark should be in order at this stage.
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Remark 7.6 (Extended Affine Weyl Group). — The affine Weyl group sym-
metry can be enlarged to an extended affine Weyl group symmetry, if we allow some
permutations of time variables t = (t1, t2, t3, t4). Let Kl � Z2×Z2 be Klein’s 4-group
of permutations

Kl = { 1, (12)(34), (13)(24), (14)(23) } ⊂ S4,

acting on T ×K by permuting their components. Note that the semi-direct product

Kl �W (D(1)
4 ) = W̃ (D(1)

4 ).

is the extended affine Weyl group of type D(1)
4 acting on T ×K. This action is lifted

to the moduli space M over T ×K through the Riemann-Hilbert correspondence, as

M �G−−−−→ M
π

	 	π

T ×K −−−−−→
�W (D

(1)
4 )

T × K.

We remark that the original independent variable of PVI in (1), namely, the cross
ratio x in (6) is Kl-invariant and hence remains invariant under the enlarged group
of symmetries.

8. Nonlinear Monodromy

The nonlinear monodromy of the Painlevé flow, or more precisely, that of the non-
Riccati Painlevé flow, can be represented explicitly in terms of a certain modular
group action on cubic surfaces. In this seciton we are concerned with this description.

8.1. Modular Group Action. — The action is first defined on the ambient space
C7 = C3

x × Θ and then restricted to S. In what follows (i, j, k) stands for any cyclic
permutation of (1, 2, 3). We start with the symmetric group S3 of degree 3 acting on
Θ by permuting the first three components of θ = (θ1, θ2, θ3, θ4). If τi = (ij) ∈ S3

denotes the transposition(6) of θi and θj , then S3 is generated by τ1, τ2, τ3,

S3 = 〈τ1, τ2, τ3〉.
Next we introduce a lift of τi to C7 relative to the second projection C7 = C3

x×Θ→ Θ.

Definition 8.1 (Group of Polynomial Automorphisms)
For each i = 1, 2, 3, let

gi : C
7 → C

7, (x, θ) �→ (x′, θ′)

(6)Note that τ3 is not (34) but (31).
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S(θ) S(τ(θ))

π

Θ

S

θ τ(θ) = θ′

ωθ

ωτ(θ)

g

G(2) ⊂ G �

Γ (2) ⊂ Γ

{1} ⊂ S3 �

area form

(x, θ)

(x′, θ′)

Figure 13. A total picture of the modular group action

be the polynomial automorphism defined by the formula

(x′i, x
′
j , x

′
k, θ

′
i, θ

′
j, θ

′
k, θ

′
4) = (θj − xj − xkxi, xi, xk, θj , θi, θk, θ4).

Moreover let G denote the transformation group(7) generated by g1, g2, g3, that is,

G = 〈g1, g2, g3〉.

A direct check shows that the generators satisfy three relations

gigjgi = gjgigj , (gigj)3 = 1, gk = gigjg
−1
i ,

which are exactly the defining relations of the full modular group

Γ = PSL2(Z) =
{
z �→ az + b

cz + d
: a, b, c, d ∈ Z, ad− bc = 1

}
.

So there exists a group homomorphism Γ → G, through which the modular group Γ
acts on C7. This action is restricted to the principal congruence subgroup of level 2,

Γ (2) =
{
z �→ az + b

cz + d
∈ Γ : a ≡ d ≡ 1, b ≡ c ≡ 0 (mod 2)

}
.

The subgroup of G corresponding to Γ (2) ⊂ Γ is given by

G(2) = 〈g2
1 , g

2
2 , g

2
3〉,

(7)The group of Bäcklund transformations is also denoted by G in §7, but no confusion might occur.
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which is referred to as the transformation group of level 2. Note that there exists the
natural homomorphism G→ S3 defined by gi �→ τi = (ij), whose kernel is just G(2).
Thus we have a 4-parameter family of Γ (2)-actions on C3

x parametrized by θ ∈ Θ.
We observe that the polynomial f(x, θ) in (39) is gi-invariant and hence the family

of cubic surfaces S is stable under the action of G. Moreover, for each θ ∈ Θ, the
cubic surface S(θ) is stable under the action of Γ (2). So the above action can be
restricted to cubic surfaces.

Definition 8.2 (Modular Group Actions). —

(1) The symmetric group S3 of degree 3 acts on the base space Θ by permuting
the first three components (θ1, θ2, θ3) of θ, while keeping the fourth component
θ4 always fixed.

(2) The full modular group Γ acts on the family π : S → Θ of affine cubic surfaces
through the transformation group G, covering the action of S3 on Θ.

(3) The congruence subgroup Γ (2) of level 2 acts on each cubic surface S(θ)
through the transformation group G(2), area-preservingly with respect to the
Poincaré residue ωθ.

A total picture of these actions is presented in Figure 13. The identification of
these actions with those in §5.3 (see Table 4) is established in Iwasaki [30].

Theorem 8.3 (Braid Versus Modular Group Actions)
With the isomorphisms (41) and (43), the braid group actions and the modular

group actions are identified, including their symplectic structures, as in Table 6: the
upper and lower columns are identified in the same rows.

half-monodromy full-monodromy area form

braid group action B3 � Rt P3 � Rt(a) ΩRt(a)

modular group action Γ � S Γ (2) � S(θ) ωθ

Table 6. Identification of the braid and modular group actions

8.2. Nonlinear Monodromy of Painlevé Flow. — Having Theorems 5.14 and
8.3 in hands, we can easily describe the nonlinear monodromy of the non-Riccati part
of PVI in terms of the modular group action in Definition 8.2.

Theorem 8.4 (Nonlinear Monodromy). — For any κ ∈ K, put θ = rh(κ) ∈ Θ.
Then the nonlinear monodromy of the non-Riccati Painlevé flow P◦

VI(κ) is faithfully
represented by the Γ (2)-action on the smooth locus S◦(θ) of the cubic surface S(θ)
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M◦
t (κ)

t

RHκM◦(κ) R◦(a)

R◦
t (a) � S◦(θ)

T T

πκ πa

Q
ρ

t

Painlevé flow Isomonodromic flow

=

Q′ ρ′

β β

Figure 14. Nonlinear monodromy of P◦
VI(κ)

through the Riemann-Hilbert correspondence RHt,κ. Namely we have the intertwining
isomorphism

[ NM of P◦
VI(κ) �M◦

t (κ) ]
RHt,κ−−−−→ [Γ (2) � S◦(θ) ], (45)

where NM means nonlinear monodromy. An image picture of (45) is given in Figure
14.

Remark 8.5 (Dichotomy). — Theorem 8.4 means that the global natures of PVI

are well understood according to the dichotomy into the Riccati and non-Riccati
components.

(1) On the Riccati component Pr
VI, the flows are linearizable in terms of Gauss

hypergeometric equations (see Theorem 5.15), whose global natures have been
well understood classically.

(2) On the non-Riccati component P◦
VI, the nonlinear monodromy is faithfully

represented by an explicit modular group action on cubic surfaces, from which
we can extract the global natures of P◦

VI.

The monodromy problem for PVI was discussed in Dubrovin and Mazzocco [12]
for a special one-parameter family and in Iwasaki [30] for the full-family. Then the
solution in Iwasaki [30] has been completed in Inaba, Iwasaki and Saito [26] by
solving the Riemann-Hilbert problem precisely and is now presented in this article.
The global nature of PVI can also be investigated from more analytical point of view,
as the connection problem. For the latter subject we refer to the important papers by
Jimbo [32] and Guzzetti [20].
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rh
∆(θ) = 0

K-space Θ-spaceWall

V

Figure 15. Riemann-Hilbert correspondence in parameter level

9. Singularities and Riccati Solutions

We shall classify (−2)-curves on moduli spaces in terms of resolutions of singulari-
ties of cubic surfaces by Riemann-Hilbert correspondence. Together with the modular
group action on cubic surfaces, this makes it possible to get a total picture of Riccati
solutions to PVI.

9.1. Singularities of Cubic Surfaces. — For our family of cubic surfaces, the
discriminant locus was calculated by Iwasaki [29].

Definition 9.1 (Discriminant). — Let ∆(θ) be the discriminant of the cubic sur-
face S(θ), which is an irreducible polynomial of θ ∈ Θ. When lifted by the map
A→ Θ in (40), the discriminant ∆(θ) factors as

∆(θ) = w(a)2
4∏

i=1

(a2
i − 4),

w(a) =
∏

ε1ε2ε3=1

(ε1a1 + ε2a2 + ε3a3 + a4)−
3∏

i=1

(aia4 − ajak),

where εi = ±1 and {i, j, k} = {1, 2, 3}．

Lemma 9.2 (Discriminant Locus). — Tthe Riemann-Hilbert correspondence in
the parameter level, rh : K → Θ, maps Wall onto the discriminant locus

V = { θ ∈ Θ : ∆(θ) = 0 }

(see Figure 15). For any θ ∈ Θ, the cubic surface S(θ) is singular if and only if θ ∈ V .

In order to classify the singularities of S(θ), we introduce a stratification of K.
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number of nodes 4 3 2 1 0

Dynkin diagram D4 A3 A2 A1 ∅
A⊕4

1 A⊕3
1 A⊕2

1 − −

Table 7. Dynkin types of singularities

Definition 9.3 (Stratification). — Let I denote the set of all proper subset of
{0, 1, 2, 3, 4} including the empty set ∅. For each subset I ∈ I we put

KI = W (D(1)
4 )-translates of the subset {κ ∈ K : κi = 0 (i ∈ I), κi �= 0 (i �∈ I)}.

DI = Dynkin subdiagram of D(1)
4 that has nodes precisely in I.

Then the parameter space K admits a stratification

K =
∐
I∈I
KI , K∅ = K −Wall (the nonsingular locus).

Those Dynkin diagrams which are realized as DI for some I ∈ I are precisely the
proper subdiagrams of D(1)

4 , tabulated in Table 7. We are interested not only in the
subdiagram DI but also in the inclusion pattern DI ↪→ D

(1)
4 . Some typical patterns

are illustrated in Table 8.

Using the stratification in Definition 9.3, we can clearly describe all the possible
singularities.

Theorem 9.4 (Classfication of Singularities). — For any I ∈ I − {∅} and any
κ ∈ KI , the surface S(θ) with θ = rh(κ) has simple singularities of type DI .

In this situation the Riemann-Hilbert correspondence RHt,κ :Mt(κ)→ S(θ) gives
a minimal resolution of singularities (Theorem 4.12). Thus the exceptional divisor of
RHt,k, namely, the Riccati locusMr

t(κ) ⊂Mt(κ) has the dual graph of Dynkin type
DI . We give an example for which a singularity of D4-type occurs.

Example 9.5 (Singularity of Type D4). — For θ = (8, 8, 8, 28) the cubic surface
S(θ) has a simple singularity of type D4. If κ is a W (D(1)

4 )-translate of (0, 0, 0, 0, 1),
then one has rh(κ) = θ and the (t, κ)-Riemann-Hilbert correspondence RHt,κ :
Mt(κ) → S(θ) gives a minimal resolution of singularity as in Figure 16. In this
case we have the Riccati locus of type D4,

Mr
t(κ) = e0 ∪ e1 ∪ e2 ∪ e3. (46)
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1 2

3 4

0

1 2

3 4

0

D4 : I = {0, 1, 2, 3} A⊕4
1 : I = {1, 2, 3, 4}

1 2

3 4

0

1 2

3 4

0

A3 : I = {0, 1, 2} A⊕3
1 : I = {1, 2, 3}

1 2

3 4

0

1 2

3 4

0

A2 : I = {0, 1} A⊕2
1 : I = {1, 2}

1 2

3 4

0

1 2

3 4

0

A1 : I = {0} A1 : I = {1}

Table 8. Stratification
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e0

e1

e2

e3

moduli space cubic surface

RHt,κ

resolution of
singularity

S(θ)

Mt(κ)

D4

p1

p2

p3

Figure 16. A singularity of type D4 for κ = (0, 0, 0, 0, 1) and θ = (8, 8, 8, 28)

9.2. A Total Picture of Riccati Solutions. — As is mentioned in §5.5, Saito and
Terajima [63] established the relation between (−2)-curves and Riccati solutions; this
is an event on the Painlevé equation side. On the other hand, on the cubic surface side,
Iwasaki [29, 30] pointed out that the singular points on S(θ) are precisely the fixed
points of the Γ (2)-action. Then Inaba, Iwasaki and Saito [26] added one more aspect,
namely, the aspect of resolution of singularities by Riemann-Hilbert correspondence;
the last one finds itself in the middle of the previous two aspects. Combining all these
three, we are now able to get a total picture of Riccati solutions.

Theorem 9.6 (A Total Picture). — Let (t, κ) ∈ T×Wall and put θ = rh(κ) ∈ Θ.

(1) The germs at t of Riccati solutions to PVI(κ) are in one-to-one correspondence
with the points on the (−2)-curves on the moduli space Mt(κ).

(2) Each (−2)-curve on the moduli space Mt(κ) is sent to a singular point on the
cubic surface S(θ) by the Riemann-Hilbert correspondence RHt,κ : Mt(κ) →
S(θ).

(3) Conversely any (−2)-curve on the moduli spaceMt(κ) arises as an irreducible
component of the exceptional divisor of the resolution of singularities RHt,κ :
Mt(κ)→ S(θ).

(4) The singular points on S(θ) are exactly the fixed points of the Γ (2)-action on
S(θ).

(5) The singular points on S(θ), as well as the (−2)-curves on Mt(κ), are com-
pletely classified as in Theorem 9.4.

Theorem 9.6 can be visualized as in Figure 17. The following is a simple application.

Corollary 9.7 (Single-Valued Solutions). — Any single-valued solution to PVI

is a Riccati solution and moreover it is a rational solution.
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Riccati solutions of PVI

Singular points of

cubic surface

(−2)-curves on moduli space Fixed points of Γ (2)-action

resolution of singularity

Painlevé side Cubic surface sideRH

Figure 17. A total picture of Riccati solutions

Proof. The proof is very easy by now. Not a Riccati solution implies not a fixed
point, implies not single-valued, since the Riemann-Hilbert correspondence is one-to-
one outside the Riccati locus. Hence any single-valued solution must be Riccati. Now
recall that a Riccati solution is a logarithmic derivative of a hypergeometric function
(see Theorem 5.15). Such a function of regular singular type can be single-valued
only if it is a rational function. The proof is complete. �

The rational solutions to PVI were classified by Mazzocco [44].

Example 9.8 (Some Rational Solutions). — In Example 9.5 any solution on the
(−2)-curve e0 is rational. Indeed any half-monodromy α preserves the Riccati con-
figuration (46) and hence induces an automorphism β of e0 � P

1 that permutes the
three points p1, p2, p3 in Figure 16. If α is a full-monodromy, then β fixes each of p1,
p2, p3 and hence is identity on e0. This means that any solution on e0 is single-valued.
By Corollary 9.7 it is a rational solution.

Finally we refer to Lukashevich and Yablonski [39], Fokas and Ablowitz [13],
Okamoto [58], Watanabe [71], Gromak, Laine and Shimomura [19] and the refer-
ences therein for explicit calculations of Riccati solutions.

10. Canonical Coordinates

The moduli spaceM(κ) admits a natural canonical coordinate system whose local
charts are laveled by the affine Weyl group W (D(1)

4 ). In this section we shall construct
such coordinates and write down the Painlevé dynamics explicitly in terms of them.
The principle of producing canonical coordinates is the Wronskian construction that
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singularity t1 t2 t3 t4 =∞ q

first exponent 0 0 0 κ0 0

second exponent κ1 κ2 κ3 κ4 + κ0 2

Table 9. Riemann Scheme

converts a stable parabolic connection to a second-order single Fuchsian differntial
equation. In this section we mean by T the configuration space of distinct ordered
three points in C as in (32) upon putting t4 =∞; hence

t = (t1, t2, t3) = (t1, t2, t3,∞) ∈ T.

10.1. Space of Fuchsian Equations. — We start with spaces of Fuchsian equa-
tions from which local coordinates are to be extracted.

Definition 10.1 (Fuchsian Equations). — For any κ ∈ K, let E(κ) be the set of
all second-order Fuchsian differential equations of the form

d2f

dz2
− v1(z)df

dz
+ v2(z)f = 0, (47)

with four regular singular points t = (t1, t2, t3, t4) ∈ T and an apparent singular point
q, having Riemann scheme as in Table 9, where κ is fixed while t and q may vary in
such a manner that q does not meet any of t1, t2, t3, t4.

The affine linear relation 2κ0+κ1+κ2+κ3+κ4 = 1 in (2) is exactly Fuchs’ relation
for Fuchsian differential equation (47). The classical Fuchs-Frobenius method in the
theory of Fuchsian differential equations allows us to determine the coefficients v1(z)
and v2(z) as

v1(z) =
1

z − q +
3∑

i=1

κi − 1
z − ti , v2(z) =

p

z − q +
3∑

i=1

Hi(κ)
z − ti . (48)

The condition that q is apparent with exponents 0 and 2 implies that Hi(κ) =
Hi(q, p, t;κ) is a functions of (q, p, t, κ). This function, called the i-th Hamiltonian, is
explicitly determined as follows.

Lemma 10.2 (Hamiltonians). — The i-th Hamiltonian Hi(κ) = Hi(q, p, t;κ) is
given by

(tijtik)Hi(κ) = (qiqjqk)p2 − {(κi − 1)qjqk + κjqkqi + κkqiqj}p+ κ0(κ0 + κ4)qi,
(49)

with {i, j, k} = {1, 2, 3}, where qi := q − ti and tij := ti − tj.
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Remark 10.3 (Polynomial Hamiltonians). — Note that Hamiltonians (49) are
polynomials of (q, p). This is because one exponent at each finite singular point, t1, t2,
t3, q, is zero in the Riemann scheme of Table 9. We call (49) polynomial Hamiltonians
(see Okamoto [56]).

Formulas (48) and (49) tell us that for a fixed κ, the Fuchsian equation (47) is
determined uniquely by the data (q, p, t). Thus the following definition is natural.

Definition 10.4 (Canonical Coordinates). — The set E(κ) is identified with the
affine variety

U = { (q, p, t) ∈ Cq × Cp × C
3
t : q �= ti, ti �= tj for i �= j }, (50)

having coordinates (q, p, t), on which the fundamental 2-form is defined by

ΩE(κ) = dq ∧ dp−
3∑

i=1

dHi(q, p;κ) ∧ dti (51)

10.2. Wronskian Construction. — First we shall define the concept of apparent
singular point of a stable parabolic connection. Let Q = (E,∇, ψ, l) ∈ M(κ) be any
stable parabolic connection. By the stability of Q, we can show that there exists a
unique line subbundle F ⊂ E of maximal degree. The line bundle F is called the
maximal subbundle of E and the quotient bundle L = E/F is called the minimal
quotient bundle of E. Note that F and L are of degrees 0 and −1, respectively. Let

π : E → L = E/F (52)

be the canonical projection. We see that the composite u : F → L⊗ Ω1
P1(Dt) of the

sequence

F
inclusion−−−−−→ E

∇−−−−→ E ⊗ Ω1
P1(Dt)

π⊗1−−−−→ L⊗ Ω1
P1(Dt)

is an OP1-homomorphism and gives a holomorphic section of the line bundle
Hom(F,L) ⊗ Ω1

P1(Dt), where t ∈ T is the regular singular points of Q. Then
the stability of Q implies that u is a nontrivial section. Since the line bundle
Hom(F,L) ⊗ Ω1

P1(Dt) is of degree one, the nontrivial section u has a unique simple
zero q. Since the construction so far is canonical, the point q = q(Q) ∈ P1 is uniquely
determined by Q ∈M(κ). Hence we have a well-defined morphism

q :M(κ)→ P
1, Q �→ q = q(Q). (53)

Definition 10.5 (Apparent Singular Point). — The point q = q(Q) ∈ P1 in
(53) is called the apparent singular point of the stable parabolic connectionQ ∈ M(κ).

Using the morphism (53), we can consider the locus Mid(κ) ⊂ M(κ) where the
apparent singular point q does not meet any regular singular point ti, i = 1, 2, 3, 4:

Mid(κ) = {Q ∈ M(κ) : q(Q) �= ti(Q) (i = 1, 2, 3, 4) },
where ti = ti(Q) denotes the i-th regular singular point of Q.
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Next we proceed to the Wronskian construction that recast each stable parabolic
connection in Mid(κ) to a Fuchsian differential equation in E(κ). Given a stable
parabolic connection Q = (E,∇, ψ, l) ∈M(κ), we consider the locally constant sheaf

L′ = Ker
[∇|P1−Dt

: E|P1−Dt
→ E|P1−Dt

⊗ Ω1
P1−Dt

]
of ∇-horizontal sections on P

1 − Dt. By the stability of Q we can show that the
canonical projection π in (52) induces an isomorphism of locally constant sheaves on
P1 −Dt,

π : L′ → π(L′) ⊂ L|P1−Dt

On the other hand, since the line bundle L−1 is of degree one, there exists a unique
connection δ : L−1 → L−1⊗Ω1

P1(Dt) whose residue at each singular point is given by

Resti(δ) =

{ −λi (i = 1, 2, 3),

λ1 + λ2 + λ3 − 1 (i = 4),

where λi is given by (7) in terms of κi. Let L′′ be the locally constant sheaf

L′′ = Ker
[
δ|P1−Dt

: L−1|P1−Dt
→ L−1|P1−Dt

⊗ Ω1
P1−Dt

] ⊂ L−1|P1−Dt
.

of δ-horizontal sections on P1 − Dt. Tensoring π(L′) with L′′, we have a locally
constant sheaf

LQ = π(L′)⊗ L′′ ⊂ OP1−Dt
, (54)

canonically associated to the stable parabolic connection Q ∈ M(κ) (see Remark 10.7
for the meaning of the tensoring with L′′). The construction so far is valid for any
Q ∈M(κ), but we have to put Q in Mid(κ) to obtain the following theorem.

Theorem 10.6 (Wronskian Isomorphism). — For a stable parabolic connection
Q ∈Mid(κ), with singular points at t ∈ T , we consider the second-order monic differ-
ential equation on P

1 −Dt whose solution sheaf is given by the locally constant sheaf
LQ in (54). Then it is exactly such a Fuchsian differential equation as is formulated
in Definition 10.1 with apparent singular point at q = q(Q) given by (53). Therefore
there exists a well-defined morphism

Φκ :Mid(κ)→ E(κ). (55)

This morphism becomes an isomorphism.

Combined with the identification E(κ) � U in Definition 10.4, where the set U is
defined by (50), the isomorphism (55) yields a local coordinate mapping

Ψκ :Mid(κ)→ U, Q �→ (q, p, t). (56)

At the end of this subsection we emphasize that stability has been used many times
in the Wronskian construction. Lastly the following technical remark may be helpful.
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Remark 10.7 (Shift of Exponents). — The essential factor in (54) is the rank-
two local system π(L′), which is tensored with the rank-one local system L′′ just for
shifting the exponents. By the tensoring with L′′, the exponents in Table 3 are shifted
to those in Table 9 by the vector (λ1, λ2, λ3, 1 − λ1 − λ2 − λ3) at t = (t1, t2, t3, t4).
This process is necessary to obtain polynomial Hamiltonians as in (49) (see Remark
10.3).

10.3. Canonical Coordinate System. — Combined with Bäcklund transforma-
tions, Theorem 10.6 produces a canonical coordinate system on the moduli space
M(κ). To see this, for each σ ∈W (D(1)

4 ), consider the open subset

Mσ(κ) = s−1
σ (Mid(σ(κ))) ⊂M(κ),

where sσ :M(κ)→M(σ(κ)) is the Bäcklund transformation corresponding to σ (see
Figure 12). Then there exists an open covering of the moduli space M(κ),

M(κ) =
⋃

σ∈W (D
(1)
4 )

Mσ(κ)

On each open subsetMσ(κ) we have an isomorphism

Φσ
κ :Mσ(κ)→ E(σ(κ)), (57)

defined as the composite of the sequence of isomorphisms

Mσ(κ) sσ−−−−→ Mid(σ(κ))
Φσ(κ)−−−−→ E(σ(κ)).

To see that (57) is a Poisson isomorphism, we make use of the following theorem.

Theorem 10.8 (Pull-Back Principle). — Let κ ∈ K and put a = rh(κ) ∈ A.
We define the local Riemann-Hilbert correspondence RHσ

κ : E(σ(κ)) → R(a) as the
composite of the sequence

E(σ(κ))
(Φσ

κ)−1

−−−−→ Mσ(κ) ↪→M(κ) RHκ−−−−→ R(a).

Then the 2-form ΩE(σ(κ)) on E(σ(κ)) is the pull-back of ΩR(a) by RHσ
κ, namely,

(RHσ
κ)∗ΩR(a) = ΩE(σ(κ)).

This theorem is due to Iwasaki [28], where the map RHσ
κ is formulated(8) directly

without passing through the moduli space M(κ). Hence we have the commutative
diagram

Mσ(κ) inclusion−−−−−→ M(κ)

Φσ
κ

	 	RHκ

E(σ(κ)) −−−−→
RHσ

κ

R(a),

(8)To be more precise, it is formulated only for σ = id, but the modification for a general σ is obvious.
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where RHκ is Poisson by Theorem 5.10 while RHσ
κ is also Poisson by Theorem 10.8

respectively. Therefore Φσ
κ becomes a Poisson isomorphism as desired.

Definition 10.9 (Canonical Coordinate System). — By the same procedure as
in (56) the Poisson isomorphisms (57) induce local coordinate mappings

Ψσ
κ :Mσ(κ)→ Uσ, Q �→ (qσ, pσ, t) (σ ∈W (D(1)

4 )), (58)

where Uσ is a copy of U endowed with the coordinates (qσ, pσ, t). Note that we have
Ψσ

κ = Ψσ(κ) ◦ sσ with Ψκ given by (56). The collection of maps (58) is referred to as
the canonical coordinate system on the moduli space M(κ).

We are now in a position to derive a Hamiltonian system of differential equations
for PVI(κ) on each local chartMσ(κ) � Uσ based on the idea in Remark 2.6.

Theorem 10.10 (Hamiltonian System). — In terms of the canonical coordinates
(qσ, pσ, t) on Mσ(κ) � Uσ, the Painlevé flow PVI(κ) is expressed as the Hamiltonian
system Hσ

VI(κ),

∂qσ
∂ti

=
∂Hi(σ(κ))

∂pσ
,

∂pσ

∂ti
= −∂Hi(σ(κ))

∂qσ
, (59)

with Hamiltonians Hi(σ(κ)) = Hi(qσ , pσ, t;σ(κ)) where Hi(q, p, t;κ) is given by (49).

Indeed the Painlevé flow PVI(κ) is characterized by the condition that ιvΩM(κ) = 0
for every FPVI(κ)-horizontal vector field v. Since (57) is a Poisson isomorphism, this
condition is equivalent to ιvΩE(σ(κ)) = 0, from which system (59) readily follows.

Remark 10.11 (Malmquist Expression). — Malmquist [41] obtained a Hamil-
tonian expression for PVI as early as 1923. Our expression (59) is just a symmetric
form of his expression that can be reduced to his original by the symplectic reduction
in Remark 2.13. Malmquist’s expression was rediscovered by Okamoto [56, 57] in the
isomonodromic context. Deriving Hamiltonian systems as in (59) by the pull-back
principle in Theorem 10.8 is due to Iwasaki [28], where he works on a Riemann surface
of arbitrary genus.

Theorem 10.12 (Analytic Painlevé Property). — For any κ ∈ K and σ ∈
W (D(1)

4 ) the Hamiltonian system Hσ
VI(κ) has analytic Painlevé property.

This theorem immediately follows from the geometric Painlevé property of the
Painlevé flow FPVI(κ) (see Theorem 5.12) and the algebraicity of the phase space
M(κ) (see Remark 2.8).

Theorem 10.13 (Basic Bäcklund Transformations). — In terms of canonical
charts in (56),

Mid(κ) � U �Mid(σi(κ)) (i = 0, 1, 2, 3, 4),
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the i-th basic Bäcklund transformation si is expressed as the birational canonical trans-
formation

si(κj) = κj − κi cij , si(tj) = tj , si(qj) = qj +
κi

qi
uij . (60)

where C = (cij) is the Cartan matrix of type D(1)
4 (see Figure 7) and

qi =

{
p (i = 0),

q − ti (i = 1, 2, 3, 4),
uij = {qi, qj} =

∂qi
∂p

∂qj
∂q
− ∂qi
∂q

∂qj
∂p

.

As is mentioned after Theorem 7.4, it is not so easy to derive the formula (60) for
s0 from our definition of Bäcklund transformations in Definition 7.2. Our strategy
is the coalescence of regular singular points along isomonodromic flow; see Inaba,
Iwasaki and Saito [25].

Traditionally, such coordinate expressions as in (59) and (60) have been a starting
point of the story. In the other way round, we end up with coordinate expressions as
concrete realizations of the abstract dynamical system PVI that is defined conceptu-
ally.

Remark 10.14 (Gluing by Bäcklund Transformations)
The moduli spaceM(κ) is made up of local charts glued by Bäcklund transforma-

tions. Indeed it is clear from Definition 10.9 that for σ, σ′ ∈ W (D(1)
4 ) the transition

function from Mσ(κ) � Uσ to Mσ′
(κ) � Uσ′ is just the Bäcklund transformation

sσ′σ−1 = sσ′s−1
σ . Noumi, Takano and Yamada [53] showed that “the manifold of

Painlevé system” can be constructed in this way. Their empirical observation is trivial
from our point of view, or even from the meta-physics: the phase space of a dynamical
system should be made up of inertial coordinates glued together by symmetries of the
system.

The construction of moduli spaces and that of canonical coordinates tell us the
following remark.

Remark 10.15 (Systems or Single Equations?). — In doing isomonodromic
deformations, some people work with first-order linear systems as in (11), while others
work with second-order single equations as in (47). We may ask which approach is
better. The answer is that both are important and necessary. Systems are sophis-
ticated to stable parabolic connections and are used to construct the phase space of
Painlevé dynamics; while single equations are used to construct canonical coordinates
of the phase space that make it possible to get a concrete realization of the dynamics.
Therefore both are important and necessary.
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(Mσ(κ), ΩM(κ))
inclusion−−−−−→ (M(κ), ΩM(κ))

Φσ
κ

	 	RHκ

(E(σ(κ)), ΩE(σ(κ))) −−−−→
RHσ

κ

(R(a), ΩR(a))
inclusion←−−−−− (Rt(a), ΩRt(a))	i[

σ ∈ W (D(1)
4 )

]
(S(θ), ωθ)

Figure 18. Concluding Diagram: bold-faced are concrete objects

11. Summary

In this article we have observed the natural manner in which the continuous Hamil-
tonian system PVI induces two discrete Hamiltonian systems:

(1) Bäcklund transformations as convering transformations of the Riemann-
Hilbert correspondence. They describe the symmetries of PVI.

(2) Poincaré return maps (or the nonlinear monodromy). Outside the Ric-
cati locus they are realized as an area-preserving action of the modular group
on affine cubic surfaces through the Riemann-Hilbert correspondence. They
describe the global structures, especially the multi-valuedness, of trajectories
of PVI.

Here we recall that the geometric Painlevé property is a prerequisite for the well-
definedness of Poincaré return maps. In this respect we have shown by the conjugacy
method that

(3) the geometric Painlevé property of the Painlevé flow follows from that of
the isomonodromic flow, which holds trivially, through the Riemann-Hilbert
correspondence.

As to the Riccati component of PVI comprising the classical torajectories that can be
linearized in terms of Gauss hypergeometric equations, we have given

(4) a total picture of Riccati solutions in terms of resolutions of singularities
by the Riemann-Hilbert correspondence.

Concerning the concrete realization of the Painlevé dynamics, we have constructed

(5) a canonical coordinate system via the Wronskian construction, in terms of
which Hamiltonian systems and Bäcklund transformations are written down
explicitly. The nonlinear monodromy is also made explicit in terms of cubic
surfaces as in item (2).



DYNAMICS OF THE SIXTH PAINLEVÉ EQUATION 61

We started the main body of this article with the Guiding Diagram in Figure 3.
We wish to close the article with the Concluding Diagram in Figure 18. Located in
the central position of the diagram, as well as of the development of our story, is the
Riemann-Hilbert correspondence

RHκ : (M(κ),ΩM(κ))→ (R(a),ΩR(a))

in the precise moduli-theoretical setting. The Painlevé dynamics encoded in this
abstract object is concretized on both sides of the diagram: Hamiltonian systems and
Bäcklund transformations on the left-hand side, while nonlinear monodromy on the
right-hand side, respectively.
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Painlevé systems, Funkcial. Ekvac. 45 (2) (2002), 237–258.

[54] M. Noumi and Y. Yamada, A new Lax pair for the sixth Painlevé equation associated
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