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"HAPTER III

CHAPTER I1L

Monodromy Group of the Gauss Di

15. Euler transform.

Euler integral representation of

1
Cey) I uﬁ-l(l-u)v-ﬂ-l(l-xu)qmdu .
0

G.1) F(GL X = TN p)
The kernel of the integral is

factor TQ/T(EIT(r-$), 1e

(15.1) y(x) = L Lzt g(u) du

611y ¥ Pl and €= (0,11 -

where X,= -d+1, ?(u) =u
This integral (15.1) is a so
equation
(15.2)

We shall find other solutio

choosing A 5 §»

Suppose that we ca

by (15.1), with respect to . X under the

Il

y' (x)

2
y'(x) = L 2
3%

Then we have

In Section 3 (Chapter I)'we derived the

the function F(ot , B> %> x):

(1-xu)-m. Dropping the constant

1lution of the hypergeometrié.diff

L(y) = x(L-x)y" + Ly-(a+pt l)x]y' -opy=0.

ns of (15.2) also in a form (15.1) by

n differentiate the function y(x),

2

fferential Equation

t us write this integral 'in a form ’ﬁ

™~

»

erential

¢ in suitable ways.

given

integral to obtain

gc —g—; (1-xu?x-1 (f(u) du,

(1) §(u) du -
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L(y(x)) = j; L((L - x)™™) peu) du,
where
R 1 - -

LCL-x)™ Y = k(L) [ (A1) (A=2)u? (L-xu)? 3]
+ [y~ (@ +p+1)x] [-(A-Du(l-xu)*"2]
o wp (L)t

Let us write L((1—xu)A°1) in the form
L) = (Lx)*PHex, u, 2)

where

5 = 2
HQx,u,0) = (D) (A-2)u x(l'x)"(k'l)u[§°@‘+ﬂ+l)x](l-xu) -dﬂ(l-xu)z.

The s .
, function H(x,u, A) is quadratic in x, and the coefficient

2 .,
of x~ in H 1is given by
[=(A-1)(A-2) - (A-1) (@ +p+1) -x8 ]u2 .
Note that
(A-1) (A=2)+ (A-1) (++1) + aff = (A+o-1) (A+ B -1)

Therefore, if‘we choose A = -d+1 or = -f+1, the function H

b » - . ‘
becomes linear in x. We.shall fix A ..in this manner Since

the hypergeometric differential equation (15.2) is symmetric with
respect to o« énd @ , we shall consider the case when A=-a+l.
In case when . A = -o+1, we have |
H(x, u, \) = a[{(o{-x +l)u‘2 - (d-5+l)ﬁ}x+ yu- gl

= o [-(ot+1)xu(l-u) ¥ (L-xu) (yu-48)1} ,

and hence
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L(y(x)) = o(Jc;(l-xu) _«-2[—(at+l)xu(l-u) + (l-xu) (b‘u-p)] cf(u) du

- «J [-(«+1)x(1-xu)‘“'zu(l-u)c,o(u) + (1-xu)’°“1(xu-p)<f(u)]du
c A

N -~ —o-1
- dL[ -3%; {(l-xu) « 1} {-u(l-u)(f(u)} + (1-xu) * ()’u-ﬁ)ﬁ;(g)‘]du

- [~ (lxw) " la-w g
o _E (Lox) " {u 0 g@] + Gu-pg)] du

Therefore, if we choose ? and C by the conditions

@53y (el g1+ (ru-p) §) “0
and |
(15.4) | ‘ [(l-xu)""'lu(l-u)cf(u)]C =0,

éhen we have L(y(x)) = 0. The function
-1 -p-1
(15.5) g = oY
satisfies the condition (15.3). Let us fix ? by (15.5). Then
the condition (15.4) becomes

as.4') ePa-w) Py =0 .

]C
This means that, if C is a closed path on the Riemann surface of
(15.6) 0 abaen)¥ Ay ™

or if (15.6) takes the same value at the starting point and the

end point 6f C, the condition (15.4') is satisfied. For example,

we can fix C in the following ways:
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(i) the path joining 0 to 1 if Re >0, Re(a‘.'-ﬂ))O;
(ii) the path joining -0 to 0 if Re >0, Re(x+l-y)> 0;
(1ii) the path joining 1 to +& if Re(y-4)> 0, Re(x+l-y) >0.
On the other hand, Jacobi showed that the following three
curves satisfy our requirements under certain conditions on the
parameters:
(iv) the path joining 0 to l/x;
(v) the path joining 1 to 1l/x;
(vi) the path joining o to 1/x.
In order to find the conditions on the parameteré that these three
curves satisfy our requirements, we must examine not only the

condition (15.4'), but also the assumption that
- A-1
y' (x) =I _'"aax (1-xu) ¢ (u) du,
C

2

Y (x) = j; ;12 (l-xu)A-L?(u)du.

In deriving the conditions on A\ , ? and C, we actually assumed

.that the order of integration and differentiation can be inter-

chénged. This requirement must be satisfied by the three curves

(iv), (v) and (vi). Note that we have

£(x) f(x)
fifa F(X’u)du=Ia ‘%F(X,U)du+f'(x)F(x,f(x)).

Therefore, if F(x,£(x)) = 0, we get
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£(x) £(x) '
d _ P
o L | F(x,u)du —ja 3% F(x,u)du .

L€ we have F(x,E(x)) = 0 with E(x) % 1/x and Flx,u) =
(l—xg))‘]'(f(u) , then thé form'u];a for y'('x) is verified. On the
other hand, if we have F(x, £(x)) = 0 for £(x) = 1/x and
F(x,u) = _53_;(1_5“1)3\-1 Cf(u) , the formula for y" (x) is \lzerified.
Sincé A-1 = -a, these two conditions are satisfied, if

@s.7) Rex < -1.

In order that the integral (15.1) is well defined, it is sufficient
to assume that |

| ‘Re p>0, Rex<1 i1f C is the path (iv),

(15.8) { Re(¥-p) >0, Rex<l if C is the path (v),

| Re(u+l-¥) >0, Rex< 1l if C is the path’ (vi).
Furthermore, the integral is holomorbhic with _respe;t to = , f8
and Y in the respe‘ctive domain (15.8) for each case. In order
that the condition (15.4") is safisfied, it is sufficient to assume
that

Re f >0, Rea < -l L C is the path (iv),
(15.9) Re(§-$)>0, Rea .<-l’ .i.f ¢ is the path (v),

_ Re(u+l-¥) 20, Re a({ -1 Lf C .is fhe path‘/(vi)u
Tt{erefore,; the integral (15.1) is holoﬁnorphic fér '(15.8)_ and
satisfies the hypergeometric di_ffereﬁtial equation for (15.9).
Since thé domain‘>(15‘.8) contains the domain (15.9) for each case,

the integral (15.1) is a solution of (15.2) for (15.8). Thus we
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- proved the following result;:

THEOREM 15.1: 1If we put
(15.10) UG, = uf ) Pl ()%,

then the following integrals are solutions of the hypergeometric

differeatial equation (15.2):

1
(For () =f0 Ux,u)du  if Re §>0, Re(y-$)>0,

: (0
Fwo(x) = Joo U(x,u)du if Ref >0, Re(@+1-¥)>0,

v
Floo(x) =J U(x,u)du ~if Re(y-p)> 0,‘ Re(+1-¥)>0,

(15.11) 1
o 1/x
?Ol(x)=$‘0 U(x,u)du if Ref >0, Rex <1,
1/x
Fll__(x) = g‘ U(x,u)du 1f Re(¥-f)>0, Rea <1,
b3 _ .
00
Fl (x)=J U(x,u)du if Ref+l-~y) >0, Reot <1 ,
\ el 1/x

In particular, all the conditions on the parameters are satisfied

if

(15.12) 0 <Ref < Rey < Re(a+l) < 2.

The function U(x,u) has singularities at u =0, 1, 1/x and

‘w as a function of u. Suppose. that Im x > 0. Then x is in

the upper half-plane and 1/x is in the lower half-plane. More

precisely, we make the convention:
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2N
0 <ar‘gx <, >-1[ < arg}lz <0, -m< arg(l-x) <0 and
- arg(~x)<0. |
Let us speqify the paths of integration in the following manner:
'(i.) For Fg;» the path is the line-segment joining u =0 to
@ = 1. along the real-axis;
‘ (ii) for Fwo, the path is the negative real-axis which joins
u=-0 to u= 0;
(iii) for E:loo » the path is the half-line joiningv u=1 to

‘u =+ along the positive real-axis;

]
[=)

(iv) far : FO 1° the path is the line-segment joining u
: ¥ '

to u = 1/x;

(v) for F

L1’ the path is the line-segment joi.mf.n‘é u=1

Wi

to u = 1l/x;

(vi) for F; , the path is the half-line joining uw=1/x to
. 1, .

X
w = 0 in the direction: arg(l/x) .
=00 > 0 — > +00
1
X

the u-plane
o

In order to define the integrals (15.11), we must also specify
the branches of the function U(x,u) given by (15._10). Note that

this function is multiple-valued with respect to u: To fix a
.

‘each factor u, l-u and l-xu

integral representation of the function F(«, g, ¥, x)
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i

branch of U(x,u), it is sufficient to determine the érgument: of

olf the function U on the paths

of integration. We shall fix those arguments in the following

manner:
(i) 5,_‘F°_r FOl’ arg u = 0, arg(l-u) =0, -Wg arg(l-xu) £ 0;
{(ii) for' Fuo» 8T8 U =T, arg(l-u) = 0, 0 € arg(l-xu) € ¢ ;
(iii) for Flm, arg u = 0, a:g(l-u) =~T, =T sarg(l-xﬁ) £ 0;
(iv) for Fo 1 ® € argu £ 0,‘ Ogarg(l-u)¢n, arg(l-xu) =0;
X
(v) for 'Fll’ -x <argu < 0, OQarg(l-u) £, -‘".'Sarg(l.—xu) £0;
- e
(vi) for FLN’ - £ argu €0, O0garg(l-u) ¢, arg(l-xu)=-7¢.
So’ .

‘As we have shown before, the integral FOl(x) is the Euler .

multiplied

by a constant:

 r(AIrCr-8)
rey

In other words, we have

LG
Fop () = —BEE=Bpa, g, 4, x) .

If we make the change of vériable

1

u = v(v-1)" (Lz2vz20),

the second integral Fmo becomés
0 . _' Coe . . : '
Foo®) =‘(. [v(v-1) 1]6 1’[l-v(v-1)-1]r-ﬁ-l[l-xv(v-l)'ll'“——-—-—'dvz )
' (v-1)
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Let us suppose that arg v = 0 and arg(l-v) =0 as' v goes
~from 0 to 1. Then, since argu =T , we must have
v(v - 1)-1 = leuv(l-v)-l ’

and hence

D P = RO B gy B

On the other hand, arg(l-u) = 0, arg(l-v) = 0 and 1--\1(v-1)"1

= (l-v)-]' imply that _
I RIS SLad st g (1-v) THEL
1f we suppose that |
{(15.13) 0 ¢ argil-(1-x)v] & 7,
then we get
f1- xv(v-l)fll R {1- (lvx)v]-“(l-v)“

‘since

Loxvo-)) ™t = [1- Qv @)
and |
| 0 .é arg(i-xu)‘ S
The assumption (15.13) is justified by the convention: <~ T <‘
arg(l-#) < 0. Note that we assumed at the beginning that 0<

arg x < © . Thus we have
1 . L .
E, () =f FLB-1) -1 _)* V(1 - (1-x)v] T v
v 0
where
arg v = 0, arg(l-v) = 0 € arg[l- (k-x)v] €.

This means that
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= oti(B- 1) L(B)F (wtl-
Fo®&) r‘(oc+p(+°1 x)Y)F(d,ﬁ,“*‘{H‘L-)’,l-x).

gimilarly,

10 -1.-1,. -1 x-ﬁ.-l

Flo®@ = [ @A ™ ey
Lo, emi = U-ﬂ;l 1,
[Ov e ™ (1-v)v71] [(xv 1y (12 "Tv) ™72

wri ( x- 8-1 ea L oo '
- (8 l)(°x) “I.O v b'(1-v)a’“‘s-]'(l-»x"]‘v').u‘dv

- -m(&‘ B-1) [(«t=y+1)T .
(N‘b‘al§y ﬁ), “x) 7 (%, %Y+, o -g+L, 1/%),

1 | |
FO l:(x) °J (vx‘l)ﬂ-l(l-vx-l) Fﬁ-l(l-v)-“xﬂldv

fo Bl 1y (1 )P Ly

- '~Z1ﬂ Fgyrea- -
b RS0 Pr (s, p, past, /)

. 0
= -1 - -
! 1<")‘S (ta-a-on st a-aaon I - - aon - ey
X . X
oA i Bl m -1
=j0[x (-0 ™ (10 -1 T T v

s v A1 1 - : : '
=T (7R fo Y (1) 4B (1) Y 1 L)1

i(y-4-1 1- | - |
ot (v-4-1) f;f xo‘a)j;;g-,l A, 1- Y1) ¥t ﬂp(l-ﬂ,l-% ¥-x-p+1,1-x)
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-p-1) TA-0T=8) 1 _ V%P (y-u, ¥-8, f-a-f+1,1-x) ,
- U S ARG i gt

is called the Euler transform.

The integral

r 0 1 A -1 -1.5-8-1 -l -, -2 -1 '
%M 71 A s —_— [ u (l-u)g 8 (1-xu) ™ du R
- s a o
1 - . - -1, ¥~ .-1 -l -1, -d -2 -1 .
. [ (v-lx-l)ﬂ 1[e’”“(1~vx)v 1X, ] b e " (l-v)v 7] v 'x "dv ~ where a, b =0, 1, 1/x, «o , 1is transformed by u = 1/%¥ into
"0 | 1 a ., gl
1 Ty - -4-1 1 (y+a-g-1) SF const.‘J (1- %) (x-¢)  df ,
o[ RPN ) " (o) TR O gy ¢’ 3
70 . where ¢, d =0, 1, x, 6a . From this we derive the following
-l - 1— 1‘7 - - ! . :
= e”i(“‘“ g-1) ﬂ———nﬂ—-—)-dﬂ';,(z_r) AL " TF(By+Latl=y,2-¥,%) theorem.
We shall summarize these results in Table 15.1. - THEOREM 15.2: If we put
he i .1) is transformed by the change ' : - 2. )
The integral of the form (15.1) i 2, 1) = 3 Y- P - )7,
of variable : : then : oo
u=1/§ 1 o
) (15.15-1) J’ S(x, ‘g)d‘g = const. (-x) F(n(,o(-x+1,a<-p+1,1/x) ,
into : _ i 0 '
- . (t)d b - ,
(15.14) Jp(x §) v’ E Eo ‘ . (15.15-2) f]_ olx, g)dg = const. F(o(,t},x,x)‘,
where : , s . :
o 1-A -1 -2 L 0 -
W ( g) = ‘('\E) T(g ) § : Y (15.15-3) J =, % )dE¥ = const. F(«x, p,c(+p-)‘+l, 1-x),
: . : ) o )
and [° is the image of C by thelchang'e of variable u = 1/§ . : : - :
: ' . : A r X - .
The integral operator which assigns to l{f the integral L (15.15-4) o(x, ¥)dE = const. xl rF(p-YH., w=y+l, 2-¥, %) ,

J j -p ey o .

(15.15-5) Ex, §)d§

const. (1-x)Y " PF(y-u,¥-8, ¥-a-p+1,1x) ,

1
or
§ A-1 1B (15.15-6) * (x g)dg = const. (-x)ﬁF(p p-y+l ﬂ-«-i-l 1/x)
1 E . sy > b ? 9y
mo [ e ey ~ e
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are all solutions of the hypergeometric differential equation

(15.2). | |
Supposing that Im x >0, taking the paths shown in the

figure given below and fixing branches of T{(x, §)’ we can yerify;ﬁ»

the formulas (15.15).

Y
¥
g
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*

16. Connection formulas and monodromy group of the Gauss dif-

" Then the six integrals

: Tﬁ : a semi~circle u = l+re

ferential equation. Suppose that
on. P

5'»and

(16.1) 0< Ref < Rey ¢ Re(x+l) < 2
(16.2) O<arg x <7, -m< arg(l=x)< 0, -%< arg(-x) < 0.

FOI, F-]:'m, Fmo, Fl _]_._’ Flm, Fo 1—_ are well
X . X X
defined and we have three fundamental systems
F F s F F F
{ L | }’ { ’ 1} > { > .L}
01 el 80 1;; loo 0 "

- of the hypergeometric differential equation

(16.3) v_ x(Q=-x)y" + [y ~ (+g+Dxly’ - «fy =0.

‘In this section, we shall find relations between these three

fundamental systems.

Consider first three integrals Emﬂ’ F . and F Consider

01 1eo”
also the following curves in the u-plane:

C,: aline -Rf£u<€-r, whexre R>1r >0,

wi ¢ a semi-circle u = rei(n°8) , where 0€£08< T,

o C,: aline rgugl-r,

i@t-e), where 0€ 0 <€ .,

C, ¢+ aline l+r gu R,

Re'®, 0¢osm .

13 : a semi-circle u

These six curves form a closed path in the u-plane. Let us denote -

by Cy, this closed path. _(CRr = CﬂPlC23}C333 9
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-R - 0 r 1l-r +r R

We shall f£fix a branch Ul(x,;u) of the function U(x} 1) so that
"this branch is single-vaiued-on éRr and its interior. This.
condition is equivalent to the condition that arg ﬁ, arg(l-u)
and arg(l-xu) change_continuously on the curve CR?' Hence
Ul(x, u) 1is uniquely determined by the conditions£
(16.4) argu =71, arg(l-u) =0, O g.arg(l-ku) <7
on the segment Cl. Under the assumptions (16.4), we observe that
(i) on T, afg u decreases from 7 to 0,
arg(l-u) starts from O and comes back to 0
after taking negative values,
‘arg(l-xu) changes coﬁtinuously from a positive
value to a nééative'value;
(ii) on C,, arg ﬁ =0, arg(l-u) =0, and arg(l-xu) varies
between -7 and 0 and takes a negétive'vélue
at u = l-r;
(iif) on ¥, argu =0 at u = l-r and i+r,
arg(l-u) changes from 0 to -T ,

-T < arg(l-xu) £ 0;
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(iv) on C3, argu = 0, arg(l-u) = -, -7 g arg(l-xu) € 0;

(v) on T~
the initial value (i.e. m™ ),

arg(l-u) changes from -M to

0,

3» argu changes from 0 to w™ and comes back to

arg(l-xu) 1increases and arrives at the initial

positive value.

By virtue of Cauchy's theorem, we have

U,(x,u)du =0 .
1
C
Rr

Let r tend to zero and let R tend to infinity, then

lim J Ul(x, u)du =0 (j=1,2,3)

T

J
and
lim f; Ul(x,u)du = Fwo(x) s
"1
lim.f Ul(x,u)du = FOl(x) ,
C
2
and

.lim‘[ gUl(x,u)du =¥ ).
Cy *

Thus we obtain the following relation:

Fwo(x) + FOl(x) +‘F1m(x) =0 .

F

Consider next three integrals F 1
ok
x

®Q’

case, we shall use the following curves :

and F

1
X

(4

In this




Table 15.1

integral |arg u arg(l-u)| arg(l-xu)| transformation identification
1 R
= e CIC(¥-0) .
m.ou (x) % 0 0 {-m, 0] 3 F(et, 8, ¥, x)
0
0 . .
- R ™ (p-1) Emwzkf_.umw
_..3o?v w T 0 {0, u=v/(v=-1) e Pt f+loy) F(, fat+p+l-¥,1-x)
[~
0o . , - .
F ()= M 0 -7 (-7, 0] | u=l/v e TL(¥-f-1) D%bw (%) *F (&, 8-4+1 ,f+1,1/x)
4 | :
1/x
“rif I leot -
F HAXVH % leﬂ.OU_ _”Oq.ﬂn..“ Y] ﬁuﬂ\vn e Hm r ulm._.“_vv A»Nv mm.A\.wumlw.THule.THuH\unv
0z ‘
0
1/x
£ 1007 ) | 1-mo0) 10,1 | {-m, 0] |us[1-(1-x)v]/x ma:-m-:%a-&«-a-#:-g.q-u;-a.?riv
X 1 - .
-]
F ()= M [-7,01 [0,%] -1 usl/(vx) | (¥+u-g-1) _,Q..ﬁmwm%-&foair?z.N-sxv,
x % 1/x . .
- 1) ~
o .(X\ [\
v o0 =
@4 - M, @ .m ¥
ooV, w ® 1 . o
T et
" .a . pn_l <= ol 2
oA ow oo R "
A N g 8
M T - < b ~ix
o =4 o, Mo, - v Iy
A . N »m L. .X ~ " o .m e
~ o~ ool . - ]
) Ay v RS ma .mo B oo ) "o il
- o m " . - ’ .M m..u \Y __. H + FO
4 B oo O ve g9 w» > ’
@ R T S R T - i
8 ﬂ .~ U O>S o ) - ' o =) il
— r~ o N e 4 .
S @ -~ o 8 ~ D + -
e Y g0ty S B ow B n
VR VR g H o8 w4 g +
PP o o v B v e
1 N oV - = AR =)
| b o, o m. o m o 0 B — ) .n Fu
v 5 ¢, ».m e o o -
3 m Qo QU Qg 1 53 o~ o ¢ ‘
g o i o ] m 4]
o " i m [ " N mo =
] .m o] u e 1a..._ fml % .w,. .
@ w v o ©. m o v M
E X &£ B £ H = o -
2 % "2 8 .4 0% y N : E
8 W o o @ o oo v e 7
g S
X3 'S ae e . we as 1} 43 o o
ou e a._m o
S o M..u2 S8 6 © «
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-F, 4o TRy 2R

F o4 =0 .
" THEOREM 16.1: The six in;egrals FOl’ FL R Fwo’ Fllf Flm
, x
and F0-1 satisfy the following four relations:
z ;
- Y[y )
1. 0 1 0 1 0 01
~2ix - Fy
0 e X SIeig 0 1] 2w
(16.5) v wg| =0
' 1 0 0 1 0 -1
F1
L3
_ 1o
~
F
1
“ 0;(.4

It is easy to verify that every four-by-four submatrix of
the matrix of (16.5) has rank fogr. Hence, if we select_any two
integrals from the six, then the other four integrals can be ex- -
pre#se& as é‘linear combination of the two. Such relations are

called connection formulas. For example, we have

oo2mid __-2miy (2L (r=p) -2miu_

= F o+ 1]
01 -2mi(¥-f)_-2Tix "e00 = -27i(¥-B)_,-2wix

'F

F
1
1z

l_e-Zni(x-u) e-Zmiu_l
= " F + F
e TEOaeg) ) w00 T | mEEEY) L

On the other hand, Table 15.1 shows that

Y o rgézr‘gz-‘@) : '
F01(X) r(r) F(x, {3: 3', X) ’

= JML(B-1) DB C(e+1-¥)
F‘OO(X) e r‘(“+ﬂ+l' x) F(“) ﬁ:“"'ﬂ‘x:*'la 1‘X) ’
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and
7l (F-F-1) [-a )T =8) 1.y T4 BE (yoo y= B, Y- )
Fl L(x) = e r(('d"ﬂ'i'l) (1 K) F(x “,0' ﬁ,x X ﬂ+l)]— X)-
X
Therefore

T (Y=o~ ‘
(16.6) F(x,p.¥,%) = ﬁﬁﬁgw«,p,wp-m,l-x)

COOPKAB-¥) o1 ) ¥™2" I .
* Tr@TR) (1-x) pF(?( oty 4= ¥=ot-f+1,1-x)

Note that

1. 20 i (p-1) | _sin(x(y-a))
é;2mi(x-d-5)_1 ¢ sin(m(y-a-p)) ’

sin(mT«)

-'?.w.i& .
-1 Ti(y=-g-1) _
< S 6 T sin(m(x+p-y))

_e-2m10x+ﬂ-y)

1

and .
| F(s)P(L=8) ==<Tacasy
The>fo£mu1a (16.6) can be obtained also in the following manner:
Set

F(a,ﬁ,x,x)==AF(d,3;d+ﬁ~x+1,l-x)

+8QA-x) Y™ PF(y-u, 7B, ¥-a-p+l, 1-x).

Let x tend to 1. Then by virtue of Theorem 3.3 (Section 3;
Chapter 1) we get

PO (r-o-8)
F(¥-0) M ¥-p)

A

under a suitable restriction on the parameters & , B and Y -

Next let x tend to O. Then again by using Theorem 3.3, we get
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I"(az-+ B-¥+1)(1-¥)
Plo-y+1) F(B-¥+1)

P(y-«-8+1)[(1l-¥)
P(l-) F(1-8)

1T =A +.B

From this we obtain

_LOOC(x+p-¥)
FC) T ()

B
In Section 11 (Chapter IL) we derive& a connection formula
(11.7) which represents F(x‘,p, ¥, x) as a linear combination of
(-x) F(a, a+1-¥ , a+l=-g, 1/x)
and , |
| (-x)-pF(ﬁ,ﬁ+l-x,@+l-a,l/x).
(CE. Theorem 11.4, p.74.) .As this connection formula holds under

the condition that

(16.7) s B> ¥ x-f, ¥-x, ¥-p, ¥-ot- B # integer,

all cqnnection Eormulas of this kind’also hold under the condition

(16.2). If we know one of those connection formulas, then other
formulas are derived by using changes of variables and by using

the identification of twenty four solutions of Kummer.
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17. Monodromy representations of the Gauss differential equation.

This section is a continuation of Section 6 (Chapter 1). In Sec-

tion 6, we defined the monodromy representation of the Gauss
differential equation (6.1) with respect to a fundamental system

i fk}~

section, by using the six integrals (15.11), we shall compute

We also stated Theorem 6.1 (p.39) without proof. In this

monodromy representations of the Gauss differential equation ex-

plicitly.
As in Section 6, let D = c-{o0, 1} and let x; € D. We
denote by 7t1(D; xo) the fundamental group of D with the base

point xg,. By the definition of 1r1(D x ) which was given in

Sectlon 6, an element of 7t1(D xo) is a homotopy class of loops

in D which start and terminate at x,. Let .L be a loop Whlch

encircles the point x = 0 once in the positive sense, but does

Denote also by 11_ a loop which

not encircle the point x = 1.
encircles the point x =1 once in the positive sense, but does

not enCchle the point x = 0. The homotopy classes containing

g

Then nl(D, xo) is a free group generated by | Eol and [.21].

and El are denoted respectlvely by [.ZO] and ‘[ £,].

4 Let {?,:W} be a fundamental system of the Gaussydifferential»

: i
equation..  Then the monodromy representation with respect to
{% ¥} is a homomorphism:

)o : ’7c1(D, xo) -—»GL(Z, C) .

S (17.1)

. The matrices (17.1) are called the circuit matrices around. x = 0
Y and x =

“? present two methods for computing A
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This homomorphism f is uniquely determined by two matrices

ag = PULED, A = PALD.

1 with respect to

{94}

respectively. We shall .

O. and A1 in this section.

Method I: The first method is based on the connection formulas

among the six integrals (15711). Suppose that Im x., > 0 and that

0
0<Re[5< Rey < Re(x+1) < 2 .

" We shali
. use the fundamental system {FOI’ Flu}. Note that

Foi(x) = const. F(o(,ﬁ, Y, x)

and
F (x) = const 1-¥ '
1, nst. x F(a-y+l, f-y+1, 2-¥,x) .
X

The solution FOl(x) is single-valued in the neighBorhood of

.while the solution F, (x) goes to e ZmarFl (x) 1if it
- : oo

® ) =
. ' X

x =0,

b [

is continued analytically along .Qo Therefore, in this case, we

have

1 0
A, = .
0 . - Y .
S e‘mex

In order to compute Al’ we use the following connection formulas:
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“2%ix  ~2riy -2ni(y-8) , -2®ix

o R e - e (e "1)

Fol(x) = yy F”O(x)+ , A Fl}%(x?
17.2 ‘ . P
( ) | e-zni{s-l 1-6-271'1(3"5)

F1 (x) = Fmo(x)-!— 7 F]_.L.(X) s

0 "

where

A= o 2EL(¥-p) _  -2mix

By using the fact that

F”O(x) = const. F(oc,p,o(+[3 -xﬂ., 1-x) ,

F 1(x) = const. (1-x)’-“-‘gF(a’-o(, b’-p,b’-x-l3+1, 1-x) ',
1_
X

we derive

1 0

Al =C » c-l ’
o o2l (y-x-g)

where C 1is the matrix of the linear relation (17.2).

<-~'/;thod II Assume again that Im x, > 0. We shall use the

fundémenté‘.f“system .{Fd’l, Fl !__}, where
. = o

1 ‘ .
F..(x) f uﬁ-l(l-u) X.ﬁ-l(l-xu)-qdu .
01 0

@7.3)

. : 1/ Ao - '
F l(x) J. qu-l(l-u)XB ,l(l-xu) *du .
1y 1 .

The paths of integration are fixed in the same way as in Section 15.

Let us consider first the analytic continuation of . FOl along

“Fope ¥e

" 1/x 1is never on the path of integration. Let x start moving

lo. We must invescigaté how the quantity arg(l-xu) changes
along (0. We can assume that l-O consists of two parts:
(1) a line-segment joining xg to iro and (ii) the circle

Ix| = Ty where ry is a small positive number. (See Fig. 17.1.)

Fig. 17.1

.v Now it is easy to see that the change of arg(l-xu) along the
. loop ZO is zero. Hence FOl(x) does not change by the analytic

 ' " continuation along -eo.

Let us next consider the analytic continuation of F along

01
ael. As x moves along 11, " the péint 1/x wmoves along a loop
encircling x =1 in the positive sense. (See Tig. 17.2.) In

order to keep the same branch of the integrant for the integral

we must deform the path of integration so that the point

along ,21 at x = xq. ‘As x moves along ,El, we deform the
path of integration. When x comes back to Xy the path of
integration becomes a curve shown by Fig. 17.3. This curve can

be further deformed into a curve shown by Fig. 17.4. It is then

‘not difficult to show that FOl(x) changes into

Py (0 + (1 -e-zm)FIL(x)
X
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by the analytic continuation along Z]f

0 -
".llx0
Fig. 17.2
0 1
0 > >—1 _ -
1/x : z;ﬂ
O ]./x0
Fig. 17.3 Fig. 17.4
‘Let us consider the analftic continuation of F along ‘80.

1
X

As x moves along 4 the point 1/x moves along a 1dop

0’

encircling'the points 0 and 1 in the negative sense. (See

Fig. 17.5.) We must deform the path of integration for F 1.‘so
: . ’ 1%
. -

that the points 0 and 1 are never on the path. When

X comes back to X after moving along-'.eo, the path of inte-
grafion becomes a curve shown by Fig. 17.6. This curve can be

“furthex deformed into a curve given by Fig. 17.7. 1t is then not

. s ot
difficult to prove that F ,(x) ' changes into
ko .
(-1+ e_zm'ﬁ)FOl(x) + e-ZWF 1(x)
( : i

by the analytic continuation along '60'
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1/x0
Fig. 17.5.

It is easy to see that Fil(X) changes into ~ezmi(¥;“-5)F 1(x)

P,

by the analytic continuation along ll'

Thus we obtain

1 0
A0 =
-(1-¢~2%18 ) o~ 2mly
ahd
1 lﬁe-ZWim
A1 =
0 e'?ﬂ10*+ﬁ-¥)

(CE. Theorem 6.1, Chapter I, on §.39.)

=
<
(‘v
1/x leo
Fig. 17.6 Fig. 17.7

X




