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CHAPTER 11

':;The»Hypergeometrtc Functidns of Two‘VarIabies"q:

7.

che Preceding chapter, we stated several properties of the:hyper-
geometric function F(&, 8, 7, x)
tial equation.

of two variables. Weugrerr,with‘;wo.hypergeometric series!.

C L $ {2.m) (g, m) o
;>'F(o( F IR AR A ng%)(x,m)(l ) x
and
S y) = L S('E,," n)(i‘ R

F(o( s B ¥ 3
. Coms

Consider ,the product.of these two. functlons.

(amy (e’ 0) (B m) (8" n)
Goam) (70 (L) 1)

7.1) F(o( ﬁ a',x)F(d.ﬁ x':y)—)‘

. : o m, n—O
Y |

This is'? a double power series in. x, y.. ThlS functlon of x and y,

s

however, can not be regarded really as a functlon of two variables,
since this is a product of a function of x and a function of y.

fo obtain functions which are really regarded as functions of two

variables,

Definition of the hypergeometric functions. of two variables.: I

-

we shall modify the coefficients of the general terms of

this double power series.
let us consider the three products

(B m(g'n), (y,m)(y',n)

and assign to these products the three quantities

To do Ehis,

‘(D(sm)(O(', n),
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(o, mn) , (B ymbn)y (3, ),

_ respectively, i.e. L _ ‘ »
(et ym)(a’, n) € (o, mn) ,
(o (pam) <> (B, m) ,
(Y,m)(Y ,n)<—’<x m+n)

Iflﬁe replace Just one of the three products by the corresponding

4y - -
Jaiego i

quantity, we obtain from the double series (7 1) the follow1ng

three double power series. ‘

]

o , mtn m x y e
&, (7~2-1)_ SEE L m,n—O ( )‘ m)( x s n) (]_ m)(]_’ n) RE R
(-] 1
o o ! A, “ A “ é \ 2 ,
g OB L2y (x,:)( @ a, Satd
2 < )(a',n)(L_)(a',n) L
(7.2-3) 2- (? ‘2+n><1 m)(l n)

*0

Replacing jher two of the three products by the correspondlng

quantities, we obtaln the follow1ng three double power series:

o iy m+n)<ra ).

L,

="

(7.3-1) 53__0 Crm (7' on) (L,m) (1, n) » -
' O_O__ O‘nﬂ‘)(Bl)(ﬁ_:__) o
(7.3-2) 2. (( F] m:n)(l 2)(1 m X 'y 7
n"O
& Gm) (o min) m n
(7.3-3) 2. (“3 :ﬁn)v(l,n;n)‘ 1, n) '

m,n=0

The double power series
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(o, mn)(f,mn) —mn
2 (Y, mn)(L,my, " Y

(7.4) DEFINITION 7.1: The power series |

m,n=0

is obtained from (7.1) by replacing all three products by the

. o [ i
F ' = 5 femn)(B.m)(B",
1(0(, ﬂ’ (3 ? X3 X, )’) 2;:0 ()’,m'l"ﬂ)(l,mgl)(l, ::g men »

corresponding quantities.

F(“ﬁﬁ,b’ Y'ix,y) = L « m (g

Among the seven serles, (7.2- l) and (7.2- 2) are essentially n
mn:,o(x m)(ar ) (1, m)(l n) ,

the same, while (7.3-2) and (7. 3 -3) are also essentially the same,

) =3

. o, m) (' !

by the symmetry on the parameters o and g On the other hand, F3(°‘ «! [S @ Y>X,¥)= _>_ 0 Cyourn) (1 ‘:n) - n) 0 xmyn ,
. A= wk

rearranging the double series (7. 4) into the series of homogeneous
. ( mn) (3, m+n)

.Fa(“’P’F’X"“'Y’ - > w7 ) (Lm) Ty * 7

m,n=0

polynomials, we obtain F(«, f,¥> x-l-y). In fact,
i (& mtn) ( (:‘,ml—n") o n = i <« (ot ,mn) (B uwtn) myn

are called the hypergeometrlc series of two vanabl s d t -
(o) @ (Lo * ¥~ & 2o Cyomrn) (Lm) () e and the func

m,n=0
, v tions defined by these serles are called the hypergeometric functions
[
BN CAIC RIS 1.k m 0 of.
= Ezo Cy 10 (LK) m_z-'k-(—l-,(n_!;_(%;)x yi of two var:.ables. We assume hereafter that Y, v' # o, -1‘, -2,
= n= ] ) ‘ ‘
Observing ; i
. i Remark 1. Fl is a polynomial if & 1is zero or a negative
a.x) n = '
T (L) - \a if m+.n k, teger. Fl is also a polynomial if [5 " and ¢ ' are zero or
ve get gative integers.' Fy isa polynémiel if « or (p and g')
___(L_kL m_n = s k- -1, =2 e P i ) 3
e Twma,w (x+y)" P 3 1s apolynomial f (« and. ') or
| . ..and ﬁ') =0, -1, -2, **+ . F, 1is a polynomial if « or
Therefore o )
_ . 0, -1, -2, *++ . '
o (« ,min) (B ,mkn) 0= S ﬁa&ﬂzﬂﬁ(#y)k
nazo ¥ ) (L, (1,8) 2 G (Remark 2. Ty s symetricdn «, § and in ', f

Fa(«, ', 8, B', 7, x,y)=F((z ali, By y)
-F3(°<:ﬂ ,ﬁ,d,a’,x,y)
'FB(p:p',“: d"yax,}')-

Flo, By ¥y ¥HY)
Thus we arrived at four power seires to which Appel gave the follow-

ing notations:
: ‘is symmetric in « , P

g

Fulots fo 5 ¥'s %, 3) = F,(f,, l,r,x,y)
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smilarly, we get the second identity. For other F, we have

Remark 3. Using the [*-function, we can write Fj Gg=1, f
2,3 d 4) respectively as . 7 B, By 8 . _
an ‘ 2 p ﬂ L4 ‘ X, Y) m=° (X m)({ m)!F(d"l’m ﬁ > X' s Y)X
T' (¥) 2_. r'(o(+nri-n)r‘(f3+m)r'(!3 +n) <y° i : : ‘
F17 m)r(.e)r(ﬁ ) ooreo r(x+m+n>r'<1+m> F(1+n) S I
Lo ) . R ‘ = nnﬂ-L-‘-—lLL\—)( Yy ) (d.n) F(«+n, p Y, x)y ,
T‘(U)r‘(x ) z T‘(o<+m+n)r‘((5+m)l"(6'+n) x"“:)‘/\
) T‘(

Fz," r(a)rm)r({s x+m)r‘(z'+n)r(1+m)r‘(1+n) o ' L |
L 3 s“:ﬁ’ﬂ:)': X, Y)"Z. (I’m)( ,m)F(d p',xhn, y)xm

o0 F(d+m)r'(d~'+n)l"(5+m) [(p +a) &Aﬁv\ w=0

r‘(7{+uﬂ-n) T (1m) r(1+n) ‘ - _ .
n=0 . o, (!
' ']:l : E -2 <x““nﬂ1L“)>< ) Fles g, via, x)y"

a=0
Laoreyy fi r(o«-rmm)r(@mm)
Fo TP 2 PO F [ (g +a) T (brm) F(EFa) ™ RE

M

v - NED)
3 I“(ot)l"(ot)l“((&)l"([i)

. : : F(‘(?(,p:X’K',X,y) L%?E%(Llé—t;—)—lF(dm p_l_m Z )m
Remark 4. Rearranging the hypergeometric series into iterated“ N .mu:o

series, we E;btain, for example, ' ‘ v ’
’ ’ ) nm.o (X N.'l)il n) F(c(-l"n ‘3+n ¥ X)Y

10(,111!5@, ) f : m e
Folots B s s % 9) = F(atm, g', ytm, y) x }": . Bemask 5.

o (¥ .m)(l,m)

If we give one of xz and ¥ the value zero, or if

‘;certain parameters take the value zero, then the hypergeometric

%, (x,n)(é , )
= 2 F(ot+n, ¥to, x) y
=0 Cy,n)(1l,n) l?’ ““BEries Fj are reduced to hypergeometr_ic series of one variable.
In fact, observing P ‘ - j?or example: :
‘= +1) ++- (atm-1)(atm) -+ - (atmin-1) = (a, m)(atm, n) ° e i .
(a, win) ‘= a(atl) (atm-1) (atm) ( ) @ ‘ “13} File B B's 05 x, 0 =T (t,f,0,¥, x, y)

1

we get F(d ’ ‘3 .

L. («m)(B,m) (¢+m,n) (B’ \n), o nand

o0
(mbn) (B,m) (Bhn) m n
o <y,m?n><1f?n)<1,n)x ' 2 Tm (m) (e (L)

H

F (O(.i 02 ﬁ'sa’s x_s Y)
Fe, ‘3 Ys ¥) .

1 Rgmark 6. If certain parameters take’ special values, the

i _A_‘; o 4m, ! v F](oc’ﬁ’ p': g: 0, y)
B 2) (y+a,0) (1, n) .

.

es
uz “Xﬂ:n 1m F (ot +4m, {3 , ¥4m, y)x
Hl

JPergeometric series Fj are reduced to known functions. For
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example:

and

P, s s s w9 = A0 Panh

: -at
Fz(O(: ﬂ: p', ﬂz (3', X, Y) = (1-x-y) .

Exercise 1. Prove that

Fz(‘x-a {37 (3'1 {3: (5', X, Y) = (1'X'Y)-q

XFz(lt 1, Pv’ 2, P"x’y)-l-sz(l,ﬁ N 1,?:2; Xy Y)

= log {(1-::-y)-1}.

8. Domains of convergence of the hypergeometric series of two

variables.

In this section, we shall study domains of convergence of the
four double series Fl,‘Fz, F3 and F4. To do this, we begin with
several remarks concerning double power series.

First of all, consider a series
(8.1) > a .

As it is well known, the series (8.1) converges to a certain valiue
o
a (or the series (8.1)‘has asum a: a = :E: a )} if and only
. . : m=0
if for € > 0 there exists a positive integer M such that we

have

< € for every p > M.

: ‘ . )
This definition implies that if 5~ a, is convergent, then the
m=0
&n

sequence {am}m=0 is bounded.

Let us consider next a double series:

8g

8.2
(8.2) o n

' The following éefinition might seem td be very natural:

;“YS‘ “The series (8.2) converges to a (or (8.2) has a sum ajy,

if and only if forx any‘.E > 0 there exist two positive integers
M and W such that

a- > amnl<8 for p>M and g > N.”
I 0usp,0<nsy > _

" Thig definition, however, does not necessarily implies that the
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double sequence {am n} is bounded. For example, if we define
ERL TR ; : L ' :

m  for n=0 s

- for n=1,

- 0 for, n>1,
2., @

m,n=0 ®,n
It is evident that

then = 0 in the sense of the definition given above.

{a
m,n

use the concept of abgsolute convergence for double power series,

} is not bounded. Therefore, we shall‘

instead of the definition given above.

"Let ™

(8.3)

5.,

m,n=0 -,

be a double power series, and denote by A. the set of all points
(xo, yo) where (8. 3) is absnlutely convergent Let D -be the
interior of A. It is clear that i€ (xo, yo) € A
fequence {a n¥ Oyo} is bounded, We shall prove the following
proposition:

PROPOSITION 8.1: Suppose that - |x‘0l and iy i

then the doubha

are positivé

Since

and uniformly convergent for

Observe that for any point (xo, yo) €D,

£ ix| < elxol and

m n
m,n 7

er

m,n0=0
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Iyl < elyol,

= \ m,n oyo' l"/"ol

is convergent,

fact it follows that for any point

then

] y/y-olh < Ko™®

>

m, n—O

a
m,n

" x| < Glxol,

‘neighborhood U of (xb, y) which is cddtained-in A.

xmyn is absolutely
4 .
iy 1€ 8lygl

‘there exists a

From this

(xo, yo) €D there exists a

neighborhood V of (xo, yo) such that series (8.3) is absolutely

and uniformly convergent in V.

is called the dowmain

) of convergence of (8 3)

The domaln D

‘Let us go back to the hypefgeometric series of two variables

and prove the following theorem.

THEOREM 8.1:

The F,
1en j

(G =1,2,3

Suppose that

are not

o, 0(', ﬁ: {3"; ¥ ¥

#0,-1, -2,

and

' )

polynomials in %, y

1{(x>y);’1x3< 1, )yi< L,

ft

and that 0< © < 1. 5 = 1Gy)s ixiF|yi<l],

- ;
Then, if {am nlﬂ)yo} is bounded, the double; The domain of convergence of

‘1‘: ) F, = (X, M :4 <1 yi< 1 y
power serles (8.3) is absolutely and unlformly convergent for i 3 {00y)s 1l Ly 1yl ]
F, = {GLy)s A Jixy R iyl < 17,
L elxgl L gy) g olygl 5= 4 NEIRS }
i’ b : We shall e the well known formula:
Proof: By the hypothesis, there exists a positive constant K’ Proof. € shati use
such that " (a,k) _ 1
‘ . - (8.4) om EDE T T@
m_n
‘am,njﬂ)yo Ié K (m’ a = 0313 2, "'). ‘br )
'8
(@, k) ~ &K s

@)
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Case F.:

1 Put

& (otmn) (8, m)(B’.n)
TR m+n)(1 m) (1, n)

It follows from (8. 4 ) that

A
m,n

_(Ei-n 1) (nﬂ'n)“ @-1)'mf (a-1)! nﬁ T'(J) 1‘

A

m,n r‘(u) r‘(p) Tp' ) (whn-1)! (m+n)7 min!
b
as m, n —> 0, and hence '
L) NN s -
A0 ™ T TR D (ot
as m, n —>d . Therefore
17 B -1 -1 b
IA IiK(m—l-n) 1,1 ﬁl for m, n =0, l 2, -

SR IRES

where K is a positive constant ‘and 0(1 = Re(ng_), = Re(p ), .

B1

(8.5)

A

=Re(B') and ¥ = Re(;). This shows that

StoaxmyP
m,n=0 ™0
is absolut:ely convergent for |x|<1 |y|<1 On the other hand,

such that’

there exists a positive constant K'
| % xl S Pt

R (m+n) £la

aal
Iyl>1,
Therefore‘,‘the series (8.5)

for m, n =0, 1, 2, *** . Hence if |x|>1 or

sequence {A xmyn)‘ is not bounded,

my 0 ‘
Iyl >1. This means
that the domain of convergence of F1 is {(x,y); Jxi<1 aod
Ayl

Case FZ:

is not absolutely convergeat if }x|>1 or
; -

Put

the double i

. Therefore

:“ Qbserv-ing'
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(e nﬁ-n)( 6._)L5 .n)
C¥,m) (Y ) (1,m) (1,n)

w,n

1: ollows from (8.4')

o @1 ! () (m-1) 'mf <n-1)'n" C(x) Loy’
m,n NCY r(ﬁ), P(f} )_ _(m-l).'mx (n-l)!n?lm!‘of
E(Z)E(IE dl}?fﬁ -¥' _(mt )!
r(«x)rw)r(p y (wkn) w!in®
j and hence
1
la, | € K@ )d A 1f xl‘m)—
m,n min!

for m, n =0, 1 2, where K is 3 positive constant

ﬁlv'- Yy By-¥

. Take

.o
k4

.a positive number ¢ greater than and

: .: Then we have

Ca
A0 81y
m” la

£ mrna.g (n}kn)zo_/4a- " for m; n20.

‘IA menl < Kl;-r( )20‘+o(1 =1 g 2 |x '
m,n .

s |

y
whn=k

ve get .
L . o 26 1
Z l X L KL (i yn®

It follows from this that the domain {(x,y), |xg+|yi<1} is

'yt € k4"

contalned in the domain of convergence of F2. To show that this

:main is exactly the domain of convergence‘ of F it is sufficient

2’
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to prove that the double sequence {A X" yn} is not bounded if
‘ m,0 i and
{x{+ |yl >1. .This will be left to the readers as an exercise. g 5 ( ko 3)2 [x\m|y|n 5 ( whn) ! 2 |x|%m 2 | l;én 2
‘ v A oo min! = m!n! ( (y )
" Case F3: This case can be treated in the same way as the case . " =~ mra=k m+n%k
of F;. Hence the proof of the theorem in this case will ‘be left:. [ S< s (m-tﬂ.! ‘xlzim“”%n)z
i . = - m. n.
to the readers as an exercise. ‘ _ mn=k
‘ i — k.2
Case F,: Set , L = (G +HTYD DT .
’ A = (o, mtn)( B, mbn) :‘}‘: Therefore we obtain
w,n (F,m( '), w)(1,n0) - & oo 2 n b A hpt2e-2 5
| , o | S |an L x v  e kTS K W= D
In the same way as in previous cases, we have o m,n=0 2 - k=0 .
rex) r.('aitl A+p-2 1-y 1-3" [ (mrn)! 2 ) The series on the right-hand member converges if \“Xl +,”y| ‘< 1.
A N (mi-n) m n ( T 1.) . Y ’ : ' ] Lo :
m,n INCOINED) m.n. This means‘that the set {(x,y); NIES) +,“y‘ < 1} is contained in

Hence o ' f".ﬂ the domain of convergence of F,. On the other hand it is easily
LyHp -2 1-y. 1-¥ e\ 2 : R : . :
1 1 1 ((mtn): o on ; s
lAm,nl < K(m(—‘n) m n ( -~ ) N seen that the double sequence {Am’nx y } is not bound§d if
where K 1is a positive constant. Take a i:ositive number ¢ so \”xt-F\“yl >1. Thus we hgxye ‘ . - L
that N ; ‘the domain of convergence of F, = {(X,y); Yxf +1yl < 1}.
¢ 2 max {1 - 2;1, 1- h’i} . ‘ ..+ As in the case of one variable, the hypergeometric series of
Then two variables. are Newton series wﬁh respec‘t to.the parameters o,
1-y, 1-y8 . ‘ ' . . .
o Xln Xl < w o < (mfn)zc )& o, ﬂ and ‘3', and factorial series with respect to Yy and

Using these estimates, we obtain i ¥'. Thus we obtain the following theorem: .
3 - P

B ot +f +26-2 A2 ’ THECOREM 8.2: The hypergeometric functions of two vaviables
‘Am nxmynl £ k4™ (abn) ih (ﬂtn)_,) ‘Xim Tk ; ‘ :
>

) [] .
m. . . are meromorphic with respect to the parameters and thelr poles are
Consider the estimates . Cat
80 m_n 2 5 mw n R o .
PR L YD P c 0, -1, -2, oo o a1 -p e
m,n=0‘ m,n l No0 mroek | @D | ‘ Y =0, -1, -2, -~ and Yyt =20, -1, _2, e
. & of +f A2 v \2 Lo Exercise 1. Complete the proof of Theorem §.1.
& 1" whn) . n 5 ) ‘
§K4" 2k 2 i—-)_m:n:)i "y,
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B

9. Contiguous functions. The contiguous functions of F(a, p, ¥, R).

PR 0L, B y) = (0 ) (L0IF, faxt (Loy)3F foy,

i (1-p- ' IF (%P B L%, y)=(Y-p-p' -o(y)F1+y(1-x)3Fl)ax+y(1-y)gpl/9y’

are obtained by increasing or decreasing one of the parameters by
. B - fe t N .
(- (¥-8 (5)Fl(m,ﬁ,ﬁ',X+1,X,Y)=(J-«v—ﬂ-ﬂ')YF1+J(].-x)aF1/3x{-X(l-y)aFl/ay_

one. In the same way, we can define the contiguous functions of

the hypergeometric functioné of two variables. Sketch of the Proof: Set
i
DEFINITION 9.1: The functions obtained from the hypergeometric ’
i F (d ? ﬁ p s ¥y X, Y) = 2__ A . }{m n s
functions Fj (G =1,2,3,4) by increasing or decreasing one of the ‘ m,n=0 m,n
where
parameters involved in Fj by one are called contiguous to Fj' :
The function F, has eight contiguous functions: 5 A = o n ', n
1 ght contiew m,n (y,mn)(l,m)(1,n)
Fl(f" +1x ]6 3 @‘: X, X, Y) H Fl(d'ls p: (5': D’. X, Y) 9 - C]_early we have
i vFl("(’(}*—l’ (3': ¥, %, Y) H Fl(‘x‘sﬂ'l: (3': ¥, X, Y) ’ - 20 . -
‘ ' ‘ I x3F/3x = > waA  x"y",
i F‘l(“ y {3:(5'*'1’ ¥ X5 Y) s Fl(“’ ﬁ: ﬂ -1, ¥, %, Y) 3 E . ) m,n=0 m,0
g ‘ ' ‘ TV i 2
i Bl o pa 3L R ) F e 1 T - (. yIF /oy = 2 naA  x"y" .
g | ‘1 =

The function F2 has ten contiguous functions. etc.

i ) ‘ . . . ‘ Observe that
it was proved that any contiguous function of F(«, g% x)

(-]
 is expressible as a linear combination of F and its first deriva- ( Fi(a+tl, Brp's¥s xs ) = >, Ztmba, =yt

o
m,n=0 m,n

tive. We shall prove an analogous theorem for the function

Fi(a s B+, p's X,x,y)=L—ﬁ—ﬂA Oyt

Fl("‘:ﬁ,‘a','X’ X, Y)- n
m,n=0 m,
THEOREM 9.1: We have L9.1) {
) ' '
D(Fl(o(-{-l’ ‘3’ {5», Y, %x,¥) = °<F1+x3F1/9x+y3F1/3y , F (o, ﬁ (5+1 b’, X, y) = 2“0 8 +n A nxmyn ,
A ) . ) ) m,n= Lt
pF C,ptl, B Y,x,y) = pF,+x3F, /9%,
‘ : )
- - bl . . 5
: ﬂF («, ‘3 g+, ¥, x,y) = (3'F1+y3F /1327 » ‘ \ Fl(d:@, (3',’(1, X, ¥) = 2. !+gm-+1n 1 Amnxmyn ]
i u . myn=0 ' 4

( Using these identities, we obtain the first four identities of
¥-e)F) (*-1, %®,y) = (Y-« F, +x(1-x)3 -
B s ¥sx,y) = (¥-at=px=p'y)F) +x(1-x)3F /9x+Y(1 y)3F /ay s " Theorem 9.1.

‘:31““_‘ (¥ -1)F (2, 8, Bty ¥-1, x,y) = (¥-1)F; +x3F  /3ax+y3F; /12y,
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o bt lenigihly computation which will be omitted. "The other threé
fifth jdentity. Observe t ,
We shall next prove the

o1 BTN o dentities can be proved in the same manner

F (ot -1, p é ? x’ *s y) .= m-,?n_=0 “W“fl‘Am’n»x 7 Exercise 1. Complete the proof of Theorem 9.1.
On the other hand, | T S The eight identities given by Theorem 9.1' mean that :e‘v'ery '
< (%5 s p's x’. s y) = m’};o A ’nxmfl > ontiguous function of ) can‘be exoressed as a linear combination )
’ ‘ ; £ 121 and its first derivatives whose coefficients are rational
= mi.:;o a-1.n% y in %, y,, B, @' and 'Y . Eliminating the first derivatives
’

" 7 from any three identities, we obtain a linear homogeneous relation

where _ m}j_@_@_nj_ﬁ_i_)_ between three contiguous functions and F1 It should be 'noted
Am‘l:‘ﬂ -y “ﬁ'“'l) (1 m-1) (1,0) that there are cases when the first derivatives can be eliminated
‘ x+nﬂ-n-1 m from two identities. In such cases we -obtain linear homogeneous
(d +an l)(ﬁ+m"1) m i ‘-relations between two contiguous functions and Fl ,
and A =0 . " THEOREM 9 2 v Three contiguous functions end Fl’ \ot tmo
-l contiguous functions and Fl are connected by a linear homogeneous
Hence | ' . ; M B +mi-n Dm & relation whose coeffic:Lents are polynomials in c( /3 p s y, x,
X (%5 o B Y5 T2 ) = m-’?—» Trara- D{pe D*a,n o s e :
Similai'ly " _ggggf._' Eliminate the first derivatives from three o‘r two

X (¥ 4mn-1)a LN 1. For example, we bt

| ' A X Jidentities of Theorem 9. 1 For example we obtain
YFl( K, ﬁ_) ,—{5'-’ ¥s X, Y) ” m%l—o (x,‘_i',m'f‘l‘l‘,l)(@':“n'l) M, 0
. B ,[.»\» - - 1y o ) . Lo o

i o

«F (°L+1(3 {5 7, .y) [5F (ox,ﬂ+l [3 ar, ,y) ' A
‘ﬁF(“ ﬁ 5'!'1 X’x y)-(b( F ﬂ)F (°‘ F 6»3" ’Y)"O:_

% (yrpel@Dn_, o0
x23?1/3"-‘«-r-z («tato- D(praD mnK A

i} ..;:.:,.m:? (¥-)F (""{5 ‘3 U+1 x,y) - B’F (0( ﬁ 1 B's )’: ,y)
s #mkn-1) (a=1) w o - o

i%}’2”1/ 2y = Zo ((o(z'ﬂﬂ‘nr:].)'( ?5'+nr:1) L A + 7(1 x)Fl(o( Bs ﬁ ¥ x ,y) 0

: m,n=

' the fifth Exercise 2. Complete the proof of Theorem 9.2.
‘Inserting these formulas into the right-hand member of the £ifth

hat
jdentity of Theorem 9.1, we can verify this identity by somew
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Observe that on the right-hand meémbers:.of~(9.1) the indices m

eLF (at+1 {5 (3 » ¥ 3 , X, y) = o<F2+xaF /;x+yaF /ay

St

oeéfficients ‘of power series.
and n are in the numerators of the coefficie P Eliminatmg the derivatives Erom the recurrence formulas of

On the other hand, on the right-hand members.of the following : ATheorem 9.3, we obta:.n relations between contiguous functions and

mefﬂ_a‘sf the origmal functions. For example we have
& *-1 m n o
:rFl("(‘la ﬂ: ﬂ" Ys X, ¥) amzrr‘o *+mbn-1 mnx Yy DLF (0(+1 {3 ﬁ’x X,x,y)-{&F (« l-”"'l ﬁ ’Xa ,x y)
,n= '
: -pF(up(;'ﬂxzs,x,y)-(cxﬁ(a)F(otﬂﬁ xx,x.y) 0
b0
e s Bl , Lm0
F'l(ot,ﬁ‘l, (3'3 x:x’)’) mz ﬂ+m 1 mn y o dFB(d"'l’ 5"‘;‘[5,‘3 3X,x,Y).‘f3F3(°<,°C :ﬂflzﬁ s ¥s X, Y)
(9.2)‘ ’ '(“TP)F:;(;“ “':‘3’ {3',)’,1{,?) =0 ,
@ -1 m_n o " ;
Fole, 8, p'-1, ¥3x,9) = Z {5 +n-1mn* ¥ ¢ ®F, (+1, B, ¥, ¥'s %, y) = BF, (%, 41, %, ¥'5 %, ) ‘
. m n= . . : SN . L . S B
h o - (0('6) ‘Flb(d’ (5; ¥ K"xa,Y),f_ 0.
' & ¥ m n : ' :
\r = —_—a - Coe :
' \‘Fl( %, By B ¥, %, 7) mzn:-o Y+utn ‘mn® Y For other contiguous functions of F), F3: and F, which are

"

the indices m and n are in the denommators of the coeff1c1ents :  obtained by decreasing « ., «/, f_or . p' by one, or:by increas-

of pow‘ﬂ‘er‘serles. Thls facc was one of reasons why the last four ing ¥ or . . “J' by one:
formulas of Theorem 9.1 are more complicated than the first fout ? i ‘ Fo(w-1, p, B': ¥, X's %, ¥) >

F(ac g1, 3+1,x,y)

the situation is not so simple Appell and Kampé de Férlet clalmed

I

The same ‘fact may be observed also for F2 F3 and F4, and we
can prove the following theorem:

THEORFM 9.3: The contiguous funct:.ons of FZ, and Flo

with o +1, o'+, {5+1 ﬁ'+l )‘ 1 or ¥' -1 are express:.ble as 1“ thelr b°°k that

"1 es fonct:.ons contigues 2 une fonctlon FJ donnée s'expriment

S

linear combinations of the original functlons Fj and their

derivatlves ‘ aF./ Dx, 3F./ay. For example, since 1inéairement au moyen de cette fonction FJ et de ses dérivées
: J ; J ‘ .

N Y- ) . . "
ottt S partielles 2F,/3x et F /ay.
Fp (o1, B, p's oy ¥ %, 9) = 2 AL Xy . iy : -
‘ -m,n=0 Their statement is certainly true for those contiguous functlons

we obtain
~in Theorem 9. 3 However, their statement 1s not necessarily true

i e
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Euler integral representations. The hypergeometric functions

for the contiguons functions (9.3). The author does not’kncw

two variables, except for F4, have Euler integral represen-

whether the recurrence formulas for those contiguous functions were

S . :tions which are double i

already discovered. A uble ntegrals but very similar to that of
g L s Bys ).

PROBLEM 1: Find the recurrence formulas for the contiguous

‘ Lol : o ; THEOREM 10.1: We ha
functions (9.3). e have .

0’1) F(“ ﬁ ﬁ,X:x,Y)

Cie This problem mlght ‘not be very difficult ln fact_:, the author

o 1 8- -1
u,v,l-ufvz.o

¥-
found the following three formulas for F2 P(ﬂ)l“(p )I"(X ey (1 u-v) s8-8 l(l-xu-yv) dudy

CEIICEROICES B FHLF, (21, I g,y, ¥ %, y)
= (x-y- ¥y (o - x)(oc— Zf')+(°¢-a( )px+<a-x)p R
{(ec 1Y Col - ¥- X'+1)(1-X)+(2°< Y- a") B y}xanlax

EoRe(B) >0, Re( ') >0, Re(y-p-a")> 0;
(10.2) F,(«, g, p,x Y %, y)

. rayrgny 1
{(“ }")(0( ¥y- 7""1)(1')’)'*'(2“ ){ U )F jy an/Dy‘ r(a)r-(ﬁ )F(U ﬁ),—-(xl_ ng‘J;]_uﬁ # 1(1 u)r ﬁ 1(1 V)x B 1(1-xu-yv) dudv
+ (2 =¥ - 'Y -x~y)xy'? F /ax Iy , Coem T b i e o 0SWEL 1 R

{y- ﬁ‘)Fz(“ ’ﬁ-]..’ ﬁ » ¥ ¥ :x: Y) = (¥~ ﬂ KX)F +x(1‘x) JF, /3x Re(ﬁ).> d, Re( ﬁ') >0, Re(y-p) >0, Re(x'_ﬂl) > 0;

Cexyaay . 0 L (0.3) Falw, ' B, 8 s K, Y)
('K'- p')FZ(“’ F;'Aﬁ"l,ﬁl’, y,”;{’ Yj ='('¥."_ P -MY)F (M ¢H) " 1 R
-1 - -1 ey
. P(B)r(@')‘r(ﬁ-ﬁ-ﬁ )u vj'l-u-vfo p (1'1.1:‘1) ﬁ 5 (1'2{\1) (]_-yv) c‘du.d.\?

-xy 9F2/2x+ y(1-y) 3F, 13y

It seems to the author that the other recurrence formulas as Re([}) >0, Re(p ) > 0 Re(b‘ (3 ﬁ ) > 0

. ‘ TR I SR LR
. o i i

' well as the above formulas will be derived by careful computations
together With inspections and that each of the contiguous functions

Proof' The main idea of the proof of this theorem is similar
: that of the corresponding theorem (Theorem 3 l of Section 3 '

.1(9 3) is express:.ble as linear combinetions of the original function! Chapter 1) in the case °f one variable Ve shall show 9_{11}' formal

iy Do Eee ot iapeary £F

F.,‘ its first derivatives aFj/BX, DFj/Qy and the mixed : lculations. . o
second derivative 921? / 3x ay S N Firet °f all remark that

PROBLEM 2°> Find a systematic (or intrinsic) method oE

b [,

deriving the recurrence formulas
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P(B+m)f‘(5’+n)l"(x -p- 6) mn
f(y+wm+n)

(u(,mf-n!‘

i

first formula
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. !t 00 N aa
Q-yv) @ = 3 fepalat =
| & Y w2 W (1,0
- 32 ‘ ‘ ' ¥-p-8") . : ) .
(L-xu-yv) * e >, ("'T‘l(x\ﬂ'yv) Z %&) Z.. a! ny " y U~ v = r(a)P(B )r'l;()') fog ) Fl(d ‘3 ﬁ" ¥r%:,9)
k=0 X ' k=0 whn=k .
L Notice that we used here the identity = [(a+k) = (a, k)T(a)
- i #,mn) m numvn' ' ‘ ‘
w0 m!n! e » ‘,' Similarly we have »
Eerthermere 1e‘t.\;s nete that‘vie heYe . ‘”‘ 8- 1 B! 1(1 u)l’ f- 1(1 v) -8 1(1-xu-yv) du dv
B : oL o : ‘ )
f W10yl = 'Ln("%p%ﬂ)‘ if Re(p) > 0, Re(q) >0, os.v§1 L o L
0 SRR e - - f 3-1;31 ¥-8-1 up-l (, mtn)
p-l q-1 r-1 X ‘ P(xr ) 4 -
, “v* "(l-u-v)" Tdudv = < «,mkn) mn ftm-1 -ﬂ 1 {S+n -1 ¥
: +q+r) = -p'-1
U,V T-u-v20 ' I"(p q T =0 (1,m)(1_,n) y f f (- u) (1- ) du dv
The second formula will be derived by a repeated application of th . S L L
: S («,mb ' -1 ¥ “n-1
R Gt - AT o bl f ASRTEOLE Y.
Now let us return to the Euler integral representatioms. =~ - ‘
' ' -3 (e mn) ,men C(ptm) C(x - ) F(B'+n) ING AL DN
| , im0 G0 DY v NEED)
_DpyreHr-pr(y'-p) g :
I"('ﬂ)l"('d’) : 'Fz(d!‘a’ (3':5: X"X:Y)
% dudv

H w18 L (1) (o) ™ (g
1-u-v20 : s
0 L—"—)—(—"‘—)(i’:;) (;::nn) xmynumvn du dv

u,v,
m,n=

B-1,8 1(1-u-v)x-ﬂ-ﬁ‘-l(l-xe-yv) dudv
” oL 8 1(1_u_v)x 61 §

Congider
i a2
L™ v,1-u-v20 L
Replac:.ng the last factor (1"- xﬁ -yvs-“ by Ehe corresponding
o, mtan

power series representatlon, we obtain
of? ﬁ o y-g-p'-1
(1 u v) 20(1 [11)(1 n)

xmynumvndud
u v, -u-ng

- I
,v,l-u-ng
Interchanging the order of the integration and the summation we ge
-1 g'n- y-4-p' -
fro-l, g'4+n 1(1-'u-v):{'3 B 1dudv

(«, mn) %™ i
Y
az (1,m)(1,n) u,v,l-u-v20.
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uﬁ+m'1vﬂ'+n-1(l-u-v)x-ﬁ-ﬁ'-ldudv

u,v,1-u-vz0

Lad o _..gd'nl m n
"m%o%ﬁf)m,n) = ]

(¢, m)(x'yn) m o [(+m) DB Fn) M(y-g-8')
(1,m) (L,n) [(y+wtn) :

-3

m,n=0

CAYCRDI (-8 -89 ) ' ‘
v r(x) ' F3(°(:°( ’P’ﬁ ,y,K:Y) . ) |

This completes the prcof of Theorem 10.1.

The function F4 does not have any simple integral represen-
tation such as (10.1), (10.2) and (10.3). This, however, does not i
mean tha;t F4 indo.e‘s not vh_ave- any doub-le integral representation.

For example, the following formula is known:

. el L [KEOINED)
F[‘(daﬁ) ‘: E ,X(]. Y):Y(l X)) r(“)r(ﬂ)r(r_d)r(x’_ﬁ)x

o - | ' :;
J I L Ny P T ey T ey I P Ly
070 |

where Re(&) > 0, Re(y-x) >0, Re(¥'-p) > 0.

Re( B ) > 0,
Picard discovered that F, admits another integral represen-
tation which is not a double integfal, but a éimple'integral..

THEOREM 10.2: We have

(10.4) F.(«, B, B's ¥y %5 )

¥-a=1

-1(1-u) (l-xu)-@(l-yu)-ﬂ' du

1
RN &5 M
INCONRE S
"if Re(«) > 0, Re(y-«) > 0.
The proof of this theorem is very similar to that of Theorem

10.1.
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From (10.4) we can conclude that Fl is analytically con-

tinuable and holomorphic for (€-{1, w)]x{C~ (1, %)]. Siwmilarly
10.3 . . . .
( ) implies that F3 is holomorphic for [€ - [1, ®)] x[€ - (1,x)].
On the other hand, we can prove the following theorem by using (10.4)
THEOREM 10.3:

(10.5)

We have
Fl(d, ﬂ’ ,3', ¥, %, ¥)

= (1-x) -ﬂ(l-y)-p'F.l( Y=o, ﬁ, F ! 5 ¥ X/(X"l), Y/(Y"l))

(1) P (&, ¥-B- ', B, ¥, X/ (x-1), (x-y)/(x-1))
(L) ™F (<, 8, ¥-B= 8", ¥s G-)/(y-1), y/(y-1))
A0 By) P'E (yws g g BT ¥ ks (rox)/(5-1))
APy TR (row, B, H-B- B, v ey) /o)y 7
Proof:

]

]

This theorem can be proved by changing variable u

respectively by

us=1lw, us=v/[@-x)xl,

u = v/[(1-y)tvy].,

u = (1-v)}/(l-vx) and u = (1-v)/(l-vy) .

Exerclise 1. Prove Theorems 10.2 and 10.3.

It ig easily verified that the following six changes of

variables:

u o= ley', vey',
u=u', v o= eyt
u = l-u', v = ley',
u = ey’ v =g
U“V', V"‘I‘u',
\I"-'l"v', v s ley'
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map the square’ 0 € u, v £ 1. onto itself and do not change the

form of the integral (10.2). By using these transformations we

_ prove the following theorem.

.. THEOREM . 10.4: We have

(10'6) Fz(u, ﬁ’ g” x’ x"x,y)
= (1-x) F (=, ¥-p, ¥, ¥, x/(x-1), 7/ (Lox))

(1-y) FZ(D‘ ﬂ’ ¥ - ﬁ Y ¥, x/(l'Y)s y/y-1))

(L=y) "y (e, ¥'= BTy B ¥ ¥ ¥/ (=105 %/ (1-y))

(I-X'Y) ~F H (%Y=, ¥~ Bl Y, ¥, x/(xby- l),y/(x*y 1))

(1'K)“-'°‘F2(°la ﬁ" )“B,‘X

s ¥/ (1eR), 1/ (x-1))
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On the ot_hef hand, lowering ¥

F{a) C(f-=-1)
CT(-1)

by one we get
can o
Fl(o"ﬂ’ ﬂ"i'l’ X, ¥)

1
- f ue‘-l (1-u) ¥-x=2
0

Uu)

(1xw) P (Loyuw) ™ 4y
If we put

-1 —t = . _ai
= u“ (l_u)l 1(1."!{0) P(l-yu) é ,
we have

INCOINCELY) 1
* l":‘(:)d Fl(d"a’ ﬂ'ivsx’)’) "[o U(u) du ,

S P(a) (Y - -1)

does not change the form' of the integral (10.3).
gimilar to (10.5) and (10.6).

To do this, consider the representation (10.4) of Fl' Raising
. ]

by one we obtain

P+ (Y -a=1)
raey)

Fl(o""l: F’ ﬁ')x: %x,9)

1-&-2(1_}{“) ey ﬂ/\/)'[Sl du .

= Jol u“(l-—u)

“Therefore, it is

difficult to find any ‘transformation formulas for F3‘ "which are

Let us next find some relations between contiguous functions.

‘ Fyl+l, B, p'5 4, %, ) = | u(t- ) Luca) a
- 1) TRty TN R PP u) "U(u) du
= (L-x-y) —“‘Fz(u Y B Y-, ¥ Y, v/ (ety-l), x/(cty-1)). r ' 0
It can be_shown that there is no change of variables of the 1 1 1
--J- U(u)du+ (1-u) "U(u)du

form: ] 0 0

uﬂAlu'+Blvl'+Cl : Lo v' =‘A"u'+B"V'+C“ 1

. Aut+Bv'+C ? ' Au'+Bv'+C Clot) (Y ~a-1) -

L , ‘ Fig-n F1(af8's¥-l.xy) = f -0 U,
which maps the triangle wu, v, l-u-v 20 into itself and which » : 0
‘. and hence

oLF ) R+1, B, B, %, 3D+ (F-k=L)F (o, 1, B3 Y5 %, )
o '(X'I)Fl(“sp:ﬁ':)"lax"}’) =0 .
In this computation, we used the identity T(x+1) = x ['(x).

o Let us differentiate U(u) to obtain

' [ 1 0(+1 bl SR - B4 BV
U'tw) = [ T-u Ti-xa' 1-ya

(10.7) ]U(u)

Assume that Re(a) > 1, " Then

Re(x-u) > 1,

1lim U(u) = 0,
u+0

Clim U(u) = 0 .
u->1-0
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Therefore, integrating both hand members of (10.7) from 0 to 1,

we get

L] (t -1
(¢ -l)f u U(u)du+ (o(+1°a’)f (1-u) "U(u)du
0 0 - )

1, 1 "
+ pr (1-xu) U()du+ ‘B'y'r (l-yu) "U(u)du =0 .
0 . 0

Thig means that

(l'-ot)Fl(a(-l,ﬁ, (3' y ¥ X y)+ (“'1)F1(°‘¢ ﬁ: ﬁlgxr %, ¥) ?ig. 10.1,

= (K'l)Fl("(»ﬂa ﬁ'a V‘l, Xy Y)+{3x Fl(‘x ’{3+1’ ﬂ” x’ X, y)'

+ B'yF (o, B, gL, ¥, %,y) =0

: jffhen we have

RO Y '
e ‘6 ELE (4,0, 8' 4 1%,y)

Finally we: shall present the following application of Euler
) - "- o R - -
= “ ufl, 8 1(1-u-v)‘ b-¢' 1(1

-l
-Xu-~ dud
u,v,l-u-v20 .iyv) udv

integrél representations. In the proof of Theorem 10.1, we expanded
. : n - !
the kernels of integrals (l-xu-yv) * and (1-zu) a(l-yv) “" into

1.1 ' ‘ :
: -1 -1 p'-1 p'- -g-pa'~ -
the corresponding double power series in u and v. If we expand ‘foj;) sP (1"‘2)(5 5P e® 1(1-3)‘ B-# 1(1-xs~!—xst—yst) ¥sdedt

these kernels into series of different types, we shall obtain some

1p1 ‘ ‘ .
, +4'-1 p'-1 -f-p'- - -
other expressions of Fy, Fy, F; in forms of certain series. We "4(0 L Sﬁ 1.8 (1'3)5 B-p 1(1‘-1:)'/5 1(1~xs+xst'YSt) “ dsde.

In (10.1), chahge

shall present such an expression for Fl‘

nsider the last factor

variables by’ S R . : ‘
(1-xstxstoyst) ™ = (1-xs) *(1-(y-x)st (1-sx) 1) ™%

= Q(lét)y', v = st .
= ZO (& m) (y~x)msmtm(1—xs)_(m+c‘) .
W= .

This maps the square 0 < t, s £ 1 into the triangle u, v, l-u-v ,m
A ’

20. If s=0, then u=0 and v=0 for 0%t £1l. Hence ’
the side: 8 =0, 0.t <€ 1 of ‘the 'sé[uéfé i‘si mapped onto a point:

u=0, v=0. Otherwise, the mapping is one-to-one, (S8ee Fig,

10.1.)
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COPEITG=p=F") o . S fam) (@
‘ LT 2 my O

¢ Lo -
Il frEHm-l g oy i-b-F ‘1(1-xs)‘(“‘+‘)dsj e Bl ey lae .
0 ' o

Observe that

s’l R D L RO PO CLO P
0

+4'4m) I ' ;
- [Geg’ mg,(gimg) B (wtm, g+, y4m, x)

and

1 '
'+m-1 -1 Fplimy I
;(0 t:‘g (1—1:)‘3 dt = f‘(@+(5'+m)

Hence

& ' ’ e
Fl(x'ﬁ’ ﬁl’a': x,y) = ﬁéb %:ﬁ%{%)ﬂ)F(d+m, ﬁ“-ﬁ +m, ‘If'Hfl’X)(y-x)m .

in pérticular, putting y = x, we obtain
Fl(u ’ ﬁ; ’3', ¥s X x) = F(O(’ﬁ'*'g':xy x)

Exercise 2., Derive the following formula:

FL(, Bs B85 %5 7) = Zi(—;,—%fﬁ(—lﬁj;;)r( my s B+ B Loy /0"

(It sould be noted that F(-m,ﬁ',ﬂ%-@',l-yﬁx) are polynomials.)
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. : Barnes integral rupi.seucatlons.

In Section 4 (Chapter I) we

pi¢ ed that the function F(«x s P ¥ x) admits an integral repre-

ntation of the form

1 _P(y)
2z l‘(:x)r‘((s)

f Pet) (s IN(=s) (_ 38 4o

(11’1) F(a, g, 7> x) = Fors)

£ &, f, ¥#0, -1, -2, -+-, vhere B is the path given by
T .

‘fig. 4.1. (See Theorem 4.1.) Notice that the path B is deter-

mined by « and p - Fdrtﬂermoré, if m 1s a nonnegative integer,
’Che path B determined by olt+m and ﬁ can be replaced by the
'Mth determined by o and f.

In Remark 4 (p.44) of Section 7 we proved the following formula:

o
,‘.F(O(;pr(&")’: X, Y) = g;: (b, m) 1 m) F(O('i'm,p X'Hn, Y)X

f we utilize the Barnes integral representation (11.1) of

(4, B> ¥, %), we obtain

& '
Fy (s p s ¥,x,5) =é—%€jﬁ§-%§—lm+m,p' FHm,y) ™

LeOT(p")
r)

- (Bm) m_1_ fr(o(+m+t)r‘(ﬁ'+t) ‘_ R -
Z o Tnl POty TCE(y)Tde

T(-t) (-y)Fae

L1l drt,m) (f,m) m] Ll+e)(p' e
ol 2 |, -()’+t,m)(e,m)x PO+t

e, my(Bom) m CRHOT(AHE) e oy oyt
" J;i 3+t 3)(1 m) r(yt+t) F-e)(-y)"de
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' [+t ' [(xttts) C(B+s)
= 5%1- F(a+t, p,y+e, X)JZ(____)_LLLO"*F‘(T;H) r-c) (-y)%ac . J'F(%Egl Fte,guyre,x) = ,Q r(:+c+s)s Fe-s)(-)%ds ,

Thus we obtain the Eollow1ng results where B_ is the path of integration determined by wtt, P . Hence

€

THEOREM 11.1: Suppose that o, «', F ﬁ Y, ¥'#0, -1, -2, from (11.2), we derive

Then the hypergeometric functions F and F admit

F F
12 "2° "3 T CEICEIC') '
A r(‘) Fl(diﬂ!ﬁ ,Lx,y) =

integral representations

A(ll'z) %Fl(“:ﬂ;ﬂ'gx.x,ﬂ

1 PEADC(B'HE) ey (o)t
= eI JB F(ut-i-t,g,xﬂ,x) eSS r(-t){(~y) dc,

, X |
- (—1—) ” Leereta )LL) L) p(og)P(-t) (-2)° (-y) de ds

[ (tste)

where the domain (3 of integration is given hy
B8={G6,t); sen, ten}.

Thus we obtain the following results:

a3y KL e 0 p,pt v )
N Ve . THEOREM 11.2: Suppose that xi o', g p', Y, 8" # 0, ~1,.~2,
= mi j;F6x+t pry-x) r(y'+c) F(-t)(-y) de, Then the hypergeometric functions Fj (3 =1,2,3,4) admit
(11.5) r(*}%g§ﬂ') F3(d,x',p,p',x,x,y) integral represepcations
e o B ooy, | T T e t
1 s s 8
Ly %fl%u,&v‘r’x’y) (21ti) .( P(¥+sf-c) P(-s)'r‘(-t)(-X) (-y) dtds ,

’ ' CI1N ' v I
(11.3") WFZW";"% A EY)

- () | ﬂf Dt ) LBLNETE) (-5) 1(-t) (-2)° ()" de ds

\ IR INCIR L o
(11.4") e — Sl NN W USRS

o g [ rere pre v DEREEIO g ()t
B .

respectively, where B is the path determined by «, p' in (11.2)

“and (11.3), by «', B' 1o (11.4), and by o , g .in (11.5).
(CR g 3 .

The function F@tt, f,y+t,x) in (11.2) admits the Barnes

u) [ g D(es ) (o +E) P (B+s ) p+E)

FOyrste) F(-s)M'(~t) (-x)® (~y)dtas,

integral representation:
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y N N [
(11.5") F%%E%%)'—)-F‘*(“’ﬂ’y’d ,x,y)v

1y t
1 PE+s+e)T(ptste) e e (=) (=) dE ds
- (Zni !;[ P +s)r(+t) I(-s)re-e) ¢=x)"(-y)

where the domain of integration in (ll.k'),

B =, t); se B, t € B },
and B 1is the path of integration in (11.k), while Bc
of integration determined by «+t, p for k=2,3, by «, 8
for k = 4, and by «+t, g+t for k = 5.
By utilizing (11.4') we can derive the following result:

are related by the

THEOREM 11.3: The functions F3 and F2

formula:

(11.6) Fy(x,«'5 B, g's ¥, x5 ¥)
= £Gt,x' 50 )x-“y-“'FZ(o(+o('+1-h',o(,oL' ot1-g, a'+1-p',1/x,1/y)
+ £(«, (5',(;,a')x'“y'“'Fz(xw'ﬂ-x,x,‘q',o<+1-ﬂ, pH1-«',1/x,1/y)
+ £(, %, ts')x"gy'“'Fz((s+x'+1'-«,(s,«' p1-o, '41-p',1/%,1/y)
+ f((s,ﬁ',«,«')x"’v""Fz<ﬁ+ﬂ'+l-a,ﬁ, B fH1-x, gl+l-a' 1%, 1Y)

where

INEPINCEIN MR
r(f)r(r)r(x-x-»)_

EAus pr) = (DN

Insteéd of giving a'préof ‘of this theorem, we shall prove a
similar result in the case of one variable.
THEOREM 11.4: Suppose « ,ﬁ, Ysa-fi, ¥« Y -p # integer.

Then -

is the path 1}

i of \’/(s)
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l - Pga!r‘ - - -al
‘(11.7) F(X:ﬁ’ Y, x) = P(U'“§€?E% (+x) F(«,a+l-¥,a+1-,1/x)
COON(x=p)  _ \=p ) i
R FCp) R F L8 puprLox 1 %)
Proof: Let us consider the Barnes integral representation

(11.1) of F(«, p, ¥, ¥). This integral is uniformly convergent

in x  for
(11.8) ’arg(-x)l < T
We shall restrict x to the domain (11.8). The multiple-valued

_functions on the right-hand member of (11.7) are also well defined

in this domain. Take a sufficiently large positive number R, and

let By be the arc of B between -iR and 1iR. Let Dp be the
‘gemi-circle: s = Reie, IO - 1:‘4_. 7. Put
_ ) Dlats)T(prs) . s
Y& = For@ — rars L0
Then the difference between two integrals of ¥ along By and Dp:

1 1
(s)ds - —[
2l LR‘P i Jp

Y(s)ds

R ]

ig the sum of residues at the poles of \P(s) which are contained
in the closed curve consisting of BR and DR' ‘Those polén are
located at s = - -m and As = -‘3;m. Let us compute the residues

at these poles. Observe that

Res I'(s) = (-1)"/m!
g=-m

P(s)(l-s) = —=

sin(ws)

and

Hence
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of V¥(s) on DR

Exercise 1. Complete the proof of Theorem 11.4.

I LG9 r‘(s-a-m)r(xﬁ)_(l) - ~m
Res W) = FiOr(py  Fl-wm) . ml )

=-a~m

F(f) (ot,m) [(B~x-m)
TY (Lm) F(y-a-m) 0™

F(¥) Px-y+l) sin(my-«)) (. x)-a.gd,m“x-ﬁl,m)
= r(ﬂ) r(“‘"5+1) Sln(ﬂ.’(ﬂ-q)) (ﬂ‘ﬂ‘!‘l,m)

At the end of Section 5, we mentioned that two functions
(-x) "F (0 +1-Y % H+1p ,1/x)

‘ "and

In this manner we obtain

(nl:gé o) ooy (,m) (#F1-y.m) -m
JBes W) = TG a)"" @pm

(%) Pr(g+1-7, g, pr1-o,1/x)
:are linearly independent solutions of the hypergeometric differen-

‘ ‘ tial equation. The formula (11.7) was found by Kummer. Since
i - l:!l“:g -8) gé+1 )’,m“é,m[ -o
‘Res Y(s) = Fia)r(y-p) ¢ = <@+l wym) (1,m)

s=-g-m ‘these solutions are not single-valued functions, this formula will

on the other hand, we have not hold, if branches of these functions are chosen in a suitable

T Y SR SR manner. This fact was not well understood at the time of Kummer.
lim I VY(s)ds = 0 as R tends to +o ‘ |
L : ' ‘ ‘ In order to prove Theorem 11.3, it should be noticed that the

if }x}>1 and Iarg(_‘-_x)ltcrci - To pro_v? r.h.:l:s,_ ie ‘is sufficient domain of integration in the formula (11.4') is

to estimate - = = .
B=3x%B,= {(s, £); s €B, teBy},

D) () (x)°

on Dp. We can not usé‘Stirling"s formula directly, because

where B1 is the path determined by « , 8 , while B2 is the

. path determined by «', B'. Therefore, the idea in the proof of

Stirling s formula is not valid in a sector ‘|arg(s)-7r‘:.| <g . Toé Theorem 11.4 can be directly applied in the proof of Theorem 11.3.

'avoid this difficulty, let us use the formula To prove Theorem 11.3, therefore, we must compute the residues of

Mt
. i e

the integrand of the right-hand member of (11.4') at pairs of poles
{s=-ot-m, {s=-o(-m, {3--p-m, {s--ﬂ-m,
t=-a'-n, t=-p'-n, lt=-d'-n, t = -p'-n.

For example,

F(s)r(l s)

sin('rcs)
to obtain ped e s

Cats)C(pts) F(i-y~s) (-s) . mwsin(m(y+s))
“r?ws) : r( s)( x) T TQ-%-s)I(1-p- S) sin(Jt(ot+S))sm(7t((3+S))‘

Now by utilizing Stirling's formula, we can estimate the integral
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[P EUHEI L@ P L) pe_oyr(oe) (-x)° (_y)

Res .
s=-o~m F(y+ste) i . - Systems of partial differential equations. The function
te-o -0 A - » N ‘

B NS TSR . d, p, ¥, x) satisfies the differential equation

_reards! )r‘(ﬁ-o()r(ra J . -a(' (o(+ot'+1-X,uri-n)(u(Jﬂ(d',n) -m_-n

T(y-a-a«') ( x) ( Y) (@Hl-g,m) (2'+1-g! ,‘thl)(']'-w,vm)Q,n)X x(1-x)y" + [ ¥ - ( +¢+ ]_)x]y - dpy =0

hypergeometric functlons ] (J = l 2, 3 4) also. saCLsfy
tems of par;ial_differential equations.

1? Fz, F3 and F4 satisf? }especciyely the

following systems of partial differentiailéﬁﬁgtfbhsﬁ

THEOREM 12.1: F

x(L-x)r+y (L-x)s+[y - &+p+1)x]p-fyq-afz = 0 ,
{ y(l-y)tﬁ(l-y)éﬂi;(&+(3'+1)y]i1-3‘x;)’-‘;(ﬂ"'zb =0,
x(L-x)r-xyst (Y- @+pri)xle- pyq ofz = o,
{ y(l-y)t-xyﬁ[x (o<+p+1)y1q ﬂxp “ﬁ'
x(1-x)r+ys+[x (°(+p+1)x]p «pz =0,
{y(l-y)c+xs+[x (a'+p +yla- «' 'z to,.
x(l-X)r°y e- ZXYS+[‘( (°‘+(5+1)X]P (°L+(!+l)yq olﬂz =0,
{y(l-y)t x r- 2xys+[x (o(+p+1)y]q (n£+p+1)xp wfz = s

P =-32z!3x2,- 8 = 3?z/3x3y; t\ﬂ‘azz{ayz, p =9z/3x, q = éz/ay.
Proof: We shall show that F, satisfies (12.1). ;Others can
syown ;n a similaf‘manner,a Dénote by HQ:_and T vthe operatoéé
vioe x3/3x . .and [ .y3d/dy

espectively. Then we have
X x,mtn) (B,m) (B',n) m n
O@HHy-LIF) = 2 et ¥ 1)y pra) (1) (1,n)

m,n=0
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13. Systems of total differential equationé.

S G @waan) _ an Before studying the
= - _ : ,
w,n=0 (f»mtn-1) (1,m-1) n) ystems' of partial differential equations which Fy. satisfy, we

:gi (o mirtl) (B, m+1)(f .n) m+1yn shall explain some aspects of total differential equations.
- 1 1 n ' ;.
_m,n=0 (x’ n) (1,m) ¢ Let us consider a .system of total differential equations of
3 , gx,m+n)§ﬁ,m2(él;ﬂl @ n tﬁ; form: |
= X Z‘oa'hlﬂ'n) (p+m) (j,ml—n)(l,m) (1’n) Xy »
m,n=

| (3.1 ey = £y, r i g Gy n, )iy
, = x(@rq+a) (BF)F, - S e g2,

1577 fn’ g)» **°» 8, are functions of x, vy, Zps ",
. which are defined and continuouslyidifferentiable in a domain

& ‘contained in an+2. If we consider x, .y as independent

Hence
6(6+T+X-1)F1 - x(9+?+«)(0+p)Fl
In the same way, we get

GO+ Gy -1)F; - y(9+({+c()(<p+(3 )F = 0.

ariables and Zs Tt 2y as ‘dependent variables (i.e. unknown
From these equations we can easily derlve (12 1)

C wnctions of %, y), then the system ‘(13.1) is equivalent to the
Similarly we see‘thatr FZ’ 3 andA F4 satlsfy respectively

2.2 { B(B+YLIFy - X(O+¢+) (BFIF, = | a,/0% = £,(x, v, 2, 00 2) s
GGy LE, - y@FErD g+ pIF, < 0, By

32j/3y “'gj(x: Y’ zl’»b..."zn)
8(B+§+Y-1)F; - x(6+x)(B+@)F3 = 0 , N . ‘ '

Suppose that there ‘exiSts a solution of (13.1):

0
=

GO+GHY-1)F, - Y(gHa') (§+ BT,
coof 0B+ -LF, -x(8+§+x) (B +4+BIF,
(12.4° {

]
(=

'z = gy y) G EL e )

hich is defined and twice continuously differentiable in a dowain

DC R2. Thé'crgssnsecond‘derivativesﬂof v ?j(x’,Y) aré independent

§@+ ¥ -1)F, -~y (B+¢+) (O +§+PIF, =0 .
From these the éystems (12.2), (12.3) and (12:4) can be easily

derived. S of the order ofjdifferéntiation‘withiréspect‘to-{x -and y: i.e.’

K TR TR |
o2x By Byax G- 1’.";" a)

o
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* From (13.2) we derive

2 £ Gys 909 = 35 gyleys gEY) (T LT )

Hence

n n
gfj/ay+£=:1 [2£,/22,113¢, /3] = ag‘j/QX‘*E;l (og;/27][2¢ /o=

and hence

n v n
(13.3) 3f. /3y +1<2==_igk ij/azk = ng/QX +f3:1fk nglazk

3

<e-, n).

(=1,

This condition holds for (x,V¥, ?l(x:Y)a" (x,y)€D.

.‘.', zno) eag'

" ffn(X:Y)) s
if for:any point (xo,yo,zlo,'
of (13.1) satisfying the initial condition zj(xo,yo) = zjo

and the smoothness condition, then (13.3) holds

(G =1, ,n)

jdentically in & . Therefore, (13.3) is a necessary condition
for the existence of sucﬁ solutions of (13.1). In general, in
order that overdetermined systems such as (13.1) have solutions,
we need some conditions suchAas (13.3)5 On the other hand, the
theory of total differential equations guarantees that (13.3) is
also a sufficient condition for the existence of solutions of (13.1)
satisfying an arbitrary initial'condition.

THEOREM 13.1: Suppose that f (%, ¥, 295 "5 2 ),

1’

gj(x, Y2y "t zn) are ‘all continuously differentiable in 2

ot2 . R
C R and satlsfy (13.3). Then for anmy point (xj,¥gs Zyq° ',zno%
€8 there exists a unique solution of (13.1) which is defined and .

there exists a solution .}

‘ cwice continuously differentiable in a neighborhood of (x

holomorphic in x, y, z

unique solution of (13.1) which is holomorphlc at

'"sacisfles the initial condition (13.4).
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’ 0° yo)
and satisfies the initial condition

(13'4) =1,

' zj(xoa Yo) = zjo (j s n)

DEFINITION 13'1:. A system of total differential equations of

thé form

———— .

ied.

(13.1) is called completely intégrable if (13.3) is satis;

rh

|

We shall now consider the case when £, and g. are all
1

1’ » Byt

THEOREM 13.2:

Suppose that fj and gj are holomorphic at

(xo,yo,zlo, rheLz 0) and satisfy (13.3). Then there exists a

(xo, yo) and

Let us consider the case when £,
-

and gj are all linear

i.e.

Zf

o
= Jk(x, )z, dx + kZ,'I gjk(x, vz, dy

G=1 ", n).

1f we denote by

(., k = 1,

',l'l),-

mjk = fjk(x’ Y)dX+gjk(x’ Y)dy »

the system (13.5) can be written in.-the form

2._,
k=1

efe G=bonem)
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Moreover if we put
[79]
% 11’ * Cln
Z F= : s SL m| e e e s eaan )
Zn “h1 T @

we can write the system (13.5) as
dz = 2.7 .

The condition of integrability becomes

n n n 1] '
g;:lzk[afjk/ W+ hz__;lfjkghk] - E>—;12k[agjk/ ¥ g‘:‘lgjhfhk]

Since these are identities, we obtain

. n . 5]
(13.6) e oyt S £, = 9g; fox+ Y g, f
31/ F 2 E g /9% 22 Binthic

jo k=1, **', n .

As it is well kuown, solutions of linear ordinary differential

equations exist in an interval or a domain where coefficients of
the equations are continuous or holomorphic. The same fact holds
for a system of linear total differential equations. We shall

state such a result for the holomorphic case.

THEOREM 13.3: Suppose that fjk and gjk are all holomorphic

in D and satisfy the condition (13.6) there. Let

(G=1,

be a solution of (13.5) which is holomorphic at (xo, yo). Then

zj = ‘fj(x: Y)

©++y n)
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k“l?l’ °ecy ?n are analytically continuable along any path in D

étarting at (xo, yo).
It 18 clear that the set of all solutions of a system of
tinear total differential equations s a vector space.

Since

golutions are uniquely determined by thelr initial values, the

dimension of this vector space is n .

THEOREM 13.4: The solution space of (13.5) is an n-dimensional

vector space.
Consider n solutions of (13.5): e e
zj o= {fjk(x’ ¥) o

and the determinant cobtained from these solutilons:

?11 ceoses (fln

Goocseccac

‘fnl acvaoo ?nn

In the same way as for linear ordinary differential

Gok=1, )

A =

equations, we

“derive

. i 1 S nA
dA = ( j%fjj dx + Elgjj dy)A

or

‘n Y
d{log A) = ijjdx+ e..dy .
i=1

. j=1 33

THEOREM 13.5: We have
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(x,y)

n » oo ;
(13.7) A(x’y) = A(xo,yo) exp[ %___:lfjj(s’t)ds-'-%gjj(s’t)dt]:

: 14. Transformation of the aifferencial equations for F. into
LIS AY) 3

- S isystems of total differential equations. We saw that the systems
similar theorems for the general system of T . - _ ,
We have complete‘l?" S i : : of partial differential equations satisfied by F-j are written in
total differential equations ‘ ‘ :

S the form
S m
e . e =1,"**,n
421 - l%';_:lfjk(xl, FIL I bz 4%, b 37T AT + Ays + Agc + Aa? + A+ Az ==‘-o .
Exercigse 13.1: Show that, if we write system (13.5) in the Byr + B‘zs + Bat + Byp + Boq + Bez = o,
- form B E i e ‘where Aj and Bj are holomorphic in % and vy. A3—,= Bl = 0 for
dz =Rz , F2 and F3. »TheSe equations are solvable with respect to r
then the integrability condition (13.6) can be written as '~ ° and t so that we obtain

dfl = LASL . . r=aystaptaggtaz,

(14.1) )

: t=bls+b2p+b3q+b4z,

here aj and bj» are rational functions in x . and y. '

Let us differentiate the first equation with respect to y i

v Qr/D); =a ds/2y + sBal/By + azgp/ay + paaZ/Qy
P : -

| o
H + a33q/3y‘+,qaa3/9y + a4az/3y + zaaalay .

Thus we derive
(14.2) .9s/2x }-.al'as/Dy = X¢ 331/3y+,az)s +ast + ;(3182/35!)1)
+ (3ag/ay+a,)q + (23,/3y)z

Similarly, by differentiating the second equation of (14.1) with

respect to x, we obtain
(14.3) —blas/ax'+ 2s/3y = (3b1/axfb3)s+b2r+v(3b2/3‘x +b,)p

+(3b,/3x)q+ (3b,/3x)z .
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. 3 ; Thus we obtain a system of total differential equations:
‘The left-hand membérs of (14.2) .and (14.3) are linear forms in

' h £ dz = pdx + qdy ,
3 ' d 3s/2vy. The determinant obtained from the coef- ‘
3s8/dx  an ‘ y f (14.5) dp = (dlp-l— o(2q+ot.3z)dx + (§1p+ qu+ ﬁ3z)d}’- ,
Fteients of these linear forms is L )
-tel . . dq = (Bp+ B?_q-l- /33z)dx *(§pt Yo+ ¥y2)dy .

1 « 1 -« ab, .

1°1 In vectorial notations, we can write this system as

-b’l 1
: z 0 dx dy z
We distinguish two cases: i = | o

? . \ d| p 3dx+ﬂ3dy a(ldxf'{}ldy c(zdx*-pzdy p
I: 1-a &®
_ Case 1°1 ’ q p3dx+73dy ﬁldx'l-a’ldy ﬁZdJrFXZdy q
Case II: 1 -ab #0.
) In general, this system may not be completely integrable. If this
. g : 2x and 8/dy from :
Case I: 1In this case, we can eliminate Js/3x . y system 1s completely integrable, then the solution space is a

o ¢ ' relation :
(1["2)_ 3“‘1 (14.3) at.: the same time to obtain a linear three-dimensional vector space.
r, 8, t z: - o
between 1, s, ¢, p,.q, ) 0 Cagse II: In this case, we can express 3s/2x and ds8/3y as
. e,rt et catdepteqtez=0. :

(14.4) 1 2 3 4 5 6 linear forms in r, s, t, p, q, z:
Suppose that from (14.1) and (14.4) we derive

6%

re op gtz {35/3x= Cur¥eystettepreqte
=P T T TSR

‘: As/3y = d1r+dzs+d3c+d4p+dsq+d6z ,
8= Byptfyatfyz, 1
o i where coefficients are rational functions of x and y. TIaserting
t= Yo+ YAtV o
ST . (14.1) into the right-hand members of these equations, we get
whete “j’. .pj and Yj are rational functions in x and y., By f 3s/3x = X8+ aop Fotyq +

4% »
\ Is/3y

l}ls + ﬁzp + ﬂaq + ﬂ4z .

By using formulas such as r = ép/alx},' s = 3p/dy = 3q/3x and

definition we have . |

dzfax =p , dzldy=q-,

and hence ;
p/3x = wpt Ayqt gz, Ip/Ay = fipt Pyat Bz, |
34/31t b 31P+ qu"' ﬂ3z ’ 34/93' o Y1p+ qu"' X3z .

t = 3q/3y, we obtain a system of differential equations

2z/9x

P 3z/3y = q

Ip/Ix = ajst+asptagqta,z, 3Ip/Iy = s

3
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aq/3x =s , dq/3y = bls+b2p+b3q+b'42 s

gls + ‘Szp + (53q + (342

It

ds/ax = o&ls+o(2p+043q+a<4z ,  9s/9y

This system can be written in the form:

r dz = pdx+qdy ,
dp = (a.sta,pta,qt+a,z)dxtsdy ,
(14.6) 1 ! 2 ’ ¢
L ds = (ot;s+al,ptoyqrar z)dat (B3t Bptpyatp ey s

or in vectorial notations

(2 0 dx dy ) 0 z

o P } az‘dx azdx a3dx aldx-i-dy P '
q b 4dy bzdy b3dy dxtb 1dy q
s 3 a([’dx-i-ﬁqdy o(zdxi-pzely o(3d?c+€3dy o(ldx+(31dy s

This system of total differential equatio_ns is .not necessarily
completely integrable. If this system is completely integrable,
then the solution space is a four-dimensional wector. space.’

Let us now consider the systems of pattial differential equa-
tions satkisfied‘by Fj (3 =1,2,3,4) ..

we shall find and b

a4 i

I and II occurs.
System. for Flz We know that Fl

in this case we have

satisfies (12.1).
a1=-y/x , b, = -x/y

Hence we have 1 -alblE 0.

This means that (12.1) belongs to Case 1.

For each of these. systems, |

Therefore,

so that we may determine which of Cases |

be verified also that these sYstems for Fj

- integrable.

system for F,
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. System for F2: The function }E'2 satisfies (12.2). Hence

a; =y/(=x) , by =x/(l-y), l-aby #0.

System for F3: In this case, from (12.3) we derive

a, = -y/x(1-x) , bl. = -x/y(1-y) 1 '-a.‘l.l:&1 é 0.

System for F4: From (12.4) we derive

a; = 2y/(L-x-y) bl = 2x/(1l-x-y) , . 1-a bl #£0 .

This shows that (12.2), (12.'3) yahd (12.4) belong to Case II.

By using the procedure of derivihg systems of total differential
equations,' we obtain such systems for Fl’ FZ’ F3 and F4. It can
are all completely

The proof of thls fact will be left to the readers.

Thus we come. to the follow:l.ng conclusmn

THEOREM 14.1: The dlmenslon of the solutlon space of the

is three, hlle the dlmensmns of the solutlon

spaces of the systems for F2 Fj and Fa are all four.

Let us examine the system for .F, —in more detail.. Differen-

tiating the first equation of (12.1) with respect to y we obtain

x(l-x)as/ax+ y(1-x) Bvs/?y:l-\(}jz;:)s+ [¥-@+pel)x]s ~fye - g -xfq=0

: :‘or

x(l x)as/9x+y(1-x)as/9y+ [J+l (al+{3+2)x]s ﬂyt - @+l)fq =

Simllarly, dlfferentlatlng the second equation of (12. 1) we obtain

y(l-y)?s/?yi-x(l_-y) 3s/ox+ [yr1l-&+f'+2)yls - (5 xr - @+1)B'p =

To eliminate Jds/dx and 3s/dy from these two equations, we
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muleiply the first equétion by 1l-y and the second equation by

l-x and we subtract one from the ocher. Then we get
[O+1) (1-y) ~@+f+2)x (L-y) - (y+1) (L-x)+@+p'+2) (1-x)y]s

+4'x(l-x)r - fy(l-y)c+ (@+1)p' (1-x)p - @+1)p(l-y)q = 0 .

By solving this equation and (12.1) with respect to r, s and t,
we get
B (l-x)(x-y)r+ [y(x-y)-(at+ﬁ+1)x2+(u+ﬁ-[3'+1)xy+p'y]p
- fy(L-y)q ~aflx-y)z = 0 ,
(14.7) (x-y)s -8'p+fq = 0 ;

y(l-y)(y-x)t+ [!(y-x)-(ﬂ(+ﬁ'+1)y2+(al°ﬁ+ﬁ'+1)XY+ﬂX]q
= p'x(l-x)p -%p' (y-x)z = 0 .
In fact, rewriting x(l-x)r and y(l-y)}t in the above equation by
using (12.1), we get ’
[-a=f-1)x - (¥-a-f'-1)y+ (p-p')xyls
" Bly(L-x)s - B'[y-&+p+L)x]p+ ff'yq +d‘ﬁﬂ'z
+Br(Loy)s + BLY-Grp+1ylq - pp'sp - wpp'e
+ L)' (L-x)p - @+1)A(L-y)q = 0 ,
or
(Y-«-1) (x-y)s - [B'y-p' &+l)]p+ [Br-px+l)]q = O .
Thus we derive the second equation of (14.7). The first equation
of (14.7) is derived if we multiply the first equation of (12.1) by
(x-y) and if we replace (x-y)s Similarly, if we

by B'p-pq.

multiply the second equation of (12.1) by (y-x) and if we replace
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(y-x)s by fq-p'p, we obtain the third equation of (14.7).
Prove that

(x-y)s - §'p +q = 0

Exercise 1.

has a solution of the form

(-] ]
Y BB Y@ Y

m,n=0
where ? is an arbitrary function. In particular, if we take
o {x.m)
'\r(m) B (X’m) s
we find Fl again.

Exercise 2. If we write the system (14.7) in the form

r = pta,qtad

L X i L
Bp+Byatpyz
rlp+ ¥2q+¥3z >

(14.7") s
t=
we can reduce the system (14.7) to a system of totai differential
equations for 2z, p, q by the procedure given in this section.
Let (Zj’ pj, qj) (3 =1,2,3) bé soiueions of the systems of
totai differential equations. Prove that
z) 2y 24 o
Py Py Pyl =
9 95 94
If we write (14.7) in the form (14.7'), the coefficients dj
ﬁj4 and Xj have poles on the lines in € x €:
x=0, x=1, y=0, y=1 and x=y.

consﬁ;xﬁ'-xyﬁ-y(l-x)y;“'p'l(l-y)X‘“'p"l(x_y)'ﬂ‘ﬂ'.

bl
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This implies that any solution of the system for F1 is regular

analytic in .
Cxc-{x=0’;U{x=1}U“y=0}U{y=1}U{x=y}.

' ' .
However, solutions are in general multiple-valued functions.

y 1

v

,'/

In the same way, if we write the systems for FZ’ F3 and F4 in

the form
r = als + a,p + an + 2,z
t =bys+ bp+byg+ bz,
asléx =o(ls +o(2p +o(3q +a(42 ,

9s/3y = fys +Bop + faa + Bz

then the coefficients have poles in € x € at

x=0, x=1, y=0, y=1, x+ty =1 for F2 s
x=0, x=1, y=0, y=1, xy-x-y =0 for Fj s
x =0, v =0, xty=1, (x-y)2-20cky)+l =0 for F .
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>
>

> X . /

Fy ‘ F3 - F

" Remark 1. A natural compactification of the complex plane ¢

is the Riemann sphere which is the unit sphefe of real dimension

two, 1i.e. SZ.

Pl. On the other hand, € x € has two natural compactifications.

This can be regarded as the complex projective line

The projective plane Pz is one of them. The other is Pl X Pl.
Both of them are compact complex manifolds, but they are not bi-
holomorphically equivalent. This means that there is no biholomor-
phic mapping from one into the other. They have, however, a common
modification and hence they are equivalent in a certain sense.

Since coefficients of the systems for Fj are ratiomal in x and
y, these systems are well defined in the compactifications of

€ x €. In various cases, a choice beﬁ&éen two compactifications of

€ x € -is not a serious problem.

Remark 2. The Gauss differential eqﬁation
x(1-y)y" + [¥-@+p+L)x]y' - 2y =0

is reduced to a system
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y' =z2/x , _
(14.8) { : B 1-¥ |, y-x-g-1
SERE = tAd Sraboer-= i L

x-1
if we put
z = xy'
Note that
z’ = xy" 4 y'
and hence

x(l-x)z' = x[x(L-x)y"] + (1-x)xy’ _
ﬁuﬁxy - [y-@+p+L)x]lxy’ + (L-x)xy'
=«pxy + [(1-P+@+p)xlxy’ .

The system (14.8) can be writtea in the form

_ y ) dx dx v
(14.8") d[ ]—- (AT+B;—:T) ,
k4 2
where l
0 1 T 0
A= : . B = .
0 1-¥ -af  y-o-p-1

.Note that coefficients of (14.8') have simple poles. We shall show
now that the system (14.7) or (14.7() for F] can be reduced to a
system of an analogous form. To do this, let us take

z,’ xvaz/ax,l y3z/3y

as unknown quantities. Then

%[xaz/ax] = xr+p , %[x;z/&x] =xs ,
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I . B -
ax[)"=32/:>y] ys , ijy[yazlay] yt + q

Therefore, in a way similar to that in the case of the Causs equa-

tions, we derive from (14.7) the following system:

z ' [ z
C x3z/3x | = (A-d}—:i + Bg;_‘ +c:-:"f+n§‘l_'ﬂl-'+x39;§’f—;¥)) x 3z/ax
y 3z/3y ‘ kyazlay
where
0 1 0 0 0 1]
A=]0 1-y+p' O], B= |0 0 -8
0 -p' o 0 0 1-x+pj s
(o 0 0] 0 0 0
C=|-«p yap-1 -p|, D=] 0 0 o |,
R R S
[0 o 0] '
E= {0 -p! £
LN NS

Note that the coefficients of this system have simple poles at

x=0, x=1, y=0, y=1 and y=x .




