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Abstract

The holonomic gradient method gives an algorithm to efficiently and accurately evaluate nor-
malizing constants and their derivatives. We apply the holonomic gradient method in the case of
the conditional Poisson or multinomial distribution on two way contingency tables. We utilize the
modular method in computer algebra or some other tricks for an efficient and exact evaluation, and
we compare them and discuss on their implementation. We also discuss on a theoretical aspect of
the distribution from the viewpoint of the conditional maximum likelihood estimation. We decom-
pose parameters of interest and nuisance parameters in terms of sigma algebras for general two way
contingency tables with arbitrary zero cell patterns.

1 Introduction

The holonomic gradient method (HGM) proposed in [17] provides an algorithm to efficiently and accu-
rately evaluate normalizing constants and their derivatives. This algorithm utilizes holonomic differential
equations or holonomic difference equations. Y. Goto and K. Matsumoto [7] determined a system of
difference equations for the hypergeometric system of type (k, n). The normalizing constant of the condi-
tional Poisson or multinomial distribution on two-way contingency tables is a polynomial solution of this
hypergeometric system. Thus, we can apply these difference equations to exactly evaluate the normal-
izing constant and its derivatives by HGM. However, there is a difficulty: numerical evaluation errors,
incurred by repeatedly applying these difference equations or recurrence relations, increase rapidly if we
use floating point number arithmetic. Accordingly, we evaluate the normalizing constant by exact ratio-
nal arithmetic. However, in general, exact evaluation is slow. The modular method in computer algebra
(see, e.g., [19], [27]) has been used for efficient and exact evaluation over the field of rational numbers. We
apply the modular method or some other tricks to our evaluation procedure. We compare these methods
and explore implementation of these algorithms in Sections 4 and 5.

We then turn from computation to a theoretical question before presenting statistical applications.
An interesting application of the evaluation of the normalizing constant is the conditional maximum
likelihood estimation (CMLE) of parameters of interest with fixed marginal sums. Broadly speaking,
the parameters of interest in this case are (generalized) odds ratios. However, we could not identify a
rigorous formulation on parameters of interest for contingency tables with zero cells in the literature. In
Sections 7 and 8, we introduce A-distributions as a conditional distribution. The conditional Poisson
or multinomial distribution on contingency tables with fixed marginal sums is a special and important
case of A-distributions. We will decompose parameters of interest and nuisance parameters in terms of
σ-algebras. We note that the conditional distribution of a statistic given the occurrence of a sufficient
statistic of a nuisance parameter does not depend on the value of the nuisance parameter. Hence, by the
conditional distribution, we can estimate the parameter of interest without being affected by the nuisance
parameter.

Finally, we apply our method to a CMLE problem for contingency tables. This problem is discussed
in [21] for the case of 2 × n contingency tables and the work presented here generalizes this to two-way
contingency tables of any size and with any pattern of zero cells.

2 Two Way Contingency Tables

We introduce our notation for contingency tables and review how the normalizing constant for a condi-
tional distribution is expressed by a hypergeometric polynomial of type (k, n). There are several salient
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references on contingency tables. Among them, we will refer to [1] and [10, Chap 4] herein.

2.1 r1 × r2 Contingency Table

Definition 1 (r1 × r2 (2 way) contingency table) An r1 × r2 matrix with non-negative integer en-
tries is called an r1 × r2 contingency table. For a contingency table u = (uij), we define the row sum

vector by βr =
(∑

j u1j , · · · ,
∑

j ur1j

)T
, and the column sum vector by βc = (

∑
i ui1, · · · ,

∑
i uir2)

T
. A

contingency table u is also written as a column vector of length r1×r2, denoted by uf . The column vector
obtained by joining βr and βc is denoted by β, which is called the row column sum vector or the marginal
sum vector.

Example 1 (2× 3 contingency table and the row sum and the column sum) For the 2×3 con-

tingency table u =

(
5 3 6
7 2 4

)
the row sum vector and the column sum vector are

βr =

(
5 + 3 + 6 = 14
7 + 2 + 4 = 13

)
, βc =

 5 + 7 = 12
3 + 2 = 5
6 + 4 = 10

 .

The corresponding vector expressions of uf and β are

uf =
(
5 3 6 7 2 4

)T
, β =

(
14 13 12 5 10

)T
.

We fix p = (pij) ∈ Rr1×r2
>0 , N ∈ N0 and consider the multinomial distribution

N !pu

u!|p|N
, pu =

∏
i,j

p
uij

ij , u! =
∏
i,j

uij !

on contingency tables satisfying |u| =
∑

i,j uij = N . The conditional distribution obtained by fixing the
row sum vector βr and the column sum vector βc is

pu

u!Z(β; p)
, Z(β; p) =

∑
Auf=β, u∈Nr1×r2

0

pu

u!
. (1)

Here, the polynomial Z(β; p) is the normalizing constant of this conditional distribution. The matrix A
satisfies the following conditions: (1) entries are 0 or 1; (2) Auf is the marginal sum vector (see Example
2). The expectation of the u-value at (i, j) of this conditional distribution is equal to

E[Uij ] = pij
∂ logZ

∂pij
. (2)

Exact evaluation of the conditional probability of getting a contingency table u and evaluation of the
expectation is reduced to the evaluation of the normalizing constant Z and its derivatives. For given
rational numbers pij , we provide an efficient and exact method to evaluate Z and its derivatives.

Example 2 (example of A) When uf =
(
5 3 6 7 2 4

)T
, the matrix A is

A =


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


and we have

Auf =


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1




5
3
6
7
2
4

 =


14
13
12
5
10

 = β.
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Example 3 We consider 2× 2 contingency tables with the marginal sum vector β =
(
5 7 8 4

)T
.

All contingency tables u satisfying Auf = β are(
5 0
3 4

)
,

(
4 1
4 3

)
,

(
3 2
5 2

)
,

(
2 3
6 1

)
,

(
1 4
7 0

)
.

These u are written as (
5 0
3 4

)
+ i

(
−1 1
1 −1

)
, (i = 0, 1, 2, 3, 4).

3 The Normalizing Constant of 2× 2 Tables

It is known that the normalizing constant for the conditional distribution for r1 × r2 tables is A-
hypergeometric polynomial (see, e.g., [10, Section 6.13]). We will illustrate this correspondence for 2× 2
contingency tables.

Consider the marginal sum vector β = (u11, u21 + u22, u11 + u21, u22) with uij ≥ 0. The 2 × 2
contingency tables with the marginal sum vector β are

u =

(
u11 0
u21 u22

)
+ i

(
−1 1
1 −1

)
, (i = 0, 1, 2, · · · , n).

Here, we have n = min{u11, u22}. The normalizing constant is

Z(β; p) =
n∑

i=0

pu11−i
11 pi12p

u21+i
21 pu22−i

22

(u11 − i)!(i)!(u21 + i)!(u22 − i)!

=
pu11
11 p

u21
21 p

u22
22

u11!u21!u22!

n∑
i=0

(−u11)i(−u22)i
(u21 + 1)i(1)i

(
p12p21
p11p22

)i

,

where (a)i = a(a + 1) · · · (a + i − 1). Then, it can be expressed in terms of the Gauss hypergeometric
function

2F1(a, b, c;x) =

∞∑
i=0

(a)i(b)i
(c)i(1)i

xi.

Note that when a, b ∈ Z≤0, it is a polynomial. The normalizing constant can also be expressed in terms
of 2F1 for other types of marginal sum vectors. A consequence of this observation is that we can utilize
several formulae of the hypergeometric function to evaluate the normalizing constant.

4 Contiguity relation

In the previous section, we expressed the normalizing constant for 2× 2 contingency tables with a fixed
marginal sum vector in terms of the Gauss hypergeometric function. For r1 × r2 contingency tables, the
normalizing constant with a fixed marginal sum vector can be expressed in terms of the Aomoto-Gel’fand
hypergeometric function of type (r1, r1+r2) [32] (the function 2F1 is of type (2, 4)). This hypergeometric
function is also called the A-hypergeometric function for the product of the (r1−1)-simplex and (r2−1)-
simplex. The difference holonomic gradient method for these hypergeometric functions utilizes contiguity
relations. We illustrate this for the case of the Gauss hypergeometric function; for the general case, see
[7].

Example 4 (the case of 2F1) Put f(a) = 2F1(a, b, c;x) and

F (a) =

(
f(a)
θxf(a)

)
, M(a) =

1

a− c+ 1

(
bx+ a− c+ 1 x− 1

−abx a(1− x)

)
,

where θx is the Euler operator x∂x. Then, we have

F (a) =M(a)F (a+ 1). (3)
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Now, note the following relations:

1

a
(a+ θx) • f(a) = f(a+ 1), (4)(

θx(c− 1 + θx)− x(a+ θx)(b+ θx)
)
• f(a) = 0. (5)

The first relation can be shown from the series expansion and the second relation is the Gauss hyperge-
ometric differential equation. It follows from (4), (5) that we have

1

a
(a+ θx) • F (a) = F (a+ 1),

θxF (a) =

(
0 1

abx
1−x

ax+bx−c+1
1−x

)
F (a)

= A(a)F (a).

Next, we have (3) as

1

a
(a+ θx) • F (a) =

1

a
(aE +A(a))F (a),

F (a) =

(
1

a
(aE +A(a))

)−1

F (a+ 1)

= M(a)F (a+ 1),

where E is the identity matrix.

A relation like F (a) =M(a)F (a+ 1) is called a contiguity relation. In [7], the vector valued function
F (a) is called the Gauss-Manin vector .

There are several algorithms to obtain contiguity relations [31], [23], [22], [7]. Among them, we choose
to use the method of twisted cohomology groups given in [7], because it is the most efficient method for
the case of two-way contingency tables.

We briefly summarize the method given in [7]. Consider the hypergeometric series f(α;x) of type
(r1, r1 + r2). Here, the parameter α = (α1, . . . , αr1+r2−1) stands for the marginal sum vector β and the
variable x = (xij)1≤i≤r1−1,1≤j≤r2−1 stands for p. It follows from the twisted cohomology group (a vector
space spanned by equivalence classes of differential forms) associated to the integral representation of f
that the contiguity relation for αi → αi + 1 can be obtained as follows.

We consider the twisted cohomology group H (resp. H ′) standing for the function f(α;x) (resp.

f(α;x)|αi→αi+1). Both twisted cohomology groups are of dimension r =

(
r1 + r2 − 2

r1 − 1

)
. We take a basis

φ1, . . . , φr of H such that the “integral” of (φ1, . . . , φr)
T gives a constant multiple of the Gauss-Manin

vector
F (α;x) = (f(α;x), δ(2) • f(α;x), . . . , δ(r) • f(α;x))T ,

where δ(i) is some differential operator with respect to x = (xij). There exist a basis φ′
1, . . . , φ

′
r of H ′

and a linear map Ui : H
′ → H such that the integral of

(
Ui(φ

′
1), . . . ,Ui(φ

′
r)
)T

gives a constant multiple
of the shifted Gauss-Manin vector F (α;x)|αi→αi+1. Let Ui(α;x) be a representation matrix of Ui with
respect to the bases {φ′

i} and {φj}:(
Ui(φ

′
1), . . . ,Ui(φ

′
r)
)T

= Ui(α;x) · (φ1, . . . , φr)
T .

Integrating both sides, we thus obtain the contiguity relation

F (α;x)|αi→αi+1 = Ũi(α;x)F (α;x),

where Ũi is a constant multiple of Ui. It turns out that the representation matrix Ui can be expressed in
terms of a simple diagonal matrix and base transformation matrices which can be obtained by evaluating
intersection numbers among differential forms. The contiguity relation for αi → αi − 1 can be derived
analogously. For more details, see [7]. Here, we illustrate this method in the case of 2F1.
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Example 5 (the case of 2F1 (r1 = r2 = 2, r = 2)) For the parameter (a, b, c) of 2F1, we put

(α1, α2, α3) = (b,−a, c− b− 1).

Here, we set α0 = −α1 − α2 − α3 = a− c+ 1 for convenience. Since the move a+ 1 → a corresponds to
α2 − 1 → α2 (and α0 + 1 → α0) in the new parametrization, the matrix M(a) in Example 4 stands for
U2(α;x). The representation matrix U2 has the following decomposition.1

U2 =
α1(α2 − 1)

α3

( 1
α0

+ 1
α1

1
α0

1
α0

1
α0

+ 1
α2

)(
α1 −α1

0 −α2

)
·
(
1 0
0 1− x

)( 1
α0+1 + 1

α1

1
α0+1

1
α0+1

1
α0+1

)(α1+α3

α2−1 1

1 α2−1+α3

α1

)
.

The matrices except the diagonal matrix diag(1, 1− x) are expressed by intersection numbers. Since we
have δ(2) = 1

α2
θx, the matrix U2 has a small difference with M(a) in Example 4 and we obtain M(a) by

adjusting the scale factor 1/α2 of θx.

By the contiguity relation, we can evaluate the normalizing constant Z and its derivatives. Let us
explain the procedure for the case of 2F1.

Suppose a ∈ Z<−1. By the contiguity relation (3), we have

F (a) = M(a)F (a+ 1)

= M(a)M(a+ 1)F (a+ 2)

...

= M(a)M(a+ 1) · · ·M(−2)F (−1). (6)

Then, we can obtain the value of F (a) from the initial value F (−1) = (1− b
cx,−

b
cx)

T by applying linear
transformations. Values of the normalizing constant and its derivatives can be obtained from F (a) with
the differential equation for the Gauss hypergeometric function. This method is called the difference
holonomic gradient method (difference HGM) and can be generalized to the case of r1 × r2 contingency
tables with the Gauss-Manin vector and contiguity relations given in [7].

We note that a naive evaluation of the polynomial Z is very slow. For example, the polynomial
Z of the 2 × 5 contingency table with the row sum (4n, 5n), the column sum (5n, n, n, n, n) and p =(

1 1/2 1/3 1/5 1/7
1 1 1 1 1

)
can be expressed in terms of the Lauricella function FD(−4n;−n,−n,−n,−n;n+

1; 1/2, 1/3, 1/5, 1/7) of 4 variables (see, e.g., [8]). The number of terms is O(n4). Here is a comparison of
the naive summation of FD and our HGM implementation discussed in the next section.

n 20 30 40
Naive summation (in seconds) 16.0 111.7 456.6
HGM (in seconds) 0.28 0.276 0.284

Thus, the HGM is worth researching.
We briefly introduce an algorithm of difference HGM for r1 × r2 contingency tables. The following

algorithm computes the Gauss-Manin vector F (β; p) which is essentially same as F (α;x) in the above
(for the correspondence between (β; p) and (α;x), see [7, Proposition 7.1]). In fact, we give improvement
of Step 2–4 of [7, Algorithm 7.8].

Algorithm 1 (A modified version of [7, Step 1–4 of Algorithm 7.8])

Input: β = (β
(1)
1 , . . . , β

(1)
r1 ;β

(2)
1 , . . . , β

(2)
r2 ): a marginal sum vector, p = (pij) ∈ Qr1×r2

>0 : probabilities of
the cells.

Output: the Gauss-Manin vector F (β; p) (which is a vector of size r =
(
r1+r2−2
r1−1

)
).

1. Set B0 = (1, . . . , 1, β
(1)
1 + · · · + β

(1)
r1 − r1 + 1;β

(2)
1 , . . . , β

(2)
r2 ). Compute F (B0; p) by the definition.

(In this case, the normalizing constant Z(B0; p) is a polynomial of small degree, and hence the
Gauss-Manin vector F (B0; p) is easily computed.)

1see the appendix (Section 10) for more details.
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2. For k = 1, . . . , r1 − 1, define Bk inductively as Bk = Bk−1 + (β
(1)
k − 1) · δk, where

δk = (0, . . . , 0, 1
k-th

, 0, . . . , 0,−1; 0, . . . , 0)

(note that Br1−1 is β). Evaluate the contiguity matrices Ck(t) that satisfy

F (Bk−1 + (T + 1)δk; p) = Ck(T ) · F (Bk−1 + Tδk; p), T = 0, 1, . . . , β
(1)
k − 2.

Here, t is an indeterminate and each entry of Ck(t) is an element of Q(t).

3. For k = 1, . . . , r1 − 1, compute F (Bk; p) inductively as

F (Bk; p) = Ck(β
(1)
k − 2) · · ·Ck(1)Ck(0)F (Bk−1; p). (7)

4. Return F (Br1−1; p).

By using F (β; p), we can compute the normalizing constant Z(β; p) and the expectations E[Uij ] (see [7,
Step 5–7 of Algorithm 7.8]).

Example 6 (cf. [7, Example 7.10]) We consider 3× 3 contingency tables whose marginal sum vector
is β = (2, 3, 3; 1, 3, 4). In this case, the Gauss-Manin vector is of size

(
3+3−2
3−1

)
= 6.

1. We set B0 = (1, 1, 6; 1, 3, 4), and compute F (B0; p) by the definition. In this case, the normalizing
constant Z(B0; p) has only eight terms.

2. We set B1 = (2, 1, 5; 1, 3, 4), B2 = (2, 3, 3; 1, 3, 4)(= β). By using notations in [7], we put

C1(t) = U−1
1 (−5 + t,−2− t,−1, 3, 4, 1;x), C2(t) = U−1

2 (−4 + t,−2,−2− t, 3, 4, 1;x).

Here, x ∈ Q(r1−1)×(r2−1) is defined from p. We have

C1(0)F (1, 1, 6; 1, 3, 4; p) = F (2, 1, 5; 1, 3, 4; p),

C2(0)F (2, 1, 5; 1, 3, 4; p) = F (2, 2, 4; 1, 3, 4; p), C2(1)F (2, 2, 4; 1, 3, 4; p) = F (2, 3, 3; 1, 3, 4; p).

3. We compute the product

C2(1)C2(0)C1(0)F (B0; p) = C2(1)C2(0)C1(0)F (1, 1, 6; 1, 3, 4; p)

= C2(1)C2(0)F (2, 1, 5; 1, 3, 4; p) (= C2(1)C2(0)F (B1; p))

= C2(1)F (2, 2, 4; 1, 3, 4; p)

= C2(1)F (2, 3, 3; 1, 3, 4; p) (= F (B2; p)).

4. We obtain the Gauss-Manin vector F (B2; p) = F (β; p).

For example, when p =

 1 1/2 1/3
1 1/5 1/7
1 1 1

, the 6× 6 matrix C2(t) is given as follows2.

C2(t) =



−(35t+29)
35(t+2)

12
5(t+2)

24
7(t+2)

−12
5(t+2)

−24
7(t+2) 0

1
5

−1
5 0 1

5 0 0
1
7 0 −1

7 0 1
7 0

−8
5(t+2)

8
5(t+2) 0 21t−73

35(t+2)
−88

35(t+2)
88

35(t+2)
−6

7(t+2) 0 6
7(t+2)

−33
35(t+2)

10t−47
35(t+2)

−33
35(t+2)

0 0 0 −1
35

1
35

−1
35


.

2It is obtained by our program gtt ekn3 as
gtt ekn3.downAlpha3(2,2,2 | arule=gtt ekn3.alphaRule num([-5+t,-2,-1-t,3,4,1],2,2),

xrule=gtt ekn3.xRule num([[1,1/2,1/3],[1,1/5,1/7],[1,1,1]],2,2)).
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Remark 1 The algorithm given in [7] requires more matrix multiplications than Algorithm 1. As [7,
Example 7.10], the former algorithm computes the above F (2, 3, 3; 1, 3, 4; p) by nine matrix multiplications
(each “ 7→” means one multiplication):

F (1, 1, 2; 2, 1, 1; p) 7→ F (1, 1, 3; 2, 2, 1; p) 7→ F (1, 1, 4; 2, 3, 1; p)

7→ F (1, 1, 5; 2, 3, 2; p) 7→ F (1, 1, 6; 2, 3, 3; p) 7→ F (1, 1, 7; 2, 3, 4; p)

7→ F (1, 1, 6; 1, 3, 4; p) 7→ F (2, 1, 5; 1, 3, 4; p) 7→ F (2, 2, 4; 1, 3, 4; p) 7→ F (2, 3, 3; 1, 3, 4; p).

On the other hand, Algorithm 1 needs only the last three steps.

We give the complexity to construct the matrix Ck(t). The appendix (Section 10) will help to follow
the following argument. By [7, Theorem 5.3], the matrix U±1

k for the contiguity relation is the product

of five matrices of size r =
(
r1+r2−2
r1−1

)
= (r1+r2−2)!

(r1−1)!(r2−1)! :

(a) one diagonal matrix whose entries are rational functions in p,

(b) two intersection matrices whose entries are rational functions in β,

(c) two inverse matrices of intersection matrices

(cf. Example 5). For U−1
k , by substituting

• β
(1)
k and β

(1)
r1 with certain polynomials in t of degree 1,

• the other β
(i)
j ’s and p with certain rational numbers,

we obtain the matrix Ck(t). By this construction and the formula for (a), (b), (c) in [7], it turns out
that when we construct Ck(t), we treat rational functions in t whose denominator and numerator are
of degree at most 12. As long as we have tried on a computer for cases 5 × ri, ri ≤ 12, the degrees of
numerators and denominators are much smaller than 12 and no big number (large number so that FFT
multiplication algorithms are used) appears in the matrix Ck(t); when we use the modular method, all
numbers in the matrix are elements in a finite field. Thus, we assume in the following theorem that the
complexity of arithmetics of polynomials in one variable is O(1).

Theorem 1 Let r1, r2 ≥ 2. Assume that the complexity of arithmetics is O(1), the complexities of
multiplying two n × n matrices and evaluating the determinant of an n × n matrix are O(nω) for some
2 ≤ ω < 3. The complexity of obtaining the matrix Ck(t) in Algorithm 1 for r1 × r2 contingency tables is
O(rω), where r =

(
r1+r2−2
r1−1

)
. Especially, it is

1. O(rωr1
2 ) when r1 is fixed,

2. O(rωr2
1 ) when r2 is fixed,

3. O(22ωr1) when r1 = r2.

Proof As explained later, the complexity to construct the above matrices (a), (b) and (c) are O(rω1 r),
O(r21r

2) and O(r21r
2), respectively. Since the size of each matrix is r, the complexity of multiplication

is O(rω). Thus, the complexity to obtain a contiguity relation is O(rω) + O(rω1 r) + O(r21r
2). Since r is

larger than r21 in general, the complexity is equal to O(rω).

1. We fix r1 and assume r2 ≫ r1. By the Stirling formula log n! ∼ n log n− n, we have

log r ∼ (r1 + r2) log(r1 + r2)− r2 log r2

= r1 log r2 + r1 log
(
1 +

r1
r2

)
+ r2 log

(
1 +

r1
r2

)
∼ r1 log r2.

Then we obtain r ∼ rr12 and the complexity is O(rωr1
2 ).

2. Claim 2 can be obtained by a similar argument to Claim 1.
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3. If r1 = r2, then by the Stirling formula, we have

log r ∼ 2r1 log 2r1 − 2r1 log r1 = 2r1 log 2,

which implies r ∼ 22r1 . Thus, the complexity is O(22ωr1).

Now, we explain the complexity of obtaining the matrices (a), (b), (c).

(a) As [7, Theorem 5.3], each nonzero entry of the diagonal matrix is the ratio of determinants of two
r1 × r1 matrices. Thus the complexity of evaluation is O(rω1 r).

(b) The entries of intersection matrices are intersection numbers of (r1 − 1)-th twisted cohomology
groups, which can be evaluated by the formula in [7, Fact 3.2]. The complexity of evaluating an
intersection number by this formula is O(r21), and hence the complexity of obtaining the intersection
matrix is O(r21r

2).

(c) By the proof of [7, Proposition A.1], the inverse matrix of an intersection matrix is expressed as
a product of two diagonal matrices and one intersection matrix. The complexity of obtaining the
diagonal matrices is O(r1r), since that of their nonzero entry is O(r1). Therefore, the complexity
of obtaining the inverse matrix of the intersection matrix is dominated by the complexity O(r21r

2)
of obtaining the intersection matrix.

□

In this section we conducted a complexity analysis of the method for obtaining the contiguity relation.
The theoretical complexity is of a polynomial order when ri is fixed and our implementation shows that
this step is efficient for small sized contingency tables. However, a naive evaluation of the composition
of linear transformations (6) is slow, even for small contingency tables, because of large numbers when
|a| is large.

5 Efficient Evaluation of a Composition of Linear Transforma-
tions

To perform exact and efficient evaluations by the difference HGM, we need a fast and exact evaluation
of a composition of linear transformations for vectors with rational number entries. This problem has
hitherto been explored and there are several implementations, e.g., LINBOX [15]. For the purposes of
empirical application, we study several methods to evaluate the composition of linear transformations
such as (6) or (7). Our implementation is published as the package gtt ekn3 for Risa/Asir [26]. The
function names in this section are those in this package.

5.1 Our Benchmark Problems

In order to compare several methods, we will use the following 4 benchmark problems. The timing data
are taken on a machine with

CPU Intel(R) Xeon(R) CPU E5-4650 2.70GHz
the number of CPU’s 32
the number of cores 8
OS Debian 9.8
memory 256GB
software system Risa/Asir (2018) version 20190328 with GMP [33]

Benchmark Problem 1 Evaluate

f = 2F1

(
−36N,−11N, 2N ;

1− 1
N

56

)
, N ∈ N.

It stands for the 2 × 2 contingency tables with the row sums (36N, 13N − 1) and the column sums

(38N − 1, 11N). The parameter (pij) is set to

(
1 1−1/N

56
1 1

)
.
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Benchmark Problem 2 Evaluate the expectation for the 3× 5 contingency tables with the row sums
(N, 2N, 12N), the column sums (N, 2N, 3N, 4N, 5N), and the parameter p 1 1

2
1
3

1
5

1
7

1 1
11

1
13

1
17

1
19

1 1 1 1 1


Benchmark Problem 3 Evaluate the expectation for the 5× 5 contingency tables with the row sums
(4N, 4N, 4N, 4N, 4N), the column sums (2N, 3N, 5N, 5N, 5N), and the parameter p

1 1
2

1
3

1
5

1
7

1 1
11

1
13

1
17

1
19

1 1
23

1
29

1
31

1
37

1 1
37

1
41

1
43

1
47

1 1 1 1 1


Benchmark Problem 4 Evaluate the expectation for the 7× 7 contingency tables with the row sums
(N, 2N, 3N, 4N, 5N, 6N, 7N), the column sums (N, 2N, 3N, 4N, 5N, 6N, 7N), and the parameter

1 1
2

1
3

1
5

1
7

1
11

1
13

1 1
17

1
19

1
23

1
29

1
31

1
37

1 1
41

1
43

1
47

1
53

1
59

1
61

1 1
67

1
71

1
73

1
79

1
83

1
89

1 1
97

1
101

1
103

1
107

1
109

1
113

1 1
127

1
131

1
137

1
139

1
149

1
151

1 1 1 1 1 1 1


5.2 Floating Point Arithmetic

If we can evaluate the composition of linear transformations (7) accurately over floating point numbers, we
can utilize GPU’s or other hardware for efficient evaluation. Unfortunately, we lose the precision during
the iteration of linear transformations in general. For example, let us evaluate the case of N = 100 for
our 2 × 2 benchmark problem 1 with double arithmetic. The output by the double precision floating
point arithmetic is 4.08315e+94, but the answer is 4.48194745579962e+94 where we use the double
value expression in the standard form, e.g., 4.08e+94 means 4.08× 1094. The output by double has only
one digit of accuracy.

5.3 Intermediate Swell of Integers

We denote byM(n) the complexity of the multiplication of two n-digits integers. The book [4] is a survey
on algorithms and complexities on integer arithmetic.

Arithmetic over Q is more expensive than arithmetic over Z, because the reduction of a rational num-
ber needs the computation of GCD of the numerator and the denominator. The best known complexity
of the operation of GCD is O(M(n) log n) for two n-digits numbers (see, e.g., [16], [4]). The complexity
of the Euclidean algorithm for GCD is O(n2) 3.

One way to avoid reductions in Q in our interations of linear transformations (7) is to evaluate
numerators and denominators separately and compute the GCD of the numerator and the denominator
every R step of the linear transformations. We will call this sequential method g mat fac int (generalized
matrix factorial over integers). A reduction performing in every R step is necessary. In fact, our evaluation
problems make intermediate swell of integers by the method g mat fac int. For example, the table below
shows sizes of the numerators and the denominators by the separate evaluation without the intermediate
reduction in our benchmark problem 1;

N digits of num./den. digits of num./den. after reduction time
300 1.97× 105/1.96× 105 3.35× 104/3.28× 104 0.92s
500 3.47× 105/3.47× 105 5.87× 104/5.76× 104 1.56s

3Timing data over Q in the version 1 of this paper at arxiv is very slow, because asir 2000 uses the Euclidean algorithm
for the reductions in Q as default. The system asir 2018 based on GMP uses faster GCD algorithms as default.
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Figure 1: Intermediate reduction

After the reduction, the numerators and the denominators become smaller as shown in the second column
of the table.

We have no theoretical estimate for the best choice of R for intermediate reductions. The Figure 1
is timing data of our benchmark problem 2 with N = 100. The horizontal axis is the interval R of the
intermediate reduction and the vertical axis is the timing. The graph indicates that we should choose R
such that 5 ≤ R ≤ 100.

5.4 Multimodular Method

It may be standard to use the modular method when we have an intermediate swell of integers. We refer
to, e.g., [11] and its references for the complexity analysis on modular methods.

Algorithm 2 (g mat fac itor (generalized matrix factorial by itor), modular method) 4

Input: M(k) (matrix), F (vector), S < E (indices), Plist (a list of prime numbers), Clist (a list of
processes for a distributed computation).

Output: A candidate value of M(E) · · ·M(S + 2)M(S + 1)M(S)F or “failure”.

1. Let Fn, Fd (scalar), Mn, Md (scalar) be numerators and denominators of F and M respectively.

2. For each prime number Pi in Plist, perform the linear transformations
∏E−S

i=0 (Mn(S + i)Md(S +
i)−1)FnF

−1
d of F over FPi . If the integer Fd or Md is not invertible modulo Pi (unlucky case),

then skip this prime number Pi and set Plist to Plist \ {Pi}. Let the output be Gi. This step may be
distributed to processes in the Clist.

3. Apply the Chinese remainder theorem to construct a vector G over Z/PZ satisfying G ≡ Gi mod Pi

where P =
∏

Pi∈Plist
Pi.

4. Return a candidate value by the procedure IntegerToRational(G,P ) (rational reconstruction).

The complexity of the modular method g mat fac itor is estimated as follows.

4We use “itor” as an abbreviation of the procedure IntegerToRational.
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Figure 2: 5× 5 contingency table, the benchmark problem 3 with 32 processes

Theorem 2 Let n be the number of the linear transformations and the size of the square matrix r =(
r1 + r2 − 2

r1 − 1

)
. Suppose that each prime number Pi is dp digits number and we use Np prime numbers.

C is the number of processes. The complexity of g mat fac itor is approximated as

max

{
O

(
nr2NpM(dp)

C

)
, O
(
r(dpNp)

2
)}

when n is in a bounded region where the rational reconstruction succeeds and the asymptotic complexity
of the Chinese remainder theorem approximates well the corresponding exact complexity in the region.

Proof We estimate the complexity of each step of g mat fac itor.

1. The complexity of one linear transformation is O(r2M(dp)). The linear transformation is performed
n times for Np prime numbers. Then the complexity is O(nr2NpM(dp)) on a single process. This

step can be distributed into C processes, then the complexity is O(
nr2NpM(dp)

C ).

2. The complexity to find an integer x such that x ≡ xi mod pi (i = 1, . . . , Np) is discussed in
[11, Theorem 6] under the assumption that an inborn FFT scheme is used. It follows from the
estimate that the reconstruction complexity Cn(Np) of Np primes of dp digits is bounded by (2/3+

o(1))M(dpNp)max
(

logNp

log log(dpNp)
, 1 +O(N−1

p )
)

3. The rational reconstruction algorithm IntegerToRational, see, e.g., [6], [20], is a variation of
the Euclidean algorithm and its complexity is bounded by O((Npdp)

2). We have r numbers to
reconstruct.

Since the complexity of the step 2 is smaller than other parts, we obtain the conclusion.

The complexity is linear with respect to n (which is proportional to the size of the marginal sum
vector in our benchmark problems) when the first argument of the “max” in the theorem is dominant.
However, when n becomes larger, the rational reconstruction fails or gives a wrong answer. This is the
reason why we give the assumption that n is in a bounded region. Note that the complexity estimate in
the theorem is not an asymptotic complexity and is an approximate evaluation of it.

Let us present an example that this approximate evaluation works. Figure 2 is a graph of the timing
data for the benchmark problem 3 with Np = 400 and dp = 100 by the decimal digits. The top point
graph is the total time, the second top point graph is the time of the generalized matrix factorial (the
execution time of Algorithm 2), the third point graph is the time of the distributed generalized matrix
factorial by modulo Pi’s (the step 2 of Algorithm 2). The last point graph is the time to obtain contiguity
relations. Contiguity relations for several directions are obtained by distributing the procedures into 32
processes. Note that the point graph is linear with respect to N , which is proportional to the number of
the linear transformations n. The timing data imply that the first argument of “max” of Theorem 2 is
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Figure 3: 7× 7 contingency table, the benchmark problem 4 with 32 processes

dominant in this case. In fact, when N = 200, the step for reconstructing rational numbers only takes
about 8 seconds and linear transformations over finite fields take from 35 seconds to 52 seconds.

We should ask if our multimodular method is efficient on real computer environments. The following
table is a comparison of timing data of the sequential method g mat fac int (with a distributed com-
putation of contiguity relations by 32 processors) and the multimodular method g mat fac itor by 32
processors for the benchmark problem 3.

N 90 200
g mat fac int with the reduction interval R = 100 21.57 45.40
g mat fac int without the intermediate reduction 68.17 227.23
g mat fac itor by 32 processors 103.23 205.57

Unfortunately, the multimodular method is slower than the sequential method g mat fac int with a
relevant choice of R on our best computer, however it is faster than the case of a bad choice of R = ∞.

When the size of contingency table becomes larger, the rank r becomes larger rapidly. For example,
r = 20 for the 5× 5 contingency tables and r = 924 for the 7× 7 contingency tables. The Figure 3 shows
timing data of our benchmark problem 4 of 7× 7 contingency tables with the multimodular method by
32 processors. We can also see linear timing with respect to N , but the slope is much larger than the
5× 5 case as shown in our complexity analysis.

5.5 Binary Splitting Method

It is well-known that the binary splitting method for the evaluation of the factorial m! of a natural
number m is faster method than a naive evaluation of the factorial by m! = m × (m − 1)!. The binary
splitting method evaluates m(m − 1) · · · (⌊m/2⌋ + 1) and ⌊m/2⌋(⌊m/2⌋ − 1) · · · 1 and obtains m!. This
procedure can be recursively executed. This binary splitting can be easily generalized to our generalized
matrix factorial; we may evaluate, for example, M(a)M(a+1) · · ·M(⌊a/2⌋−1) and M(⌊a/2⌋) · · ·M(−2)
to obtain M(a)M(a+ 1) · · ·M(−2), a < −2 in (6). This procedure can be recursively applied. However,
what we want to evaluate is the application of the matrix to the vector F (−1). The matrix multiplication
is slower than the linear transformation. Then, we cannot expect that this method is efficient for our
problem. However, when the size of the matrix is relatively small, there are cases that the binary splitting
method is faster. Here is an output by our package gtt ekn3.rr.

[1828] import("gtt_ekn3.rr")$

[4014] cputime(1)$

0sec(1.001e-05sec)

[4015] gtt_ekn3.expectation(Marginal=[[1950,2550,5295],[1350,1785,6660]],

P=[[17/100,1,10],[7/50,1,33/10],[1,1,1]]|bs=1)$ //binary splitting

3.192sec(3.19sec)

[4016] gtt_ekn3.expectation(Marginal,P)$

4.156sec(4.157sec)
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Figure 4: Time to obtain contiguity relations

5.6 Benchmark of Constructing Contiguity Relations

We gave a complexity analysis of finding contiguity relations. When r1 is fixed, it is O(r3r12 ). The Figure
4 shows timing data to obtain contiguity relations for 5× r2 contingency tables where the parameter p is

1 1 1 · · · 1
1 1/p1 1/p2 · · · 1/pr2−1

1 1/pr2 1/pr2+1 · · · 1/p2(r2−1)

1 · · ·
1 1/p(r1−1)(r2−1)+1 · · ·

 (pi is the i-th prime number), the row sum vector

is (a1, 400, 400, 400, 400), and the column sum vector is (200, 300, 500, 500, . . . , 500). As is shown by our
complexity analysis, when r2 becomes larger, it rapidly becomes harder to obtain contiguity relations.

6 Zero Cells

The contiguity relations derived by [7] are valid only when there are no zero cells in the contingency
table. If there is a zero (pij = 0 and uij = 0) in the contingency table, a denominator of the contiguity
relation is zero in general and therefore we cannot use their identity. One method to avoid this difficulty
is interpolation. Note that the normalizing constant Z is a rational function in pij and the expectation

E[Uij ] = pij
∂ logZ
∂pij

is also a rational function. Because it is a rational function, we can obtain the exact

value by evaluating it on a sufficient number of rational pij ’s.

Proposition 1 Let β be the marginal sum vector and L a generic line in p-space. If we evaluate E[Uij ]
at 2β1 points p ∈ Rr1×r2

>0 on a line L, then the exact value of E[Uij ] can be obtained at any point on L.

Proof When we restrict E[Uij ] to the line L, it is a rational function in one variable. The degree of the
denominator and the numerator is β1 at most. Apply an interpolation algorithm by rational function,
e.g., Stoer-Bulirsch algorithm [29], [24]. Then, we can obtain the exact value by interpolation. □

Example 7 Let the marginal sums and the parameter p (cell probability) be

∗ ∗ ∗ 3
∗ ∗ ∗ 4
∗ ∗ ∗ 3
3 4 3

, p =

 1 1/2 0
1 1/3 1/4
1 1 1


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Then, we can evaluate the expectation matrix (E[Uij ]) by the difference HGM and interpolation. Below
is an output of our package gtt ekn3. Here the randinit parameter specifies an interval of random
non-zero pij ’s where (i, j)’s are positions of zero cells.

[5150] import("gtt_ekn3.rr");

0

[5151] E=gtt_ekn3.cBasistoE_0(0,[[3,4,3],[3,4,3]],[[1,1/2,0],[1,1/3,1/4],[1,1,1]] | randinit=20);

[ 71076/56575 98649/56575 0 ]

[ 157581/113150 28069/22630 77337/56575 ]

[ 39717/113150 114957/113150 92388/56575 ]

// Expectation (exact value)

[5153] number_eval(E); // Expectation (approximate value)

[ 1.25631462660186 1.74368537339814 0 ]

[ 1.39267344233319 1.2403446752099 1.36698188245692 ]

[ 0.351011931064958 1.01596995139196 1.63301811754308 ]

Although the interpolation method is applicable to any pattern of 0-cells, a more efficient method
involves utilizing hypergeometric functions restricted on some pij = 0’s. In general, contiguity relations
and Pfaffian systems for such hypergeometric functions become complicated. In [9], a method is put
forward to evaluate intersection numbers and contiguity relations when only one pij is zero.

7 Sufficient Statistics as σ-algebra

It is often that we decompose parameters for contingency tables into row and column probabilities and
odds ratios. When only odds ratios are the parameters of interest, CMLE is an appropriate method to
estimate those odds ratios. However, this decomposition is no longer elementary when contingency tables
contain zero cells. To facilitate a mathematically clear discussion of CMLE in the next section, we offer
a new formulation of parameters of interest, nuisance parameters, and sufficient statistics.

Classical formulations of sufficient statistics as σ-algebras appear in, e.g., [3], [14]. Our formulation is
different because we treat parameters as random variables instead of considering a family of probability
measures. This Bayesian statistical approach enable us to consider σ-algebras on parameter spaces. We
express nuisance parameters and parameters of interest as sub σ-algebras of the σ-algebra generated by
all parameters and data. A Bayesian approach to sufficient statistics is presented in, e.g., Chapter 2 of
the text book by M.Schervish [28]. This text book studies sufficient statistics by conditional probabilities
given parameter valued random variables. We study them by a more general approach of conditional
expectations given σ-algebras. The technical details are lengthy to be precise and, in this section and the
next section, we state only fundamental notions and theorems which we need to study two way contingency
tables. Proofs for them are given in the preprint of this paper at arxiv 5. A general framework of the
theory will be given in [13].

The treatment of nuisance parameters and parameters of interest is an important issue in statistics.
The distinction between those parameters which are of interest versus those which are nuisance, may
seem easy. In fact, it seems to be only a matter of declaring that µ is a parameter of interest or ν is a
nuisance parameter. As we will see in the next section, when a group acts on parameter spaces and the
group is regarded as the space of nuisance parameters, the distinction between them is not trivial. From a
geometric perspective, the cause of this difficulty is that determining whether a parameter is “of interest”
or a “nuisance” depends on a coordinate system. To formulate the “of interest” notion independently
of a specific coordinate system, we will consider σ-algebras on parameter spaces. In probability theory
and stochastic processes, σ-algebra is important as a natural way to express information (see, e.g. [12]).
Discussions in this section are based on conditional expectations with respect to σ-algebra. For basic
properties of conditional expectation, see [34].

Let Θ be a set. The set Θ stands for the parameter spaces. Let B(Θ) be a σ-algebra on Θ, then
(Θ,B(Θ)) is a measure space. In the case where Θ is a topological space, we assume that B(Θ) is the
Borel algebra on Θ.

In standard parameter estimation, we assume a probability space (Ω′,F ′,P′
c) with a parameter c ∈ Θ.

Let us define our probability space from the standard setting. Suppose (Θ,B(Θ), µ) is a probability space.
Put Ω := Ω′ ×Θ. Let F be the σ-algebra on Ω generated by

A×B := {(ω, c) ∈ Ω|ω ∈ A, c ∈ B} (A ∈ F ′, B ∈ B(Θ)).

5https://arxiv.org/abs/1803.04170
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The measurable space (Ω,F) is deemed to be the product measurable space of (Ω′,F ′) and (Θ,B(Θ)) [34,
p75]. For A ∈ F ′, let fA : Θ → R be the function defined by fA(c) :=

∫
A
P′

c(dω) (c ∈ Θ). If fA is B(Θ)-
measurable for any A ∈ F ′, we can define a measure P on F by P(A×B) :=

∫
B
fA(c)µ(dc) (A ∈ F ′, B ∈

B(Θ)). Thus, our probability space is defined as the product space under the measurable condition of
fA.

Let θ be a measurable map from Ω to Θ defined by

θ : Ω ∋ (ω′, c) 7→ c ∈ Θ.

This implies that parameters can be regarded as a Θ-valued random variable. Although random variables
are usually denoted by capital letters, we use lower case letters to denote random variables that are
regarded as parameters.

Example 8 Let (Ω′,F ′,P′
c) be the probability space (R,B(R), N(µ, σ2)), where N(µ, σ2) is the Gaus-

sian distribution on R with mean µ and variance σ2. In this case, the parameter space is Θ = {(µ, σ2) ∈
R2|σ2 > 0} and the parameter θ as a measurable map is defined by

θ : Ω ∋ (x, (µ, σ2)) 7→ (µ, σ2) ∈ Θ.

We restart from a probability space (Ω,F ,P), which is not necessarily a product space. For a sub
σ-algebra G of F , we use L1(G) to denote the linear space of random variables which are integrable and
G-measurable. When two elements X and Y of L1(G) satisfy X(ω) = Y (ω) for all ω ∈ Ω, we say that
X and Y are equal and denote X = Y . Note that X = Y almost surely does not imply that X = Y .
Let ϑ be the sub σ-algebra of F generated by a random variable θ. It represents the information of θ.
We formulate notions of nuisance parameters, sufficient parameters, and parameters of interest as sub
σ-algebras of ϑ.

For a pair of random variables X and Y , it is equivalent that Y is σ(X)-measurable, to the condition
that Y equals to f(X) for a Borel measurable function f . In orther words, we have the following
propostion:

Lemma 1 For a random variable X ∈ L1, we have

L1(σ(X)) = {f(X) | f ∈ mB(R), E (() f(X)) <∞}. (8)

Here, mB(R) is the set of all of Borel measurable functions on R.

Proof Since the conposition of measurable functions is also measurable, the left-hand side of Equation
(8) includes the hand side.

Suppose Y ∈ L1(σ(X)).
In the case where Y is an indicator function, A := {Y = 1} ∈ σ(X) implies that there exists B ∈ B(R)

such that A = {X ∈ B}. Put f : R → R as

f(x) :=

{
1 (x ∈ B)

0 (x ∈ Bc)
(x ∈ R),

then f is Borel measurable, and Y = f(X) and E (() f(X)) = ¶(A) <∞ hold. Hence Y is an element of
the right-hand side of Equation (8).

In the case where Y is a linear combination of indicator functions Y1, . . . , Yn, i.e., Y = c1Y1+· · ·+cnYn
holds for some ci ∈ R, there exists fi ∈ mB(R) such that Yi = fi(X). Then, f := c1f1 + · · ·+ cnfn is an
element of the right-hand side of Equation (8).

In the case where Y ≥ 0, take a sequence of random variables {Yn} as follows:

• each Yn is a linear combination of indicator functions.

• {Yn} is monotonically increasing.

• Yn → Y (n→ ∞).
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For each n, take fn ∈ mB(R) such that Yn = fn(X), and put f := sup fn. Then, we have Y = f(X) and
f ∈ mB(R).

For general Y , decompose as Y = Y+ − Y− (Y+ ≥ 0, Y− ≥ 0). Then there exist f+ and f− such that
Y+ = f+(X) and Y− = f−(X). Then, f := f+ − f− holds Y = f(X) and f ∈ mB(R).

Remark 2 Theorem A. 41 in [28] may seem like to a generalization of this lemma. However, for Y ∈
L1(σ(X)), this theorem implies the existence of a fucntion f only on the image of X such that Y = f(X),
while Lemma 1 gives the existence of a function f on R.

Let X and Y be R-valued random variables and θ be a Θ-valued random variable, which we will call
a parameter. We assume that X is integrable. By Lemma 1, the conditional expectation E (X|Y, θ) can
be regarded as a function of (Y, θ), i.e., we can take a Borel measurable function f from R×Θ to R such
that

f(Y, θ) = E (X|Y, θ) a.s.

Because the equation f(y, c1) = f(y, c2) may hold even if c1 ̸= c2, the conditional expectation
E (X|Y, θ) can be measurable with respect to a sub σ-algebra strictly smaller than σ(Y, θ). This suggests
that taking conditional expectation can reduce the information of θ.

Let us express this loss of information of θ in terms of σ-algebra. Let D and G be a sub σ-algebras
of F . In some applications, such as Theorem 3 discussed later, it is assumed that D is the sub σ-algebra
generated by all observable statistics and G is a sub σ-algebra generated by a fraction of the observable
statistics and a fraction of the parameters. Note that G may include some information of parameters. For
X ∈ L1(D), the conditional expectation E (X|G) can be measurable for a sub σ-algebra which is strictly
smaller than G.

Definition 2 Sub σ-algebra I is said to be of interest with respect to a pair of sub σ-algebras (D,G) if,
for all X ∈ L1(D), E (X|G) is I-measurable.

Notions of nuisance and sufficiency describe a special case of such information loss.

Definition 3 Let D, S and N be sub σ-algebras of F . When S is of interest with respect to (D, σ(S,N )),
we deem that S is sufficient for (D,N ) or that N is nuisance for (D,S).

Remark 3 Note that the condition of Definition 3 is equivalent to stating that the equation

E (X|σ(S,N )) = E (X|S) a.s. (9)

holds for any X ∈ L1(D). In fact, we have

E (X|σ(S,N )) = E (E (X|σ(S,N )) |S)
(
E (X|σ(S,N )) ∈ L1(S)

)
= E (X|S) (tower property) .

Remark 4 In statistics, a statistic T is sufficient with respect to a parameter θ if the conditional distri-
bution of observed data X given the statistic T = t does not depend on the parameter θ. This condition
is formally expressed as

p(x|t, θ) = p(x|t).

In similar tests and the Neyman–Scott Problem, θ is denoted as a nuisance parameter or an uninteresting
parameter [2]. We express this condition in terms of the measure theory in Definition 3. In our definition,
we use σ-fields instead of statistics and parameters. Traditional definitions can be reduced to our definition
by

D = σ (X) , S = σ (T ) , N = σ (θ) .

Intuitively, D, S, and N denote the information of the observed data, the sufficient statistics, and the
nuisance parameters, respectively.

In addition, we utilize conditional expectations instead of conditional probabilities because the latter
can only be defined for a limited class of probability space and conditions.

Fundamental theorems on sufficient statistics can be generalized in our formulation on the sufficient
sigma field [13].
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Example 9 For random variables X1, . . . , Xn, θ, suppose that

1. 0 ≤ θ ≤ 1

2. The conditional probability of X1, . . . , Xn for given θ is

P (X1 = x1, . . . , Xn = xn|θ) =
n∏

i=1

θxi (1− θ)
1−xi (xi ∈ {0, 1})

Then, putting D := σ(X1, . . . , Xn), N := σ(θ), S := σ(X1 + · · ·+Xn), S is sufficient for (D,N ).

To describe a sub σ-algebra of interest in our application to the A-distribution, we consider orbits of
some group action. Suppose that a group G acts on a measurable space (S,Σ). For B ⊂ S and g ∈ G,
we put

g ·B := {g · b | b ∈ B} , G ·B := {g · b | g ∈ G, b ∈ B} .

Note that G ·B = B holds if and only if g ·B = B for any g ∈ G.
Let O∗ be the family of the element in Σ invariant under the action of G, i.e., we put

O∗ := {B ∈ Σ : G ·B = B} .

Lemma 2 O∗ is a sub σ-algebra of Σ.

Proof Obviously, O∗ includes Σ. Let B be an element in O∗. Take any g ∈ G and b′ ∈ Bc. Suppose
that g · b′ ∈ B. Then, we have b′ = g−1gb′ ∈ G ·B = B. This is a contradition. Hene, g · b′ is an element
of Bc, and we have G ·Bc ⊂ Bc. Since G ·Bc includes Bc obviously, we have G ·Bc = Bc. Consequently,
O∗ includes Bc.

Suppose that Bn (n ∈ N) is an element of O∗. Since we have G ·
∪∞

n=1Bn =
∪∞

n=1G ·Bn =
∪∞

n=1Bn,∪∞
n=1Bn is an element of O∗. □

A measurable map X : (Ω,F) → (S,Σ) induces a sub σ-algebra of F by

O := {{X ∈ B}|B ∈ O∗} .

Note that {X ∈ B} is the inverse image X−1(B) = {ω ∈ Ω|X(ω) ∈ B}. This notation is often used in
the probability theory and we use it in the sequel. We call O as the σ-algebra generated by the orbits of
group G.

Lemma 3 Let f : S → R be a function. Suppose that a measurable map X : (Ω,F) → (S,Σ) is
surjective. Then, all of the following four conditions are equivalent:

(a). f is O∗-measurable.

(b). f(g · x) = f(x) holds for any g ∈ G and any x ∈ S.

(c). f(X) is O-measurable.

(d). f(g ·X) = f(X) holds for any g ∈ G.

Proof [(a)⇒(c)]. Suppose that f is O∗-measurable. For any B ∈ B(R), we have f−1(B) ∈ O∗. By the
definition of O, X−1(f−1(B)) = {f(X) ∈ B} ∈ O holds. Hence, f(X) is O-measurable.

[(c)⇒(d)]. Suppose that f(X) is O-measurable. Take an arbitrary a ∈ R. Then, {f(X) = a} ∈ O
implies that there exists B ∈ O∗ such that {X ∈ B} = {f(X) = a} = {X ∈ f−1(a)}. Since X : Ω → S
is surjective, we have B = f−1(a). Thus, f−1(a) is an element of O∗, and we have G · f−1(a) = f−1(a).
This implies g · f−1(a) = f−1(a) holds for any g ∈ G, and we have

{f(g ·X) = a} = {g ·X ∈ f−1(a)} = {X ∈ g−1 · f−1(a)}
= {X ∈ f−1(a)} = {f(X) = a}.

Hence, f(g ·X) = f(X) holds for all g ∈ G.
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[(d)⇔(b)]. Since X : Ω → S is surjective, f(g · x) = f(x) holds for any x ∈ S and g ∈ G if and only
if f(g ·X) = f(X) holds for any g ∈ G.

[(b)⇒(a)]. Suppose the function f is invariant under the action of G. Take an arbitrary B ∈ B(R).
By the invariance of the function f , we have

G · f−1(B) = {g · x|g ∈ G, x ∈ S, f(x) ∈ B} = {x ∈ S|f(x) ∈ B} = f−1(B).

Hence, f−1(B) is included in O∗. This implies that f is O∗-measurable. □

Since O is a sub σ-algebra of σ(X), Y ∈ L1(O) can be regarded as a function of X. By Lemma 3, we
say that a random variable Y is invariant under the action of group G if Y is O-measurable.

We apply the above discussion on group actions to sufficient σ-algebras. Let D be a sub σ-algebra of
F . Let Θ be a topological space, and θ : (Ω,F) → (Θ,B(Θ)) be a measurable map. We regard θ and Θ
as the parameter and the space of parameters respectively. Let S be a measurable space, and T : Ω → S
be an D-measurable map. For X ∈ L1(D), E (X|T, θ) can be regarded as a function on S ×Θ. In other
words, there exists a function fX : S ×Θ → R such that fX(T (ω), θ(ω)) = E (X|T, θ) (ω) for all ω ∈ Ω.

Lemma 4 We assume the same notation as above. Suppose that an action of group G on Θ satisfies

fX(t, g · c) = fX(t, c)

for all t ∈ S, c ∈ Θ, g ∈ G, and X ∈ L1(D), and put

O := {{(T, θ) ∈ B} |B ∈ Σ× B(Θ), G ·B = B}.

Then, O is of interest with respect to (D, σ(T, θ)).

Proof The group action on Θ induces an group action on the Cartesian product S ×Θ by

g · (t, c) = (t, g · c) (g ∈ G, (t, c) ∈ S ×Θ).

Applying Lemma 3 in the case of the group action on S×Θ, fX(T, θ) is O-measurable for any X ∈ L1(D).
Hence, O is of interest with respect to (D, σ(T, θ)). □

Although the following lemmas may be well known, we could not find a proof in the literature.
Therefore, we present a proof here. We will use these lemmas in the next section.

Lemma 5 Let a measurable function θ : Ω → Θ be surjective and G be a sub σ-algebra of σ(θ) :=
{θ−1B|B ∈ B(Θ)}. Then, θG := {θ(B)|B ∈ G} is a sub σ-algebra of B(Θ).

Proof Since θ is surjective, Θ = θ(Ω) is an element of θG.
Let A ∈ θG. There exists B ∈ G such that A = θ(B). By G ⊂ σ(θ), there exists C ∈ B(Θ)

such that B = θ−1C. Since surjectivity of θ implies that θ(θ−1S) = S holds for any S ⊂ Θ, we have
A = θ(B) = θ(θ−1C) = C. By θ−1A = θ−1C = B ∈ G, we have θ−1Ac = (θ−1A)c ∈ G. By surjectivity of
θ, Ac = θ(θ−1Ac) is an element of θG.

Suppose An ∈ θG for n ∈ N. Analogously, we have θ−1An ∈ G. Consequently, θ−1
∪

n∈NAn =∪
n∈N θ−1An ∈ G implies

∪
n∈NAn = θ

(
θ−1

∪
n∈NAn

)
∈ θG. □

Lemma 6 Suppose that a measurable function θ : Ω → Θ is surjective. Let fλ : Θ → R (λ ∈ Λ) be
measurable functions. Then, we have

σ (fλ ◦ θ : λ ∈ Λ) = θ−1σ (fλ : λ ∈ Λ) , (10)

where σ (fλ : λ ∈ Λ) is the σ-algebra generated by {f−1
λ B|λ ∈ Λ, B ∈ B(R)}.

Proof Obviously, the right hand side of (10) includes the left hand side. We show the opposite inclusion.
By the surjectivity of θ, we have f−1

λ B = θθ−1f−1
λ B = θ(fλ◦θ)−1B ∈ θσ(fλ◦θ : λ ∈ Λ) for any B ∈ B(R).

By Lemma 5, θσ(fλ ◦ θ : λ ∈ Λ) is a sub σ-algebra of B(Θ). Hence, we have

σ(fλ : λ ∈ Λ) ⊂ θσ(fλ ◦ θ : λ ∈ Λ). (11)
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Note that we have
C = θ−1θC (C ∈ σ(θ)). (12)

In fact, since there exists C ′ ∈ B(Θ) such that C = θ−1C ′, we have θ−1θC = θ−1θθ−1C ′ = θ−1C ′ = C.
Let A ∈ θ−1σ(fλ : λ ∈ Λ). There exists B ∈ σ(fλ : λ ∈ Λ) such that A = θ−1B. By (11), there

exists C ∈ σ(fλ ◦ θ : λ ∈ Λ) such that B = θ−1C. Equation (12) and σ(fλ ◦ θ : λ ∈ Λ) ⊂ σ(θ) implies
A = θ−1θC = C ∈ σ(fλ ◦ θ : λ ∈ Λ). Consequently, the opposite inclusion holds. □

Lemma 7 Let V and W be finite-dimensional vector spaces over R, V ⊕W be the direct sum of V and
W , π : V ⊕W → V be the projection, and V ∗ be the dual space of V . Then, we have

{B ∈ B(V ⊕W )|B +W = B} = σ(f ◦ π : f ∈ V ∗). (13)

Here, we put B +W := {v + w|v ∈ B, w ∈W}.

Proof Since π−1B + W = π−1B holds for any B ∈ B(V ), {B ∈ B(V ⊕W )|B +W = B} includes
π−1B(V ). Let ι : V → V ⊕ W be the canonical injection. Suppose that B ∈ B(V ⊕ W ) satisfies
B +W = B. Since we have

x ∈ π−1ι−1B ⇔ ιπ(x) ∈ B

⇔ π(x) ∈ B (ι(y) = y holds for y ∈ V )

⇒ π(x) + (x− π(x)) ∈ B +W (x− π(x) ∈W )

⇒ x ∈ B +W

⇔ x ∈ B (B +W = B),

π−1ι−1B ⊂ B holds. Since we can show the opposite inclusion analogously, we have π−1ι−1B = B. By
ι−1B ∈ B(V ), B is an element of π−1B(V ). Then, we have

{B ∈ B(V ⊕W )|B +W = B} = π−1B(V ).

Since f ∈ V ∗ is a continuous map from V to R, B(V ) includes σ(f : f ∈ V ∗). Let {f1, . . . , fn} be a
basis of V ∗. Since any open subsets of V ∼= Rn is a countable union of open sets of the form

n∩
i=1

f−1
i ({x ∈ R|ai < x < bi}) (ai, bi ∈ Q),

we have B(V ) ⊂ σ(f1, . . . , fn) ⊂ σ(f : f ∈ V ∗). Consequently, B(V ) = σ(f : f ∈ V ∗) holds and we have

{B ∈ B(V ⊕W )|B +W = B} = π−1σ(f : f ∈ V ∗).

By Lemma 6, the right hand side of the above equation equals to σ(f ◦ π : f ∈ V ∗). □

8 Application to the Conditional MLE problem

In this section, we discuss a conditional MLE problem for A-distributions.
Let A be an integer matrix of size d × n, and b be an integer vector of length n. Suppose that

Poisson random variables Xk ∼ Pois(ck), (k = 1, . . . , n) are mutually independent. We denote the
conditional distribution of the random vector X := (X1, . . . , Xn)

⊤ given AX = b as an A-distribution.
The parameters of A-distribution are c = (c1, . . . , cn)

⊤ and b = (b1, . . . , bn)
⊤. The probability mass

function of the A-distribution is given as

P (X = x|AX = b, θ = c) =

∏n
j=1

c
xj
j

xj !
exp (−cj)∑

Ay=b

∏n
j=1

c
yj
j

yj !
exp (−cj)

=

∏n
j=1

c
xj
j

xj !∑
Ay=b

∏n
j=1

c
yj
j

yj !

.

An application of conditional distributions in statistics is the elimination of nuisance parameters. By
Definition 3 and Remark 4, the conditional distribution of a statistic given the occurrence of a sufficient
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statistic of a nuisance parameter does not depend on the value of the nuisance parameter. This is an
important property in similar tests and the Neyman–Scott problems (see, e.g., [2] and [10]). Hence, by the
conditional distribution, we can estimate the parameter of interest without being affected by the nuisance
parameter. From this perspective, we can regard the A-distribution as the conditional distribution given
the sufficient statistic AX, and the nuisance parameter corresponding to AX is Aθ. The traditional
definition does not offer a mathematically clear description of the parameter of interest for this case.
This is the motivation for the discussions in the previous section. The space of parameters of interest is
naturally described as a sub σ-algebra under less restrictive conditions on θ and c.

The parameter c of A-distribution moves on the set Θ := Rn
≥0. Consider the action of the multiplica-

tive group G := Rd
>0 on the space Θ defined as

g · c =

(
cj

d∏
i=1

g
aij

i

)
j=1,...,n

(g ∈ G, c ∈ Θ).

This group action on Θ induces group action on Zd
≥0 ×Θ by

g · (b, c) = (b, g · c) (g ∈ G, (b, c) ∈ Zd
≥0 ×Θ).

Applying Lemma 4 in the case where D = σ(X), S = Zd
≥0, and T = AX, we have the following theorem:

Theorem 3 The sub σ-algebra

O := {{(AX, θ) ∈ B} |B ∈ B(Zd
≥0)× B(Θ), G ·B = B}

is of interest with respect to (σ(X), σ(AX, θ)).

Proof For any g ∈ G, we have

g ·
∏n

j=1 θ
xj

j /xj !∑
Ay=b

∏n
j=1 θ

yj

j /yj !
=

∏n
j=1

(
θ
xj

j

∏d
i=1 g

aijxj

i

)
/xj !∑

Ay=b

∏n
j=1

(
θ
yj

j

∏d
i=1 g

aijyj

i

)
/yj !

=

∏d
i=1 g

bi
i

∏n
j=1 θ

xj

j /xj !∑
Ay=b

∏d
i=1 g

bi
i

∏n
j=1 θ

yj

j /yj !

=

∏n
j=1 θ

xj

j /xj !∑
Ay=b

∏n
j=1 θ

yj

j /yj !
.

Since the conditional distribution of X with respect to (AX, θ) is invariant under the action of G on
Zd

≥0 × Θ, for any Y ∈ L1(σ(X)), the conditional expectation E (Y |AX, θ) is also invariant under the
action. By Lemma 4, O is of interest with respect to (σ(X), σ(AX, θ)). □

Note that the quotient space Θ/G by the group action G is not a manifold. Therein lies the difficulty
with describing the space of parameters of interest and hence why we utilized the notion of σ-algebra of
interest.

For a vector v = (v1, . . . , vn)
⊤ ∈ Rn, we use J(v) to denote the set of subscript j that satisfies vj ̸= 0.

We also use |J(v)| to denote the number of elements in J(v), and we put J(v)c := {j ∈ N|j /∈ J(v)}.
For α = (α1, . . . , αn)

⊤ ∈ Rn, let Rα be the function from Θ = Rn
≥0 to R defined by

Rα(c) :=

{∏
j∈J(α) c

αj

j (cj ̸= 0 for all j ∈ J(α))

0 (cj = 0 for some j ∈ J(α))
(c = (c1, . . . , cn)

⊤ ∈ Θ).

Let Z : Θ → Rn be the function defined by Z(c) := (Z1(c), . . . , Zn(c))
⊤ (c ∈ Θ) where

Zj(c) :=

{
1 (cj > 0)

0 (cj = 0).

Lemma 8 The random variables AX, Rα(θ) (α ∈ kerA), and Z(θ) are O-measurable.

20



Proof Obviously, AX is O-measurable. Let π : Zd
≥0 ×Θ → Θ be the projection. By some calculations,

we have

Rα ◦ π(g · (t, c)) = Rα ◦ π((t, c)), Z ◦ π(g · (t, c)) = Z ◦ π((t, c))

for any α ∈ kerA, g ∈ G, and (t, c) ∈ Zd
≥0×Θ. Consequently, the functions Rα ◦π and Z ◦π are invariant

under G. Applying Lemma 3 in the case where X = (AX, θ), Rα ◦ π(X) = Rα(θ) and Z ◦ π(X) = Z(θ)
are O-measurable. □

Let {e1, . . . , en} be the standard basis of Rn, i.e., the i-th component of ei is 1 and the other compo-
nents are 0. For the d× n matrix A, kerA and ImA⊤ can be written as

kerA =


n∑

j=1

xjej |
n∑

j=1

aijxj = 0

 , ImA⊤ =
d∑

i=1

R
n∑

j=1

aijej ,

where aij is the (i, j)-component of A. For z ∈ {0, 1}n, let RJ(z) :=
∑

j∈J(z) Rej be the sub vector space

of Rn spanned by ej (j ∈ J(z)), pz : Rn → RJ(z)
(∑n

j=1 xjej 7→
∑

j∈J(z) xjej

)
be the projection, and

ι̂z : RJ(z) → Rn be the canonical injection. For α ∈ Rn, we denote by Lα the linear map from Rn to R
defined by

Lα(x) =

n∑
j=1

αjxj
(
x = (x1, . . . , xn)

⊤ ∈ Rn
)
.

The compositions of Lα and ι̂z generate a sub σ-algebra of B(RJ(z)), and we put it as σ(Lαι̂z : α ∈
RJ(z) ∩ kerA) = {(Lαι̂z)

−1(B)|B ∈ B(R)}.

Lemma 9 Under the same notation as above, the following equation holds for any z ∈ {0, 1}n:{
B ∈ B(RJ(z))|B + pzImA

⊤ = B
}
= σ(Lαι̂z : α ∈ RJ(z) ∩ kerA). (14)

Proof With a map

⟨·, ·⟩ : RJ(z) ×RJ(z) → R

⟨ ∑
j∈J(z)

xjej ,
∑

j∈J(z)

yjej ,

⟩
=
∑

j∈J(z)

xjyj

 ,

RJ(z) is an inner product space. By the equation

RJ(z) ∩ kerA = {v ∈ RJ(z)|⟨v, w⟩ = 0 for all w ∈ pzImA
⊤},

we have
RJ(z) =

(
RJ(z) ∩ kerA

)
⊕ pzImA

⊤.

By Lemma 7, we have{
B ∈ B(RJ(z))|B + pzImA

⊤ = B
}
= σ

(
f ◦ π : f ∈

(
RJ(z) ∩ kerA

)∗)
,

where π : RJ(z) → RJ(z) ∩ kerA is the projection and
(
RJ(z) ∩ kerA

)∗
denotes the dual space of

RJ(z) ∩ kerA. Since we have

{f ◦ π : f ∈
(
RJ(z) ∩ kerA

)∗
} = {Lαι̂z : α ∈ RJ(z) ∩ kerA)},

Equation (14) holds. □

Lemma 10 For z ∈ {0, 1}n, Let ιz be the canonical injection from Θz := {c ∈ Θ|Z(c) = z} to Θ. Then,
the inclusion

ι−1
z O∗∗ ⊂ ι−1

z σ(Rα : α ∈ kerA) (15)

holds. Here, we put O∗∗ := {B ∈ B(Θ)|G ·B = B}.
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Proof Fix z = (z1, . . . , zn)
⊤ ∈ {0, 1}n.

Let B ∈ O∗∗. Since ιz is a continuous map, ι−1
z B is a Borel set of Θz. For any c ∈ ι−1

z B and g ∈ G,
ι−1
z B ⊂ Θz and G · Θz = Θz implies g · c ∈ Θz. Since the equation ιz(g · c) = g · c ∈ G · B = B implies
g · c ∈ ι−1

z B, we have G · ι−1
z B = ι−1

z B. Hence, we have the following inclusion relation:

ι−1
z O∗∗ ⊂ {B ∈ B(Θz)|G ·B = B} . (16)

Suppose that B ∈ B(Θz) satisfies G · B = B. Let ψ : Θz → RJ(z) be a diffeomorphism defined by
ψ(c) :=

∑
j∈J(z) log(cj)ej (c = (c1, . . . , cn)

⊤ ∈ Θz). Note that cj is strictly positive for j ∈ J(z). Since

ψ is a diffeomorphism, ψ(B) is a Borel set of RJ(z). Put vi :=
∑

j∈J(z) aijej ∈ RJ(z) (i = 1, . . . , d). For

any c ∈ B and any gi ∈ R (i = 1, . . . , d), ψ(c) +
∑d

i=1 givi is an element of ψ(B). In fact, the inverse

ψ−1

(
ψ(c) +

d∑
i=1

givi

)
= ψ−1

 ∑
j∈J(z)

(
log(cj) +

d∑
i=1

aijgi

)
ej

 =
∑

j∈J(z)

exp

(
log(cj) +

d∑
i=1

aijgi

)
ej

=
∑

j∈J(z)

(
cj

d∏
i=1

exp(giaij)

)
ej = g′ · c

is an element of G·B = B. Here, we put g′ := (exp(gi))i=1,...,d ∈ G. This implies ψ(B)+pzImA
⊤ = ψ(B).

Since ψ−1ψ(B) = B holds, we have

{B ∈ B(Θz)|G ·B = B} ⊂ ψ−1
{
B ∈ B(RJ(z))|B + pzImA

⊤ = B
}
. (17)

By Lemma 9, we have

ψ−1
{
B ∈ B(RJ(z))|B + pzImA

⊤ = B
}
= ψ−1σ(Lαι̂z : α ∈ RJ(z) ∩ kerA) (18)

Since the standard exponential mapping exp : R → R>0 (x 7→ exp(x)) is a diffeomorphism, we have

σ(Lαι̂z : α ∈ RJ(z) ∩ kerA) = σ(expLαι̂z : α ∈ RJ(z) ∩ kerA).

The mappings Rαιz (α ∈ RJ(z) ∩ kerA) induce a σ-algebra on Θz as

σ(Rαιz : α ∈ RJ(z) ∩ kerA) := σ
(
(Rαιz)

−1(B) : α ∈ kerA ∩RJ(z), B ∈ B(R)
)
.

By Lemma 6 and the equation expLαι̂zψ = Rαιz, we have

ψ−1σ(expLαι̂z : α ∈ RJ(z) ∩ kerA) = σ(Rαιz : α ∈ RJ(z) ∩ kerA) (19)

Obviously, we have

σ(Rαιz : α ∈ RJ(z) ∩ kerA) ⊂ σ(Rαιz : α ∈ kerA). (20)

For any B ∈ B(R) and any α ∈ kerA, (Rαιz)
−1(B) = ι−1

z R−1
α (B) is an element of ι−1

z σ(Rα : α ∈
kerA). Since ι−1

z σ(Rα : α ∈ kerA) is a σ-algebra on Θz, we have

σ(Rαιz : α ∈ kerA) ⊂ ι−1
z σ(Rα : α ∈ kerA) (21)

By (16), (17), (18), (19), (20) and (21), we have (15). □

Lemma 11 The following equation holds:

O∗∗ = σ (Rα, Z;α ∈ kerA) . (22)

Proof Since Rα and Z are invariant under the action G, Lemma 3 implies O∗∗ ⊃ σ (Rα, Z;α ∈ kerA).
Let B ∈ O∗∗. For z ∈ {0, 1}n, put Bz := B ∩ Θz ∈ O∗∗. Then, we have B =

∪
z∈{0,1}n Bz. Since

Lemma 10 implies Bz = ι−1
z B ∈ ι−1

z σ (Rα, Z;α ∈ kerA), there exists B̂z ∈ σ (Rα, Z;α ∈ kerA) such
that Bz = ι−1

z B̂z. By Bz = ι−1
z B̂z = B̂z ∩ Θz, we have Bz ∈ σ (Rα, Z;α ∈ kerA). Consequently,

σ (Rα, Z;α ∈ kerA) includes B. Hence, we have (22). □
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Lemma 12 Let π : Zd
≥0 × Θ → Θ and π′ : Zd

≥0 × Θ → Zd
≥0 be the projections. Put O∗ := {B ∈

B(Zd
≥0 ×Θ)|G ·B = B}. Then, the following equation holds:

O∗ = σ (π′, Rα ◦ π, Z ◦ π;α ∈ kerA) . (23)

Proof Since π′, Rα ◦ π, and Z ◦ π are invariant under the action G, Lemma 3 implies

O∗ ⊃ σ (π′, Rα ◦ π, Z ◦ π;α ∈ kerA) .

Let B ∈ O∗. For t ∈ Zd
≥0, let ιt : Θ → Zd

≥0 × Θ is an inclusion map defined by ιt(c) = (t, c), and put

Bt := B ∩ ιt(Θ). Then, ι−1
t Bt is a Borel set of Θ. Since the equation G ·B = B implies Gι−1

t B = ι−1B,
ι−1
t B is an element of O∗∗. By Lemma 11 and Lemma 6, we have π−1ι−1

t Bt ∈ π−1σ (Rα, Z;α ∈ kerA) =
σ (Rα ◦ π, Z ◦ π;α ∈ kerA) . Hence, Bt = π−1ι−1

t Bt ∩ ιt(Θ) ∈ σ (π′, Rα ◦ π, Z ◦ π;α ∈ kerA) implies
B =

∪
t∈Zd

≥0
Bt ∈ σ (π′, Rα ◦ π, Z ◦ π;α ∈ kerA) . We have (23). □

Theorem 4 Let θ̂ : Ω → Zd
≥0 × Θ be the measurable function defined by θ̂(ω) = (AX(ω), θ(ω)). If θ̂ is

surjective, then the equation
O = σ (AX,Rα(θ), Z(θ);α ∈ kerA) (24)

holds.

Proof By Lemma 6 and Lemma 12, we have

O = θ̂−1O∗ = θ̂−1σ (π′, Rα ◦ π, Z ◦ π;α ∈ kerA)

= σ
(
π′(θ̂), Rα ◦ π(θ̂), Z ◦ π(θ̂);α ∈ kerA

)
= σ (AX, Rα(θ), Z(θ);α ∈ kerA) .

□

This theorem implies that sub σ-algebra of interest O stands for generalized odds ratios, which are,
intuitively, parameters of interest. Note that the parameter may lie on the border θi.

As an interesting and important case of A-distributions, we consider the r1 × r2 contingency table.
Let uij be independent Poisson random variables with parameter θij ≥ 0 (1 ≤ i ≤ r1, 1 ≤ j ≤ r2). The
parameter θ := (θij) lies on the set Θ := Rr1×r2

≥0 . As in the previous section, we regard θ as a measurable
function from (Ω,F) to (Θ,B(Θ)). Note that we can assume that θ is surjective without loss of generality.
Let D be the sub σ-algebra generated by all uij , and G be the sub σ-algebra generated by

θij (1 ≤ i ≤ r1, 1 ≤ j ≤ r2),

r1∑
i=1

uij (1 ≤ j ≤ r2),

r2∑
j=1

uij (1 ≤ i ≤ r1).

For all X ∈ L1(D), the conditional expectation E (X|G) is invariant under the action of the multiplicative
group G := Rr1+r2

>0 on Θ defined by

g · c := (gigr1+jcij) (g = (gi) ∈ G, c = (cij) ∈ Θ) .

For 1 ≤ i, k ≤ r1 and 1 ≤ j, ℓ ≤ r2, let Rijkℓ : Θ → R be a function defined by

Rijkℓ(c) :=

{
cijckℓ

ciℓckj
(cijckℓciℓckj ̸= 0)

0 (cijckℓciℓckj = 0)
(c = (cij) ∈ Θ).

Note that Rijkℓ is a function obtained from the odds ratio. For 1 ≤ i ≤ r1 and 1 ≤ j ≤ r2, we define a
function Zij : Θ → R by

Zij(c) :=

{
1 (cij > 0)

0 (cij = 0)
(c = (cij) ∈ Θ).

The functions Zij (1 ≤ i ≤ r1, 1 ≤ j ≤ r2) hold information on the position of zero cells. The functions
Rijkℓ and Zij are invariant with respect to the action of group G. By Lemma 3, random variables Rijkℓ(θ)
and Zij(θ) are O-measurable.

The following theorem states that Aθ is a nuisance parameter.
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Theorem 5 The following equation holds:

σ(AX, θ) = σ(Aθ,O).

Corollary 1 σ(Aθ) is nuisance for (σ(X),O).

Proof By Theorem 3, for any Y ∈ L1(σ(X)), E (Y |σ (AX, θ)) is O-measurable. The equation in
Therorem 5 impliesE (Y |σ (AX, θ)) = E (Y |σ (Aθ,O)) .Hence, O is of interest with respect to (σ(X), σ (Aθ,O)).
Therefore σ(Aθ) is nuisance for (σ(X),O). □

To show Theorem 5, we prepare the following lemma:

Lemma 13 Let F : Rn → Rd be a linear map and ι : Rn
>0 → Rn be the inclusion. For α ∈ kerF , let

Rα : Rn
>0 → R be a function defined by Rα(x) :=

∏n
i=1 x

αi
i . Then, we have

B(Rn
>0) = σ(Fι,Rα;α ∈ kerF ).

Proof It is ovbious that the left-hand side includes the right-hand side. We show the opposite inclusion.
Let {α1, . . . , αm} be a basis of kerF . Then the differential map

φ : Rn
>0 → (ImFι)×Rm

>0 (x 7→ (Fι(x), Rα1(x), . . . , Rαm(x)))

is surjective. By the general theory of the exponential family ([32, p. 125], [5, Theorem 3. 6]), φ is also
injective. Hence, φ is a diffeomorphism between Rn

>0 and (ImFι)×Rm
>0, and we have

B(Rn
>0) = φ−1B ((ImFι)×Rm

>0) = φ−1σ (p, q1, . . . , qm) = σ (pφ, q1φ, . . . , qmφ)

= σ (Fι, Rα1(x), . . . , Rαm) ⊂ σ(Fι,Rα;α ∈ kerF )

Here, p : (ImFι)×Rm
>0 → (ImFι) and qi : (ImFι)×Rm

>0 → R>0 are the projections. □

Proof of Theorem 5 Recall that, for z ∈ {0, 1}n, we put Θz = {c ∈ Θ |Z(c) = z} and that ιz : Θz → Θ
is the inclusion. Applying Lemma 13 in the case where F = Aιz, we have

B(Θz) = σ(Aιz, Rαιz;α ∈ kerAιz). (25)

The equation kerAιz = RJ(z) ∩ kerA implies

σ (Aιz, Rαιz : α ∈ kerAιz) = σ
(
Aιz, Rαιz : α ∈ RJ(z) ∩ kerA

)
(26)

By Equations (25) and (26), we have

B(Θz) = σ
(
Aιz, Rαιz : α ∈ RJ(z) ∩ kerA

)
⊂ ι−1

z σ
(
A, Rα : α ∈ RJ(z) ∩ kerA

)
⊂ ι−1

z σ (A, Rα, Z : α ∈ kerA) ⊂ σ (A, Rα, Z : α ∈ kerA) . (27)

Any B ∈ B(Θ) can be decomposed as B =
∪

z∈{0,1}n (B ∩Θz) =
∪

z∈{0,1}n ι−1
z B. By (27), B is an

element of σ (A, Rα, Z : α ∈ kerA). Hence, we have

B(Θ) = σ (A, Rα, Z : α ∈ kerA) (28)

The σ-algebra generated by θ is the pull-back of the left-hand side of (28) with respect to θ. By Lemma
6, the pull-back of the right-hand side of (28) equals to σ (Aθ, Rα(θ), Z(θ) : α ∈ kerA) . Hence, we have

σ (θ) = σ (Aθ, Rα(θ), Z(θ) : α ∈ kerA) .

This equation implies
σ (AX, θ) = σ (AX, Aθ, Rα(θ), Z(θ) : α ∈ kerA)

By Theorem 4, we have

σ (Aθ,O) = σ (Aθ, σ (AX, Rα(θ), Z(θ) : α ∈ kerA))

= σ (Aθ, AX, Rα(θ), Z(θ) : α ∈ kerA) = σ (AX, θ)

□
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9 Examples of CMLE problems

Theorem 4 and 5 claim that when AX is given, σ(Rα(θ), Z(θ)) are of interest and σ(Aθ) is a nuisance.
In the case of contingency tables, generalized odds ratios Rα(p) and positions of zero cells Z(p) are of
interest and row and column probabilities Ap are a nuisance when the marginal sums of the table are
given. We present examples of estimating generalized odds ratios by CMLE.

Example 10 We generate categorical data concerning the number of hours slept and time of going to
bed from a student sample in the LearnBayes package 6 of the system R for statistical computing.

Rows are categorized by time spent sleeping. The categories are sleeping less than 6 hours, 6–7 hours,
and more than 7 hours. Columns are categorized by the time of going to bed. The categories are going
to bed before midnight, between midnight and 1am, and after 1am. We wish to analyze these categorical
data by the Poisson random model Uij ∼ Pois(pij). The independence of rows and columns is rejected
by the χ2 test with the threshold p-value 0.05. Then, we regard the column sum

∑
i pij and the row sum∑

j pij as nuisance parameters. These represent probabilities of the event standing for j-th row and one
standing for i-th column when the rows and the columns are independent. We perform CMLE under the
condition that column sums

∑
i uij and row sums

∑
j uij are given.

Categorical data for all:

Bed time \ Hours slept less than 6 hour 6–7 more than 7 hours
Before 24 1 6 123

24–25 3 22 145
After 25 86 91 176

We omit titles and express this table as

 1 6 123
3 22 145
86 91 176

. Categorical data for males:

 1 2 28
0 4 47
35 32 71


Categorical data for females:  0 4 95

3 18 98
51 59 105


Because this CMLE can be solved by the A-distribution discussed previously, we apply our algorithm

for evaluating normalizing constants and their derivatives to the method for estimating the conditional
maximum likelihood in [32, §4]. We obtain the following estimates. CMLE (pij) for all:0.176556059977815 1 10.5634953362788

0.144532927997885 1 3.39969669537228
1 1 1


CMLE for males: 0.458167657900967 1 6.25676090279981

0 1 5.25200491199345
1 1 1


CMLE for females:  0 1 13.2714773737657

0.193351042187373 1 3.04872586155291
1 1 1


As explained in the previous section, the space of parameters of interest should be regarded as the
collection of different orbits by the torus action. When the parameter value obtained via CMLE is (pij),
values on the orbit (gihjpij), gi, hj ∈ R>0 are equivalent parameters. Since the normalized elements of the

6https://cran.r-project.org/web/packages/LearnBayes/index.html
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second column and the third row are 1, we have g3h1 = g3h2 = g3h3 = 1 and g1h2 = g2h2 = g3h2 = 1.
Then, we have gihj = 1 for all i, j. The condition whereby this normalization is possible (pi2 ̸= 0,
p3j ̸= 0) defines a subspace of the parameters of interest. The subspace is isomorphic to R4

≥0 by the
quotient topology. The correspondence is given by

(pij) 7→

 p11p32

p12p31
1 p13p32

p12p33
p21p32

p22p31
1 p23p32

p22p33

1 1 1

 (29)

In this chart, males and females exhibit different tendencies. For example, the underlined values at (1, 3)
and (2, 3) positions are close in the case of males but not for females.

The number obtained by replacing pij by the frequency uij in (29) is called a generalized odds ratio.
Generalized odds ratios for our data are as follows. Odds ratios for all:0.176356589147287 1 10.5994318181818

0.144291754756871 1 3.40779958677686
1 1 1


Odds ratios for males: 0.457142857142857 1 6.30985915492958

0 1 5.29577464788732
1 1 1


Odds ratios for females:  0 1 13.3452380952381

0.19281045751634 1 3.05925925925926
1 1 1


Note that, as proved in [32, Theorem 5], these generalized odds ratios approximate CMLE because we
have a sufficient sample size.

When the sample size is relatively small, a generalized odds ratio may not approximate the corre-
sponding CMLE well. We present one example.

Example 11 The categorical data below are taken from emergency safety information on diclofenac
sodium for influenza encephalitis and encephalopathy7.
Categorical data:

acetaminophen diclofenac sodium mefenamic acid
death 4 7 2
survival 32 5 6

We omit titles and express this table as

(
4 7 2
32 5 6

)
. By applying our algorithm and the method in

[32], we obtain the following CMLE.(
1 10.5557279737263 2.62096714359908
1 1 1

)
Generalized odds ratios are (

1 11.2 2.66666666666667
1 1 1

)
See the numbers underlined above. We observe that the odds ratio is larger than the CMLE. In other
words, the effect of nuisance parameters increases the risk in this case. Finally, we briefly note how
subsequent data released from the same institute in 2001 appeared to show that diclofenac sodium was in
fact more associated with survival, rather than death. This reminds us of some of the difficulties inherent
in statistical analyses. Here are those new data: 8.

7Pharmaceuticals and Medical Devices Agency, Japan, 2000, https://www.pmda.go.jp/files/000148557.pdf
8http://idsc.nih.go.jp/disease/influenza/iencepha.html
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acetaminophen diclofenac sodium mefenamic acid
death 23 13 6
survival 78 25 9

Our algorithm outputs CMLE(
1 1.7567483756645 2.24788463785377
1 1 1

)
and odds ratios: (

1 1.76347826086957 2.26086956521739
1 1 1

)
.

10 Appendix

We will explain the derivation of the matrix U2 of Example 5 with twisted cohomology groups by following [7]
and the program gtt ekn3/ekn pfaffian 8.rr of the package gtt ekn3.

We start with the integral representation of 2F1:

Γ(b)Γ(c− b)

Γ(c)
· 2F1(a, b, c;x) =

∫ 1

0

tb−1(1− t)c−b−1(1− xt)−adt = (−1)b
∫ −1

0

tb(1 + xt)−a(1 + t)c−b−1 dt

t
.

We rename the parameters a, b, c by

(α0, α1, α2, α3) = (a− c+ 1, b,−a, c− b− 1).9

The decrement of a stands for an increment of α2 (and decrement of α0). The identity we want to derive is
F (a) = M(a)F (a+ 1), which is a special case of

S(α;x) =
1

α2
U2(α(2);x)S(α(2);x), α(2) := (α0 + 1, α1, α2 − 1, α3)

in [7, Corollary 6.3] (α(2) stands for a+1 ). The function upAlpha(2,1,1) in the program derives 1
α2

U2. S(α;x) is
the vector consisting of the hypergeometric series S(α;x) defined in [7, Section 6] and its derivatives (Gauss-Manin
vector). When c ∈ N0, it can be expressed in terms of 2F1 as

S(α;x) =

(
S

1
α2

θxS

)
=

(
1 0
0 1/α2

)(
S

θxS

)
=

1

(−a)!(−b)!(c− 1)!

(
1 0
0 1/α2

)(
2F1

θx2F1

)
.

Hence, the matrix M(a) can be expressed as

M(a) = −a

(
1 0
0 α2

)( 1

α2
U2(α(2))

)(1 0
0 1/(α2 − 1)

)
=

(
1 0
0 α2

)
U2(α(2))

(
1 0
0 1/(α2 − 1)

)
.

It follows from [7, Theorem 5.3] that the representation matrix U2 can be expressed as

U2(α(2);x) = C(α)P2(α)
−1D2(x)Q2(α(2))C(α(2))

−1.

We use the notation |x̃⟨ij⟩|, which is the determinant of the minor matrix consisting of the i-th column and the

j-th column of the matrix x̃ =

(
1 0 1 1
0 1 x 1

)
, where the numbering starts with 0 (see [7] as to details). We put

φ⟨ij⟩ = |x̃⟨ij⟩|dt
LiLj

, where L0 = 1, L1 = t, L2 = 1 + xt, and L3 = 1 + t. We have the following expressions with

these notations.

D2(x) = diag

(
|x̃⟨21⟩|
|x̃⟨01⟩| ,

|x̃⟨23⟩|
|x̃⟨03⟩|

)
= diag(1, 1− x) =

(
1 0
0 1− x

)
,

C(α) =

(
I(φ⟨01⟩, φ⟨01⟩) I(φ⟨01⟩, φ⟨02⟩)
I(φ⟨02⟩, φ⟨01⟩) I(φ⟨02⟩, φ⟨02⟩)

)
= 2π

√
−1

( 1
α0

+ 1
α1

1
α0

1
α0

1
α0

+ 1
α2

)
,

Q2(α) =

(
I(φ⟨01⟩, φ⟨01⟩) I(φ⟨01⟩, φ⟨02⟩)
I(φ⟨03⟩, φ⟨01⟩) I(φ⟨03⟩, φ⟨02⟩)

)
= 2π

√
−1

( 1
α0

+ 1
α1

1
α0

1
α0

1
α0

)
,

P2(α) =

(
I(φ⟨21⟩, φ⟨01⟩) I(φ⟨21⟩, φ⟨02⟩)
I(φ⟨23⟩, φ⟨01⟩) I(φ⟨23⟩, φ⟨02⟩)

)
= 2π

√
−1

( 1
α1

− 1
α2

0 − 1
α2

)
,

9α0 = −α1 − α2 − α3 stands for the exponent at infinity.
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where I is the intersection form on the twisted cohomology group. The inverse matrices of them can also be
expressed in terms of intersection numbers as in [7, Appendix]. This method is implemented as the function
invintMatrix k in our package and it outputs

P2(α)
−1 =

1

(2π
√
−1)2

(
α1 0
0 α2

)(
I(φ⟨31⟩, φ⟨01⟩) I(φ⟨31⟩, φ⟨03⟩)
I(φ⟨32⟩, φ⟨01⟩) I(φ⟨32⟩, φ⟨03⟩)

)(
α1 0
0 α3

)
=

1

2π
√
−1

(
α1 0
0 α2

)( 1
α1

− 1
α3

0 − 1
α3

)(
α1 0
0 α3

)
=

1

2π
√
−1

(
α1 −α1

0 −α2

)
,

C(α)−1 =
1

(2π
√
−1)2

(
α1 0
0 α2

)(
I(φ⟨31⟩, φ⟨31⟩) I(φ⟨31⟩, φ⟨32⟩)
I(φ⟨32⟩, φ⟨31⟩) I(φ⟨32⟩, φ⟨32⟩)

)(
α1 0
0 α2

)
=

1

2π
√
−1

(
α1 0
0 α2

)( 1
α3

+ 1
α1

1
α3

1
α3

1
α3

+ 1
α2

)(
α1 0
0 α2

)
=

α1α2

2π
√
−1 · α3

(
α1+α3

α2
1

1 α2+α3
α1

)
.

These matrices can be obtained in our program as

D2(x) = repMatrix(2, 1, 1), C(α)/(2π
√
−1) = intMatrix([0, 3], [0, 3], 1, 1),

P2(α)/(2π
√
−1) = intMatrix([2, 0], [0, 3], 1, 1), Q2(α)/(2π

√
−1) = intMatrix([0, 2], [0, 3], 1, 1),

(2π
√
−1)P2(α)

−1 = invintMatrix k([2, 0], [0, 3], 1, 1), (2π
√
−1)C(α)−1 = invintMatrix k([0, 3], [0, 3], 1, 1)

(the argument (1, 1) stands for (r1 − 1, r2 − 1)).
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system of algebraic equations. Journal of Information Processing, 12(1989), no.4, 371-379.

[28] M. Schervish, Theory of Statistics, Springer, 1995.

[29] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York-Heidelberg,
1980.

[30] Y. Tachibana, Y. Goto, N. Takayama, An implementation of the difference holonomic gradient
method to two way contingency tables, RIMS Kokyuroku, 2054(2017), 105–117 (in Japanese).
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