D-MODULES FOR MACAULAY 2

ANTON LEYKIN

D-modules for Macaulay 2 is a collection of the most recent algorithms that deal
with various computational aspects of the theory of D-modules. This paper pro-
vides a brief guide, which gives examples of using the main functions of this pack-
age, as well as an overview of the core algorithms for D-modules and their appli-
cations.

1 Introduction

The Macaulay 2 D-modules package is an implementation of the Weyl alge-
bra and algorithms related to it in the computer algebra system Macaulay 2.
Over the last decade there were many advances made in the computational
theory of D-modules. Several newest algorithmic methods used in the analysis
of hypergeometric differential equations are described in the recent book (11).
Also we worked with a paper by Oaku and Takayama (%) providing, in par-
ticular, a detailed description of the restriction algorithm. The algorithms for
computing localization, D-homomorphisms, and global b-functions of poly-
nomials with parameters come from (1), (}?), and (°) respectively. As to
the applications that we describe here, we compute polynomial and rational
solutions according to (°), local cohomology via Cech complex comes from a
paper of Walther (14).

Macaulay 2, a noncommercial computer algebra system crafted by
Grayson and Stillman, became one of the favorite tools for specialists in alge-
braic analysis. You are welcome to join the crowd by downloading the current
distribution from the web (see (*)). D-modules package comes as a part of it,
for the most recent updates and online documentation see (). If you would
like to learn more about Macaulay 2, read a recently published book (1),
which contains a set of very interesting examples of computations in algebraic
geometry including a section by Walther featuring D-modules package.

At the end of the introduction, let us mention that there are sev-
eral other systems that are capable of handling D-modules. First on the
list is Takayama’s system Kan ('2), which is a specialized system for D-
computations. There is an implementation of Weyl algebra in Maple by
Chyzak (3). It is also implemented in Singular (?), although not included
in the main package.
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2 Making Weyl algebras

Throughout this paper k is a field of characteristic 0, R, (k) = k[z1,...,Zp]
is the ring of polynomials in n variables and A, (k) = k (z1,...,Zpn, 01, ..., On)
is the corresponding Weyl algebra, i.e. an associative k-algebra generated by
z’s and 0’s with the relations 9;z; = x;0; + 1 for all <.

In this paper we refer to M as to a D-module if it is a finitely generated
left module over a Weyl algebra D = A,,.

Weyl algebras are made in Macaulay 2 by adding the option WeylAlgebra
to a polynomial ring. For instance,

i1 : D = QQlx_1,x_2,d_1,d_2,

WeylAlgebra=>{x_1=>d_1,x_2=>d_2}]

ol =D

ol : PolynomialRing
makes the Weyl algebra with the commutation rules d;x; = x;d;+1 fori = 1, 2.

Now we may do the usual things in Macaulay 2 such as forming ideals
and computing Grobner bases:

i2 : I = ideal(x_1*d_1+2*x_2%d_2-5, d_1"2-d_2)

2
ideal (xd +2xd -5,d -4)

02 =
11 2 2 1 2
02 : Ideal of D
i3 :gbl1
03 = {0} | d_1"2-d_2 x_1d_1+2x_2d_2-5 x_2d_1d_2+...

03 : GroebnerBasis

Weyl algebra construct belongs to the kernel of the system, to load the
D-modules package, however, one has to type the following:

i4 : load "D-modules.m2"

3 Making D-modules

Construction of a D-module is similar to that of a module over a polynomial
ring. For instance, it may be presented as a cokernel of a matrix with entries
in a Weyl algebra:

i5 : A = matrix {{-x_1"3+x_2, 3*d_2*x_1"2+d_1, 0, 0},
{0, 0, —x_1"2+x_2, 2*d_2*x_1+d_1}};

2 4
o5 : Matrix D <---D
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i6 :
i7

o7
i8

o8

M = cokernel A;
isHolonomic M
true

: makeCyclic A

o8 :

Function isHolonomic checks whether a D-module is holonomic, more
on this in the next section. Every holonomic D-module may be presented as
a cyclic one: function makeCyclic finds such a presentation.

One can find the module D/I generated by a polynomial (rational func-
tion): here I is the annihilator ideal of the polynomial (rational function).

i9

110 :

010

010 :
i1l

i12

0l2

ol2 :

2 2 2 2
HashTable{AnnG => ideal (x d + 5xxdd +6xd + ...
11 1212 2 2

Generator => | x_2d_1 |
1

HashTable

: f = x_172-x_273;

PolyAnn f£
3 2 3 2 2
ideal (- xd +xd -2x, -xd +xd + 3x,
21 11 1 22 12 2

Ideal of D
g = 2¥x_1*x_2;

: RatAnn(g,f)

2 1 3 2 2 2
ideal (xd + -*xd +-,xd -xd -6xxd + ...
11 3 22 3 2 2 12 121

Ideal of D

Also there are two functions gkz and AppellF1 that cook up ideals repre-
senting GKZ (Gelfand-Kapranov-Zelevinsky) systems and Appell F1 system
respectively, which are discussed in (11).

4 Basic invariants

Let us now compute some basic invariants associated to a D-module D/I.
First, we compute the dimension of I from the line i2 of the previous section
and verify that I is indeed holonomic.

i13 :

Ddim T

013 = 2
Next, we compute its characteristic ideal, which is the initial ideal with
respect to the differential order filtration.
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i14 : charIdeal I
2
014 = ideal (d , xd +2xd)
1 11 22
014 : Ideal of QQ [x , x , d , d ]
1 2 1 2
Note that the initial ideal lives in a polynomial ring. Now, we may com-
pute its singular locus, which is the projection of the characteristic variety
minus the zero section on the cotangent bundle onto the base space.

115 : singlocus I
015 = ideal x

015 : Ideal of D

Finally, we compute the holonomic rank of the system, which tells us
what the dimension of the space of solutions of the system is.

il6 : Drank I
0l6 = 2

5 Main tools

In (%), Oaku and Takayama develop fundamental algorithms for functors in
the category of D-modules. There are four main tools which are heavily
utilized — b-functions, localization, resolutions, and restriction. Using them,
one gets algorithms for Tor, Ext, local cohomology, deRham cohomology, and
other functors.

5.1 b-functions

Given a weight vector w = (—u,u) corresponding to a Grébner deformation,
we are able compute the b-function of D/I in the direction u as follows:

i17 : u = {1,3};

i18 : bFunction(I, u)

018 = §s - 5

018 : QQ [$s]

These types of b-functions with respect to the appropriate weight vec-
tors are also used in Oaku’s algorithm to compute global b-functions, a.k.a.
Bernstein-Sato polynomials.
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i19 : £ = x_172+x_272;
120 : globalBFunction f

2
020 = $s + 2%s + 1
020 : QQ [$s]

The function paramBpoly computes the list of possible global b-functions
of a polymonial with parametric coefficients together with the corresponding
conditions on the parameters.

i2 : D = QQla,b,c] [x,y,dx,dy,WeylAlgebra=>{x=>dx,y=>dy}];
i3 : bList = paramBpoly(a*x~2+b*x*y+c*y~2,"quadratic");
i4 : bList/factorBFunction

2 1
0d = {($s + 1) , (s + 5)($s + 1}

o4 : List

Here we also use factorBFunction to factor the polynomials in the out-
put. Factoring a b-function is a simple business due to the fact that the
roots of a b-function are rational: this is why a separate function for this is
provided.

If we consider a specification of parameters as a point of Proj Qla, b, ¢]
then it is proved in (°) the set corresponding to a global b-function in our list
is constructible. The file named quadratic.tex, which is generated by this
script, contains:

o b(s)=(s+1)2 for V(0O)\V(b* —4xaxc)

o b(s) = (s+1)*(s+1/2) for V(b?> — 4 *x ax*c)

5.2  Localization

There is a function that computes the localization of a D-module by inverting
a polynomial. We show how to compute Q[z,y, (2 — y3)71]:

i2 : D = QQ[x,y,dx,dy, WeylAlgebra=>{x=>dx,y=>dy}];
i3 : M = cokernel matrix{{dx,dy}};
i4 : £ = x"2-y°3;

i5 : Dlocalize(M, f)
05 = cokernel | xdx+2/3ydy+4 y2dx+2/3xdy y3dy-x2dy+6y2 |

1
05 : D-module, quotient of D
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When calling D1ocalize, several variants of localization algorithm could
be specified by adding a strategy option Dlocalize (M, f,Strategy=>0TW) to
apply the algorithm from (1°), or Dlocalize (M, f,Strategy=>0aku) which is
good for f-saturated modules and appears in (}*). The latter usually works
faster than the former.

5.8 Resolutions

To compute resolutions for D-modules, use the usual Macaulay 2 command
res:

i6 : I = gkz(matrix{{1,1,1},{0,1,3}}, {2,3H

06

3 2
ideal O - DD, xD +xD +xD -2,xD + ...
2 13 11 2 2 33 2 2

06 : Ideal of QQ [x , x , x , D, D, D, WeylAlgebra => ...
1 2 3 1 2 3

i7 : D = ring I;

i8 : res I

1 3 11 9
D <-—-D <--D <--D <--0
0 1 2 3 4
08 : ChainComplex

o8

To find a resolution by Schreyer method, we use the special command
Dres:

i9 : Dres I

1 8 16 12 3
09 =D <—-D <—-D <=-D <-D <—-0
0 1 2 3 4 5

09 : ChainComplex

Finally, we may compute V-strict resolutions, which are resolutions that
respect a weight vector w = (u, —u) associated to a Grébner deformation.
These resolutions are compatible with b-functions and thus become especially
useful.

i10 : w = {1,3,5,-1,-3,-5};
i11 : Dres(I, w, Strategy => Vhomogenize)
1 5 8 5 1
011 =D <= D <= D <--D <--D <=0
0 1 2 3 4 5
0l1l : ChainComplex

062: submitted to World Scientific on April 18, 2002 6




5.4 Restriction

Armed with b-functions and V-strict resolutions, we get an algorithm to com-
pute the restriction functors, which are the Tor groups of a left D-module with
the right D-module D/{z1,...,z4} - D. The following computes the derived
restriction to the origin.

i12 : w = {1,3,5};
i13 : Drestrict(I, w, Strategy => Vhomogenize)

1
013 = HashTable{0 => QQ }

1 =>0Q
2 => QQl
3=>0

013 : HashTable

By changing the weight vector, we may compute derived restriction to a sub-
space such as {z; = 0}.

i14 : w = {1,0,0};
i15 : Drestrict(I, w, Strategy => Vhomogenize)

015 = HashTable{0 => cokernel | x_3D_3-1/2 0
| 0 x_3D_3-1
1=>0

015 : HashTable

6 Applications

6.1 Solving holonomic systems

Polynomial solutions of I can be computed by duality or by Grobner defor-
mations.
i16 : PolySols I
016 = {x x }
13
0l6 : List

More generally, the vector space HomD(%,N ) corresponds to the N-
valued solutions of I.

i17 : D = QQ[z,Dz, WeylAlgebra=>{z=>Dz}];
i18 : M cokernel matrix{{(Dz-1)"2}};
i19 : N = cokernel matrix{{Dz*x(Dz-1)}};
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i20 : DHom(M,N)

020 = {| zDz-2Dz |, | Dz |}

020 : List

i21 : DHom(N,M)

021 = {| -zDz+z-2Dz+3 |, | -Dz+1 |}
021 : List

6.2 Local cohomology

One of the first algorithmic applications of D-modules to algebraic geometry
was computing local cohomology. Let I be an ideal of R, = k[z,...,2y)
and let M be an R,-module, then the i-th local cohomology group H:(M) is
defined as the i-th derived functor of the functor

I'y (M) = lim Hompg, (R,/I™; M),

where the inductive limit is taken as m tends to infinity. We may generalize
the definition by letting M be a D-module. D-structure proves to be useful,
since whenever M is holonomic, so is H:(M) for every i. Hence, we can pass
from viewing local cohomology groups as generally infinite R,-modules to
computing them as holonomic D-modules, which have finite description.

There are two algorithms available in the D-modules package: one due to
Oaku and Takayama (uses restriction), another due to Walther (utilizes the
Cech complex).

i2 : D = QQ[x_1..x_6, dx_1..dx_6,
WeylAlgebra => tolList(1..6)/(i->x_i=>dx_i)];
i3 : I = minors(2, matrix{{x_1, x_2, x_3}, {x_4, x_5, x_6}})
03 =4iddeal (- xx +XXx, XX +XX,-XX +XXx)
2 4 15 34 16 35 2 6
03 : Ideal of D
i4 : H = localCohom ({0,1,3}, I,
D~1/idealq{dx_1,dx_2,dx_3,dx_4,dx_5,dx_6})
04 = HashTable{0 => subquotient ({0} | dx_6 dx_5 dx_4
1 => subquotient ({0} | O dx_5 0 ..
{0} |1 0 0 dx_4 ...
{0} | -dx_6 0 0 R
3 => cokernel {0} | x_272x_4"2-2x_1x_2x_...

o4 : HashTable
i5 : prunelocalCohom H
o5 = HashTable{0 => 0
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1
3

>0
> {0} | x_4dx_4+x_bdx_5+x_6dx_6+6
o5 : HashTable

In practice Walther’s approach (option Strategy=>Walther) shows to be
faster than the Oaku-Takayama method (option Strategy=>0aTa).

6.3 DeRham cohomology

Another exciting application of D-modules is for computing the deRham co-
homology groups. Using the integration and localization functors, Oaku and
Takayama showed how to compute these groups for the complement of an
affine complex hypersurface. In (}%) Walther generalized this algorithm to
complements of affine complex varieties, and also showed how to compute the
cup product structures.

We have implemented an algorithm for the hypersurface case:

i6 : R = QQly,z];
i7 : £ = y~2-273;
i8 : deRham f

1
08 = HashTable{0 => QQ }
1
1 =>QQ
2 =>0
08 : HashTable

7 Example: rank jumps in A-hypergeometric systems

In this section we shall give a practical example of employing the D-modules
package. This example is borrowed from the work of Matusevich (7).

For an integer d x n matrix A = (a;;) with the first row entries equal
to 1 and a vector 3 € C? we define the GKZ(Gelfand-Karpanov-Zelevinsky)
A-hypergeometric system with parameter 3 to be the D-ideal H 4(8) generated
by

9" — 8”, where u,v € N” such that 4-u=A-v, (1)
> a0 — B i=1,....d. @)
j=1

The commutative ideal of C[dy, ..., d,] generated by operators (1) is denoted
by I4 and referred to as underlying toric ideal.
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It is a fact that if T4 is Cohen-Macaulay then the D-rank of H4 () is
equal to vol(A), the normalized volume of the convex hull of A viewed as an
n-point configuration in Z2.

However, if I4 is non-Cohen-Macaulay, it is possible that rank(H4(3)) >
vol(A). For codimension 2 case it was proved that the exceptional set of
parameters § for which the inequality holds is a nonempty constructible set.

Example. Using Macaulay 2, for

11111 3
A=|10-103],8=|[3
01-203 2

we are going to show that (3 is an exceptional parameter for A.

i2 : A = matrix{{1,1,1,1,1},
{1,0,-1,0,3},
{0,1,-2,0,3}};

3 5
02 : Matrix ZZ <--- ZZ
i3 : b = {3,3,2};
i4 : H = gkz(A,b)

2 3 2
04 = ideal O D -DDD,DD -DDD,
12 345 14 235

04 : Ideal of QQ [x , x , x , x , x , D,
1 2 3 4 5 1

i5 : time Dramnk H
—-- used 89.75 seconds

06 = 10

Here we used function gkz to construct the GKZ A-hypergeometric sys-
tem with parameter §, and then computed the D-rank of the resulting D-
ideal. (Operator time put in front of any Macaulay 2 command prints out
the computation time.)

The rank is 10, however, an easy computation shows that the normalized
volume of A is only 9. Thus, we conclude that the system experiences a rank
jump of 1 for the parameter j.
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