New algorithms for computing primary decomposition of polynomial ideals

Masayuki Noro

Kobe University/JST CREST

Primary decomposition : the GTZ algorithm

Gianni-Trager-Zacharias (GTZ) algorithm [GTZ]
(1) Reduction to zero-dimensional cases

Extract some of maximal dimensional primary components Q_{1}, \ldots, Q_{k}
(2) Computation of a remaining ideal

Compute $f^{s} \notin I$ s.t.
$I=\left(I: f^{s}\right) \cap\left(I+\left\langle f^{s}\right\rangle\right), \quad I: f^{s}=I: f^{\infty}=Q_{1} \cap \cdots \cap Q_{k}$.
(3) Decomposition of the remaining ideal

Decompose $I+\left\langle f^{s}\right\rangle$.

Primary decomposition : the SY algorithm

Shimoyama-Yokoyama (SY) algorithm[SY]
(1) Computation of minimal associated primes

Compute minimal associated primes $\left\{P_{1}, \ldots, P_{l}\right\}$ of I.
(2) Computation of pseudo primary component and a remaining ideal
Compute ideals $\tilde{Q}_{1}, \ldots, \tilde{Q}_{l}$ and $f_{1}^{s_{1}}, \ldots, f_{l}^{s_{l}}$ s.t. $\sqrt{\tilde{Q}_{i}}=P_{i}$, $I=\left(\tilde{Q}_{1} \cap \cdots \cap \tilde{Q}_{l}\right) \cap\left(I+\left\langle f_{1}^{s_{1}}, \ldots, f_{l}^{s_{l}}\right\rangle\right)$.
(0) Decomposition of pseudo primary components.

Compute a primary component Q_{i} and a remaining ideal I_{i}^{\prime} s.t. $\tilde{Q}_{i}=Q_{i} \cap I_{i}^{\prime}$.
(9) Decomposition of remaining ideals.

Decompose $I_{i}^{\prime}, I+\left\langle f_{1}^{s_{1}}, \ldots, f_{l}^{s_{l}}\right\rangle$.

Primary decomposition : the EHV algorithm

Eisenbud-Huneke-Vasconcelos (EHV) algorithm [EHV]
(1) Computation of all associated primes

Compute all associated primes of I via Homological algebra.
(2) Computation of primary components Compute primary components corresponding to the associated primes via localization.

Existing implementations

- Risa/Asir (in primdec) primadec (I, V) : SY
- Macaulay2
primaryDecomposition(i): SY
primaryDecomposition(i,
Strategy => EisenbudHunekeVasconcelos) : EHV
- Singular (in primdec.lib) primdecGTZ(i) : GTZ primdecSY(i): SY

Motivation to develop a new algorithm

We found examples which are hard to be decomposed by existing implementations.

A simple example(SY fails to decompose it.)

$$
\begin{gathered}
I=\left\langle h_{1}, s h_{2}, \ldots, s h_{9}, s^{2}\right\rangle=Q \cap R, \\
Q=\left\langle h_{1}, s\right\rangle, R=\left\langle h_{2}, \ldots, h_{9}, s^{2}\right\rangle, h_{1}, \ldots, h_{9} \in \mathbb{Q}\left[u_{1}, u_{2}, u_{3}, u_{4}\right] .
\end{gathered}
$$

We can confirm that

$$
\begin{gathered}
R=I+J \text { for } J=\left\langle h_{2}, \ldots, h_{9}\right\rangle \\
I: Q=\langle S\rangle, S=\left\{h_{2}, \ldots, h_{9}, s\right\} .
\end{gathered}
$$

We observed that $J=\langle S \backslash Q\rangle$
\Rightarrow The first step toward our new algorithm

Outline of the new method

A modification of the SY algorithm
(1) The isolated primary components are first computed. We only keep Q_{i} extracted from \tilde{Q}_{i}. (We do not use I^{\prime}.) Let Q_{1}, \ldots, Q_{l} be the isolated primary components of I.
(2) Computation of a large separating ideal Separating ideal : an ideal J s.t. $I=Q \cap(I+J)$ for $Q=Q_{1} \cap \cdots \cap Q_{l}$
We find J as a subset of $I: Q$.
(3) Decompose $I+J$.

The reason why J should be large

- A small J tends to introduce unnecessary components. $J=\left\langle f^{s}\right\rangle$ in GTZ and in SY for I^{\prime}.
- A successful case

We succeeded in decomposing an ideal I by enlarging J, keeping $I=Q \cap(I+J)$.

- The reason why $J \subset I: Q$

$$
I=Q \cap(I+J) \text { implies } J \subset I: Q .
$$

Separating ideal

Separating ideal

For $I \subset Q$ we call an ideal J a separating ideal for (I, Q) if $J \not \subset I, I+J \neq k[X]$ and $I=Q \cap(I+J)$.

Lemma

For ideals I, J, Q in $k[X], I \subset Q$ implies
$I=Q \cap(I+J) \Leftrightarrow Q \cap J \subset I$.

Proposition

There exists m s.t. $(I: Q)^{m} \cap Q \subset I$.

Corollary

For any $f \in I: Q$, there exists $m>0$ s.t. $I=Q \cap\left(I+\left\langle f^{m}\right\rangle\right)$.

Primary decomposition : SYC

SYC : Shimoyama-Yokoyama with Colon ideal

Input : an ideal $I \subset k[X]$
Output : an irredundant primary decomposition of I
$L \leftarrow \emptyset ; Q \leftarrow k[X] ; I_{t} \leftarrow I$
while $I_{t} \neq k[X]$ do ($I=Q \cap I_{t}$ at this point)
$P_{t} \leftarrow$ MinimalAssociatedPrimes $\left(I_{t}\right)$
$L_{t} \leftarrow$ IsolatedPrimaryComponents $\left(I_{t}, P_{t}\right)$
$Q_{t} \leftarrow \bigcap_{J \in L_{t}} J$
if $Q \not \subset Q_{t}$ then $\left\{Q \leftarrow Q \cap Q_{t} ; L \leftarrow L \cup L_{t}\right\}$
if $Q=I$ break
$J_{t}=\operatorname{SeparatingIdeal}\left(I_{t}, Q_{t},\left(I_{t}: Q_{t}\right)\right) \quad\left(I_{t}=Q_{t} \cap\left(I_{t}+J_{t}\right)\right)$
$I_{t} \leftarrow I_{t}+J_{t}$
end do
return RemoveRedundancy(L)

Primary decomposition : SYCA

SYCA : Shimoyama-Yokoyama with Colon ideal (Absolute)

Input : an ideal $I_{\text {in }} \subset k[X]$
Output : an irredundant primary decomposition of $I_{\text {in }}$
$L_{\text {all }} \leftarrow \emptyset ; Q_{\text {all }} \leftarrow k[X] ; I_{t} \leftarrow I_{\text {in }}$
RESTART: $L \leftarrow \emptyset ; Q \leftarrow k[X] ; I \leftarrow I_{t} ; C=\{0\}$
while $I_{t} \neq k[X]$ do ($I_{\text {in }}=Q_{\text {all }} \cap I, I=Q \cap I_{t}$ at this point)
$P_{t} \leftarrow$ MinimalAssociatedPrimes $\left(I_{t}\right)$
$L_{t} \leftarrow$ IsolatedPrimaryComponents $\left(I_{t}, P_{t}\right) ; \quad Q_{t} \leftarrow \bigcap_{J \in L_{t}} J$
if $Q \subset Q_{t}$ goto RESTART else $Q \leftarrow Q \cap Q_{t}$
if $Q_{\text {all }} \not \subset Q_{t}$ then $\left\{L \leftarrow L \cup L_{t} ; \quad Q_{\text {all }} \leftarrow Q_{\text {all }} \cap Q_{t} ; \quad L_{\text {all }} \leftarrow L_{\text {all }} \cup L_{t}\right\}$
if $Q_{t}=I_{t}$ or $Q=I$ or $Q_{\text {all }}=I_{\text {in }}$ break
if $I: Q=C$ goto RESTART
else $\left\{J \leftarrow\right.$ SeparatingIdeal $\left.(I, Q,(I: Q)) ; I_{t} \leftarrow I+J ; \quad C \leftarrow I: Q\right\}$
end do
return RemoveRedundancy $\left(L_{\text {all }}\right)$

SeparatingIdeal(I, Q, C)

SeparatingIdeal(I, Q, C)

Input : $I \subset k[X], Q=\cap_{i=1}^{r} Q_{i}, C=I: Q$
(all isolated components appear in $\left\{Q_{1}, \ldots, Q_{r}\right\}$)
Output : a separating ideal J for (I, Q)
$G \leftarrow$ a Gröbner basis of $I: Q$
$H=\left\{h_{1}, \ldots, h_{k}\right\} \leftarrow G \backslash \sqrt{I}$
$S_{0} \leftarrow$ a generating set of a separating ideal for (I, Q) (computed from H)
return $\left\langle S_{0}\right\rangle$

Computation of S_{0}

Partial search (search the first largest contiguous block)

$S_{0} \leftarrow \emptyset$
for $i=1$ to k do
$m \leftarrow$ the smallest integer s.t. $Q \cap\left(I+\left\langle h_{i}^{m}\right\rangle\right)=I$
if $\left(I+\left\langle S_{0} \cup\left\{h_{i}^{m}\right\}\right\rangle\right) \cap Q \neq I$ break
$S_{0} \leftarrow S_{0} \cup\left\{h_{i}^{m}\right\}$
end do

Full search

$S \leftarrow\left\{h_{i}^{m_{i}} \mid m_{i}\right.$ is the smallest integer s.t. $\left.Q \cap\left(I+\left\langle h_{i}^{m_{i}}\right\rangle\right)=I\right\}$
$l \leftarrow$ the largest index l s.t. $Q \cap\left(I+\left\{h_{1}^{m_{1}}, \ldots, h_{l}^{m_{l}}\right\}\right)=I \quad$ (binary search)
$\left.S_{0} \leftarrow\left\{h_{1}^{m_{1}}, \ldots, h_{l}^{m_{l}}\right\}\right)$
for $i=l+1$ to k do

$$
\begin{aligned}
& \text { if }\left(I+\left\langle S_{0} \cup\left\{h_{i}^{m_{i}}\right\}\right\rangle\right) \cap Q=I \\
& S_{0} \leftarrow S_{0} \cup\left\{h_{i}^{m_{i}}\right\}
\end{aligned}
$$

end do

Experiments

Primary decomposition of ideals with many embedded components

- Ideals related to computation of local b-functions [NN]
- Ideals generated by adjacent minors [DES]

For an $m \times n$ matrix $X=\left(x_{i j}\right)$, primary decomposition of the ideal $A_{k, m, n}$ generated by adjacent $k \times k$-minors of X has been investigated by several authors.

These are examples which are hard to decompose by existing algorithms.

Results

Q_{i} : isolated components, R_{i} : embedded components

- ideals related to b-function $\operatorname{disc} f_{k}: A_{k}$ singularity, $g_{k}: D_{k}$ singularity

$$
\begin{aligned}
I_{1} & =J_{\mathrm{disc}\left(f_{4}\right)}+\left\langle s^{2}\right\rangle=Q_{1} \cap R_{1}, \\
I_{2} & =J_{\mathrm{disc}\left(f_{5}\right)}+\left\langle s^{3}\right\rangle=Q_{1} \cap R_{1} \cap R_{2}, \\
I_{3} & =J_{g_{5}}+\left\langle s^{4}\right\rangle=Q_{1} \cap R_{1} \cap R_{2} \cap R_{3} \cap R_{4},
\end{aligned}
$$

- Adjacent minors

Ideal	$\# Q_{i}$	$\# R_{i}$				
$A_{2,3,4}$	6	3				
$A_{2,3,5}$	10	9		Ideal	$\# Q_{i}$	$\# R_{i}$
$A_{2,3,6}$	18	23		$A_{2,4,4}$	15	17
$A_{2,3,7}$	32	56		$A_{2,4,5}$	35	61
$A_{2,3,8}$	57	131				

Computation by existing implementations

- I_{1}

EHV in Macaulay2 and GTZ in Singular succeed.
All SY fail to decompose I_{1}.

- I_{2}, I_{3}

All existing implementations fail to decompose I_{2} and I_{3}.

- $A_{2,3,5}$

21 hours by SY in Macaulay2

- $A_{2,3, n}(n \geq 6), A_{2,4,4}, A_{2,4,5}$

It seems impossible.
$\left(A_{2,4,4}\right.$ and $A_{2,3,5}$: given in [DES] and [HS] via cellular decomposition.)

Timings : SYC

Ideal	Total	Colon	Sep	\#lso	\#Emb
I_{1}	0.05	0	0.01	1	$1(1)$
I_{2}	0.6	0.03	0.1	1	$2(2)$
I_{3}	17	0.4	1.5	1	$4(12)$
Huneke	470	210	180	1	$4(4)$
$A_{2,3,4}$	13	5	5	6	$3(23)$
$A_{2,3,5}$	$>10 \mathrm{~h}$	-	-	-	-

\#lso : the number of isolated components.
\#Emb : the number of embedded components
(n) : the number of components before removing redundancy Computation of S_{0} : partial search for I_{i}, full search for $A_{k, m, n}$.

Timings: SYCA

Ideal	Total	Colon	Sep	\#lso	\#Emb
I_{1}	0.08	0.004	0.004	1	$1(1)$
I_{2}	0.9	0.03	0.1	1	$2(2)$
I_{3}	17	0.6	1.7	1	$4(8)$
Huneke	108	9.8	38	1	$4(4)$
$A_{2,3,4}$	0.5	0.03	0.1	6	$3(3)$
$A_{2,3,5}$	5	0.2	2.3	10	$9(9)$
$A_{2,3,6}$	133	2.8	48	18	$23(23)$
$A_{2,3,7}$	3540	25	2090	32	$56(56)$
$A_{2,3,8}$	146 h	284	62 h	57	$131(131)$
$A_{2,4,4}$	31	1.8	15	15	$17(21)$
$A_{2,4,5}$	12700	102	7800	35	$61(68)$

Conclusion

- Success for many examples which are hard to decompose
$I_{2}, I_{3}, A_{2,3,6}, A_{2,3,7}, A_{2,3,8}, A_{2,4,5}$
- The number of redundant components are small.
$A_{2,3, k}$: no redundant components
- Possibility of parallel computation
- $Q=\left\langle f_{1}, \ldots, f_{m}\right\rangle \Rightarrow I: Q=\cap_{i}\left(I: f_{i}\right)$
- Computation of isolated components
- Computation of $h_{i}^{m_{i}}$ s.t. $\left(I+\left\langle h_{i}^{m_{i}}\right\rangle\right) \cap Q=I$

References

DES P. Diaconis, D. Eisenbud, B. Sturmfels, Lattice walks and primary decomposition. In B. Sagan, R. Stanley eds, Mathematical Essays in Honor of Gian-Carlo Rota, Birkhäuser, 173-194 (1998).

DGP W. Decker, G.-M. Greuel, G. Pfister, Primary decomposition: Algorithms and comparisons. Algorithmic algebra and number theory, Springer, 187-220 (1998).
EHV D. Eisenbud, C. Huneke, W. Vasconcelos, Direct methods for primary decomposition. Invent. Math. 110, 207-235 (1992).
GTZ P. Gianni, B. Trager, G. Zacharias, Gröbner basis and primary decomposition of polynomial ideals. J. Symb. Comp. 6, 149-167 (1988).
HS S. Hoşten, J. Shapiro, Primary Decomposition of Lattice Basis Ideals. J. Symb. Comp. 29, 625-639 (2000).

NN K. Nishiyama, M. Noro, Stratification associated with local b-functions. J. Symb. Comp. 45, 462-480 (2010).
O T. Oaku, Algorithms for b-Functions, Restrictions, and Algebraic Local Cohomology Groups of D-Modules. Advances in Applied Mathematics 19, 61-105 (1997).
SY T. Shimoyama, K. Yokoyama, Localization and Primary Decomposition of Polynomial ideals. J. Symb. Comp. 22, 247-277 (1996).

