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Abstract We will introduce a modified system of A-hypergeometric system
(GKZ system) by applying a change of variables for Grébner deformations and
study its Grobner basis and the indicial polynomial along the exceptional hy-
persurface.
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1 Introduction

Since the work of Gel’fand, Zelevinsky, and Kapranov [3], studies of A-hypergeometric
system (GKZ system) have attracted a lot of mathematicians, who want to un-
derstand hypergeometric differential equations in a general way. We refer to the
book [9] on the status of the art in 2000, and the recent papers [4] and [10] and
their reference trees on recent advances. We also note that these studies have
had fruitful interactions with frontiers of computational commutative algebra
and computational D-modules.

In this short paper, we will introduce a modified version of this A-hypergeometric
system and provide a first step to study it. The original system is defined on the
y = (y1,.-.,yn) space and the modified system is defined on the (¢, z1,...,z,)
space with one more variable ¢t. Let us sketch our idea to introduce the mod-
ified system. We consider the direct sum of the A-hypergeometric system on
the y space and the D-module D/D - s0s on the s-space. For a weight vector
w € Z", the original system restricted on the complex torus is transformed into
the modified system on (¢, x) space by the map

C"xC*> (Y1,--,Yn,s) — (" xy,...,t""x,,t) € C" x C*

(see [8] and [9] on this transformation). The transformed system can be nat-
urally extended on C™t!. Intuitively speaking, the variety ¢ = 0 is analogous
to the exceptional hypersurface of a blowing-up operation. We will study the
indicial polynomial along ¢t = 0 as a first step to make a local and global anal-
ysis of the modified system. As a byproduct of our discussion on the modified
system, we will also give a proof to the claim rank(H(8)) > vol(A) for non-
homogeneous A.



2 Definition and Holonomic Rank of Modified
A-hypergeometric systems

Let A = (ai;j)ij be a d x n-matrix whose elements are integers and w =
(w1, ..., wy) a vector of integers. We suppose that the set of the column vectors
of A spans Z%. Define
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Definition 1 We call the following system of differential equations Ha .,(8) a
modified A-hypergeometric differential system:

Zaiﬁjaj—ﬁi of =0, (i=1,...,d)
j=1

ijiﬂjaj —tat .f = O,
j=1

n

H@fit“”“ - H G;jt”"“ of = 0. (u,v € N1 and Au = Av)
j=1

i=1

Let I; be the toric ideal generated by

H@fit“”“ — H 8;%”"“ (u,v € N and Ay = flv) (1)
j=1

i=1

in C[0y,...,0n,t]. Since C[01,...,0n,t]/I; is an integral domain and t™ does
not belong to the toric ideal, we have

Iz=1I5"=(I;5:t®)={f|t™0 eIy for anon-negative integer m}  (2)

This fact will be used in the proof of Theorem 2.

We note that the matrix A with w = (1,...,1) was introduced in [6] to
construct vol(A) convergent series solutions.

Throughout this paper, we will use notations and facts shown in [9]. In
particular, we do not cite original papers for text level well-known facts in the
theory of D-modules. Refer references of [9] as to these original papers.

Let a; be the i-th column vector of the matrix A and F((, z,t) the integral

F(B,xz,t) = /Cexp (intwisai> s s, s=1(81,---,84), B=1(81,--.,84)-
i=1



The integral F(0,z,t) satisfies the modified A-hypergeometric differential
system “formally”. We use the word “formally” because, there is no general and
rigorous description about the cycle C. However, the integral representation
gives an intuitive figure of what are solutions of modified A-hypergeometric
systems. The proof is analogous to [9, 221-222]. We note that if ag; = 1 for all
1, we also have the following “formal” integral representation

n —Ba
F(Bat) = /(intwﬁ&i) 5014,
¢ \i=1

a; = (aliwuaad—l,i)T,g = (s1,.--,84-1), B=(P1,---,Ba).

We denote by D the ring of differential operators C(z1, ..., zp,t,01,...,0n, Ot).
We will regard modified A-hypergeometric system as the left ideal in D. We
will denote by H 4 ,(3) the left ideal as long as no confusion arises.

Theorem 1 1. The left D-module D/H 4 .,(3) is holonomic.

2. The rank of Ha . (03) agrees with the holonomic rank of Ha(B) for any w.

Proof. (1) We apply the Laplace transformation with respect to the variable ¢
(t— —0p, 0y — ') for the modified A-hypergeometric system H4 ,(3). Then,
the transformed system is nothing but A-hypergeometric system for the matrix
A and the parameter vector (31, ..., 3n, —1). It is known that the transformed
system is holonomic, then the original system is also holonomic by showing
the Hilbert polynomials with respect to the Bernstein filtration of each system
agree.

(2) We consider the biholomorphic map ¢ on C" x C*
C"xC*"3 (Y1,---,Yn,8) — (" xq,...,t""xp,,t) € C" x C* (3)

The map ¢ induces a correspondence of differential operators on C™ x C*

0w 0
oy Ox;
0 0 - 0

Consider a left ideal Hy in Dy = C(y1,...,Yn, 8, 0yy, - .-, 0y, ,0s) generated by
Ha(B) and s0s. The holonomic rank of Dy /Hy is that of Ha(8). We can
see that the image of Dy /Dy Hy by the biholomorphic map ¢ on C" x C* is
Dx /Dx H 4., () by utilizing the correspondence of differential operators. Here,
Dx and Dy denote the sheaves of differential operators on C™ x C* of (y, s)-
space and (z,t)-space respectively. Since the holonomic rank agrees with the
multiplicity of the zero section of the characteristic variety at generic points,
the holonomic ranks of the both systems agree [9, pp 28-40]. Q.E.D.



Corollary 1 rank (H4(3)) > vol(A)

Proof. When A has (1,1, ...,1) in its row space (A is homogeneous), rank (H4(5)) >
vol(A) holds [9, Theorem 3.5.1], which is proved by utilizing that H4(3) is reg-
ular holonomic and by constructing vol(A) many series solutions. Put w =
(1,1,...,1) in the modified system H 4 ,,(5). Then, we have rank (H4 ., (5)) >
vol(A). Hence, Theorem 1 gives the conclusion. Q.E.D.

Note that the upper semi continuity theorem of holonomic rank of [4] also
gives this result.

Example 1 We take A = (1,3), 8 = (—1), and w = (—1,0) (Airy type integral)
[9, p.223]. Define a sequence d,, by

—(Bm+1)(3m+2)(3m +3)

do=1,dpp41 = dm
m
The divergent series
oo
f(l‘; t) — Z (dmxl—&m—lxgn) t3m+1
m=0
- I‘(3m + 1) —3m—1 ) 3m—+1
= > |\ Frogye ey ) (4)
m=0 ( F(m + 1)

is a formal solution of the modified system. Fix a point (z1,22) = (a1, az2) such
that a1, as # 0. Then this is a Gevrey formal power series solution at (a1, az,0)
along ¢ = 0 in the class s = 1+ 2/3 from the definition of Gevrey series. The
slope of this system can be computed by our program [7, command sml.slope,
slope], [1], [2] and the set of the slopes is {—3/2}. Since 1/(1 — s) is the slope,
we have constructed a formal power series standing for the slope.

3 A Grobner Basis of Modified A-Hypergeometric
Systems

We will call t = 0 the exceptional hypersurface and we are interested in local
analysis near ¢ = 0. We denote by 7 = (0, —1;0, 1) the weight vector such that
t has the weight —1 and 0; has the weight 1. We also denote by /19,“,7 g the first
(d + 1) Euler operators of the modified .A-hypergeometric system.

It is easy to see that, for generic w, in (D - Ij;) is generated by monomials
in C[01,...,0,] and we will regard it as a monomial ideal in this commutative
ring.

Theorem 2 For generic 3 and w, we have

ino,—1,0,1)(Haw(B)) = D in(D-I35)+ D Agup (5)



Proof. The proof is analogous to [9, Theorem 3.1.3]. Let s = (s1,...,54) be
a vector of new indeterminates. Consider the algebra

D[s] = Clx1, ..., Tp,t, 01, .., Ony O, 81,5+, Sd)

and its homogenized Weyl algebra by h D|[s]". Let H be the left ideal in D[s]"
generated by Ag ., ;2 and the homogenization of ;. We define a partial order
>, on monomials in D[s] by

52 xot19¢ >, sa/xblac/tdlaf/ o —d+e>—d+¢€, or
—d+e=—d +¢ and (a,e,d) > (a',€,d)

We refine this partial order by any monomial order and define orders < in D]s].
(This order on D[s] is extended to the order in the homogenized Weyl algebra
and D[s]" as in [9, Chapter 1].)

Let G be the reduced Grobner basis of the homogenized binomial ideal Iz in
D[s]" with respect to the order <. Note that the reduced Grébner basis consists
of elements of the form O“hP — 8“t”"+1hp/, Un+1 > 0 because w is generic and
I; is saturated with respect to ¢. Note that either p = 0 or p’ = 0 holds.

We will show that G and Ag,u,7sz is a Grobner basis G’ with respect to < in

DI[s]". This fact can be shown by checking the S-pair criterion in D[s]*. Tt is
easy to see that
sp(&waJ iR z Zau i) =g 0

_§a‘k]]7z §a7ﬁ]‘_}g/

We assume p > 0 and p’ = 0.

sp(9“hP — 0"t 57— " aii0;)
= sP(0"hP — 0Vt ) — 0"hP(s] — ) aii6;))
= 7512811#)"4“ —+ O hP Z aiﬂj

= =20 4 (Y ait;) 0n + (3 aus) 0h?

since Q%hP > QVt»+1 we may rewrite it as
= —sf@”t”"“ (Z CLU ) 3uhp 8“1%“"“) + (Z aijﬁj) oVttt + (Z a,ijuj) o hP
= (Z a;;0 ) (0"hP — §YtVnt1) 4 9Vt (Z a;;0; ZQUUJ Z) + (Z aijuj) 9" hP

since Eaijuj = Zaijvj

= (Z aU ) auhp 81}751)"“) + 9Vttt (Z azj ) + (Z aijuj) (8uhp _ 8vtvn+1)

—)g/

The case p =0, and p’ > 0 can be shown analogously.



The final case we have to check is that
sp(0“D” — 9"t 0y — > ais0)

= 00U 1 WPy wyb,
= 00 (D wibs + > wyu) W0
= 00"t (Yl > wyu) (W0 — 0t

- (Z w;0; + ijuj) §UtUne
= 00"+ (D wiby + > wyuy) (P9 - 9

1t (D wiby + 3wy — Y wyvy)
= (Y wty+ Y wiy) (o - o)
OV (Z wib + 3 wjuy — > wjv; — 6, — un+1)

= (Z w;by + wjuj) (@ - 8”75”"“) + ottt (Z w;0; — &)

%g/ 0

The rests of the proof are analogous to [9, p.106]. Q.E.D.

4 Indicial Polynomial along ¢t =0

We fix generic w. Let M be the monomial ideal in, (I ;) in C[01,...,d,]. The

top dimensional standard pairs are denoted by 7 (M) [9, p.112] and 6(85"’) is
the zero point in C™ of the distraction of M and Af — § associated to the
standard pair (07, 0).

Theorem 3 Let 3 and w both be generic. Then, the indicial polynomial (b-
function) of Ha ,(8) along t =0 is

S s—w- g7 (6)

(88,0)eT (M)
If T(M) is the empty set, the indicial polynomial is 0.

Proof. Under Theorem 2, the proof is analogous to [9, p.198, Proposition
5.1.9].

If the indicial polynomial is not zero and the difference of roots are not
integral, we can construct formal series solution of the form

tech(x)tk, ek € Cll/21,...,1/xp, 21, ..., 2] (7)
k=0



where e is a root of the indicial polynomial and ¢°co(z) is a solution of the
initial system in,_1,0,1)(Ha,w(B3)). If the indicial polynomial is zero, there is
no formal series solution of the form above.

Example 2 (Continuation of Example 1). Note that in.(I;) = (J2). The
distraction [9, p.68] of in (Ha ., (8)) is generated by 62,61 + 3602 + 1, —61 — 0;.
Therefore, the set of zero points are {(—1,0,1)}. Then, the indicial polynomial
is s — 1. The formal solution (4) stands for the root s = 1.

Example 3 Consider the modified hypergeometric system for A = (—1,1,2),
8 =(1/2), w = (—2,—1,0). This is the Bessel function in two variables called
by Kimura and Okamoto [5]. Although it is a side story in view of this paper,
we want to note that a 3-D Graph of a solution of this system can be seen at
http://www.math.kobe-u.ac. jp/HOME/taka/test-bess2m.html. You will be
able to see waves in two directions.

The indicial polynomial is 0, because Iz > 1 — 970;. Then, there exists no
series solution of the form (7). Incidentally, the set of the slopes along ¢t = 0 at
x = (2,2,1) is equal to {—2,—3/2}. The values are obtained by our program
[7].

Let us change w into w = (3,2,1). The set of zero points of the distraction
are
{(-1/2,0,0),(0,0,0),(0,1,—1/4)} (which are obtained by computing the pri-
mary decomposition of the ideal generated by the distraction of in,(f;) and
Ay 3) and the indicial polynomial is (s — 3/2)(s + 1/4)(s — 7/4) (we use the
Risa/Asir command generic_bfct ). In this case, the generic condition for
the Theorem 3 satisfied and the formula (6) also gives the same answer. In-
cidentally, the local monodromy group of the local solutions around ¢ = 0 is
generated by diag(—1,exp(myv/—1/2), —exp(my/—1/2)). The set of the slopes
along t =0 at x = (2,2, 1) is empty.

The number of solutions of the form (7) is less than the rank in general. Tt
is an interesting open problem to construct rank many series solutions in terms
of formal puiseux series and exponential functions along ¢ = 0.
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Finally, Go Okuyama made a question on the lower bound of the rank of

A-hypergeometric system. The Corollary 1 is an answer to his question.
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