- 124 -

CHAPTER (v

Solutions of Systems of Partial Differential Equations

for Hypergeometric Functions of Two Variables

18. Solutions of the system for Fl. In Section 12 (Chapter II)

we derived the systems (12.1); (12.2), (12.3) and (12.4) of partial
differential equations satisfied by Fl’ FZ’ F3 and F4 respec- .

tively. Let us consider the system (12.1)

x(1-x)r+y(L-x)s + [¥- @+f+1)xIp -Byq -«fz = 0 ,
(12.1) { '
y(A-y)t+x(l-y)s+ [y-+p'+l)ylq - g'sxp - «p'z = 0 .
In Section 5 (Chapter I) we provéd that the Gauss differential

equation has twenty four expressions of solutions of the form

L) TR )
x ) -i’ﬂi’,xi’xi »
~here fi’ 6}3 di, ﬁi and Xi are linear in «x , ﬁ and
¥, and x; is one of the six transformations

x, l-x, 1/x, 1/(l-x), (x-1)/x, x/(x-1)
(Cf. Theorem 5.2, p.31.) These solutions are divided into six
groups and any two solutions of each group are linearly dependent.

It isvknown that the system (12.1) has sixty expressions of solu-

tions of the form

£ - & P 'y T,
X i(}—x) iy a (1‘}') 1 (X‘Y) lfl(di, /Ai’ ﬂ]'_: Yi’ xi: Yi) >

where fi’ 6> f;, G'i'_, ’ri, X5 {5]._, p]'_ and Xi are linear
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in «, P, ﬂ' and Y, and x, and y; are linear fractional

i
expressions of x and y. Furthermore, these sixty solutions are
divided into ten groups and any two solutions of each group are
linearly dependent. In this sec;ion, we shall find these sixty
expressions of solutions of (12.1).

To begin with,'let ﬁs consider the simple integral represen-
tation of Euler for Fl :
(10.4) F (e, 8, B'5¥,%,7)

1 1
Py o-1 ., (¥-x-1 1- -p 1- -p da
FEOT (=) Jy * (1-u) (1-xu) P-yu) ™% au

(C£. Theorem 10.2, p.64.) In Section 10, we showed that the solution
defined by the integral'(lo;h)'has six expressions ' which are derived

from (10.4) by changing variable u respectively by

u=v, u=1-v, u=v/[QA-=x)vx], u= v/ (L-y)+vyl,
(18.1){ :

u = (1-v)/(1-vx), u = (1-v)/(1-vy)

(Cf. Theorem 10.3, p.65.)
The method of the Euler transform
‘(C (l-xu)A -ljo (u) du
which was explained in Chapter II1 suggested that, if we consider
the integral of the form
A1 -1
(18.2) z(x, y) = J. (1-xu) (l-yu)» ?(u)du-,
' C

we may determine X, Mo ? and C so that (18.2) satisfies the

system (12.1). Moreover the formula (10.4) suggestes that we may
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take
X=-f+l, p=-p'+1, ¢ =u* @t
and that we may take curves joining any two points of 0, 1, 1/x,

l/y and o0 as 0. This means that an integral

b

(18.3) z(x,y)=f o* 1 -0 (k) B 1-yu) P du

a
may satisfy the system (12.1), where a° and b are any two values
of 0, 1, 1/x, 1/y and & . We shall verify that (18.3) is a
solution of (12.1). . |
Set
P = PN LA
in (18.2). Suppose that the derivatives of z(x, y) can be obtained

by differentiation under the symbol of integration: i.e.

p f Bu-x) * gy F o ) au,
C

a]
]

_(;: B'u(l-xu) 'ﬁ(lﬂm)_ﬁ' al?(u) du,

2]
[]

j; Bp+1u Ax) P2 (1y) P o) au,
8= fc BA" @) Pl ayu) B oy au

t = f v@'(ﬁ'-p]_)uz (l-xu)-ﬁ (1-yu)-ﬁ"27(u) du .
[od

Then
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L(z) = x(1-x)r+y(l-x)s + [¥-(e+p+1)x]p -Pyq -“#42

J, T Ao PR
+ B y(L-x)u’ (Lxw) Pl (1yuy BT
+ B - ++D)mu-xu) P (1oya) F
- B yuCloxw) P 1oy AT
- patox) Py P g ) du
Now consider the function |
(18.4)  G(x,y,u) = (L-xu) P 1(1-yu) B’ ux (1)
= Qo) Pl 1-yu) B u1-u) ‘fb(u) .

Observe that

.3

1 25 S LN S &1
G 3G/u = xl-xu+yl-yu 3

[~

and hence
36/3u = (p+1)xu(l-u) (1-xu)'5°2(1-yu)'ﬁ'<f(u)

+ pyu(i-o) (xe) Py F L g )

+ (L= ~o0)u] Lxw) P gy H 9wy
If we use two identities:

a(l-u) = =(l-x)u’ + (l-xu)u
and _
& (l-u) - (¥-«)u = -Yyu =«xu -yu+a(l-xu) ,

we obtain
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3G/2u

[-(B+D)x@-x)u” (Loxw) P72 (1-yu) i
#(p+Dxa (L-xw) Pl (1yu) TF

- p'y(1x)u? Loxw) Py 8T
+ pryu(oxw) Loy T
+(axu-¥u) (L-xu) L (1ayu) P
+a-x) P 1oy P 19w
- [(p+Dx-x)u’ Axn) FE (1-yu)
+ gy (Lom)u? (Lxa) BT (1oyu) BT
+ (f- (ot A1 (Loxn) B (1 oyu)
- pyu(-zw) ALy P

- 2= Py P g @

Thus we obtain
L(z) = - J‘ 3G/dudu = -p[G(x,y,u)]r. :
c . -

Interchanging x, y and F’ ﬁ', we also get

M(z) = "p’[H(X, Y u)]c ’

where

M(z) = y(l-y)t+x(l-y)s+ [¥-(x+p'+l)ylq - f'xp - gp-z
and
(18.5) . H(x,y,u) = (1-xu)',5(1—yu)‘5"1u°‘(1-u)"‘°‘ .

Therefore, if we take C so that

(-0 1) F Ty P =0,
(18.6) { ’

[ (1-w) ¥ (L) B1-yw) P =0
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then
L(z) =0 and M(z) =0 .

This means that (18.2) is a solution of '(1.2.1). Thus we can take

fad

as £ a path joining any two points of 0, 1, 1/x, 1/y and o0 ,
if the real parts of the parameters x, p, [3' and ¥ satisfy
suitable conditions.

THEOREM 18.1: Let us set

«-1 ¥

(18.7) 0, v, u) = u* L (1-w) " (1oxu) B 1yuy A

Then the system (12.1) has the following ten integfals as solutions:

1 .
(18.8-1) f U(x, vy, u)du if 0 < ReX < Rey ,
0

: 0
(18.8-2) J‘ U(x, y, u)du if O<Rex, Re(y-B-B')<1,
o0

[-4]
(18.8-3) J‘ U, y, u)du if Rex <Re¥, Re(x-ﬁ-g')<1,
1

, 1/x :
(18.8-4) ‘(. U(x, y,u)du if O<Rex, Refi<1l,
0

l/y
(18.8-5) g U(x,y,u)du 1if O<Rex, Re p'<1 ,
0
1/x

(18.8-6) U(x,y,u)du if Re« < Rey, Reﬁ<l s

1
I
0

1/y .
(18.8-7) S U(x,y,u)du if Red< ReY, Re I?;'( 1,
(18.8-8) g

U(x, y,u)du if Re‘5< 1, Re(!-[&-[}')(l,
1/x
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to
(18.8-9) j‘ U(x, y,u)da if Re5’<1, Re(g-‘%-(s')<1,
1/y ’
‘ 1/y :
(18.8-10) g U(x, y,u)du 1if Reﬁ(l, Reﬁ'(l .
d1/x

In particular, if
(18.9) 0<Red<Re)’<Re(‘5+(5'+1)<2, O<Ref, 0<Rep' s
then these ten integrals are solutions of (12.1) at the same time.

In order to fi_x paths of in;egrations and branches of U(x,y,u)
as functions of Vu, let us suppose that

Imx >0, Imy >0,

or more precisely
(18.10) _ 0<Cargx<m, O0<Largy <7
Then 1/x and 1/y are in the lower half-plane. We assume that
(18.11) - arg(l/x)< 0 A, -T<arg(l/y) < 0
On the othei hand, ‘(l-l/x) andb (1-1/y) are in the upper half-
plane. We assume that -
(18.12) Ocarg(l-1/x) <7, O<arg(l-l/y)<T
Further assume that

(18.13) - < arg(l/x) < arg(l/y) < 0

and
(18.14) . 0 < arg(l-1/x) < asg(1-1/y) < 1T .

Then 1/y lies in the domain bounded by three lines:
(a) u=s (L€s<€+0),
) u= (l-s)+s/x (0sssl),

and

- 131 -

and
(c) u = s exp[i arg(l/x)] (1 €£s € +w)

(See Fig. 18.1.)

Fig. 18.1

This relation of the positions of 1/x and 1/y implies that
y 1is inm the sector:

0< arg y < arg x
and that y is within the circle passing through three points
0, 1 and x. (See Fig. 18.2.) We shall fix the paths of inte-

grations as indicated by Fig. 18.3.

Fig. 18.2
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+ ' : ' fable 18.1
»

Y
v
r

integral| arg u arg(l-u) arg(l-xu)|arg(l-yu) transformation

1 .
S 0 0 {-m,01 {-m,0]
1
x 0 _
9 0,x] | u=v/(v-1)
Fig. 18.3 (| = 0 (0,71 to.ml 4
. ©
We shall determine branches of U(x, y,u) as indicated by Table o
S 0 - [-m,0] (-x,0] u=1/v
18.1. Note that it is sufficient to determine
: _ - 1
arg u, arg(l-u), arg(l-xu), arg(l-yu) 1/x .
on each path of integration. As it is shown by (10.4), we have h ’ :
1 .
U(x, y,u)du = const. F (x,B,B8',Y,%,7) . l/y u=v/y
-(o 1 .P P , S (-mo0] | [om} | [-m0] } O
Other integrals of (18.8) are also expressed by means of Fl' To 0
o . 1/x = 1/[x+(1-x)V]
prove this, it is sufficient to make the change of variable u S [-7,0] [(0,x] [-% 0] {0,md u
as indicated also by Table 18.1. For example, 1
l/y = (1-y)vl
0 i (x - 1 - LI - -at ~%,0] [-TT,O] u 1/[}"“' Yy
L, Uk, y, u)du = e P& ”f v (e () TP (L Loy o) Py § |rmor| foxl | LT
0 : 1
- .
= o M @-1) P(B+p' -¥+1) . ' : - [0,x] u=1/(xv)
¢ Platphpg+1)  F1(%0 Bs flootftpl-y+l, 1ox, 1-y) . { |tmor| fo.] ’
) 1/x
As the first integral (18.8-1) has six expressions, (Theorem 10.3 Lod =
‘ . . 4 S [-1[,0] [o’w] [‘K’ol -TC . u 1/(YV)
P.65), each integral has also six expressions, Therefore, alto- 1y
y
gether, we have sixty ex ressions of solutions of (12.1). l/y ’ -
> , y exp : (12.1) | N T i (0,7l u=1/[y+(x-y)v]
?
Remark 1: The integral (18.3) is transformed by the change

of variable

[
-~
]

us=1/y




Table 18.2
integral{ arg v | arg(v-1) arg(v-x)|arg(v-y) restrictions
0 - [-m,0] ! [-m,0] Re<ﬁ+ﬂ_'-x)>:
f Re(¥-a) >0
Re ()’-d) >0

[JESO} {“ﬁ,()] Re « >0

]
P

(0,7 | t0,m] | [-%,0] | (0,2 | p@*F 0>

(o,z] | [0,m] -k, | [-7,0] | Re(B+B'-¥)> -1

=TI [ O (Ot M | ™ B By ) [ O ey
[
<

Re g'<1
o1 10,1 | w0l | [o,2n] | geGr9>0
4 0 Re(¥-2) >0
§ o.x] (0wl | [-Rm) | [-m0] | o200
H | R 1
§|tom om | to,m |rom | REESE
J .
¢ | Re f'< 1
[ |wm tom | tow | (w0 | Re B
y
1 ltwn ] o | 020 |ro2m | R8sl
é 3 > > [ ? Re ’3,<1
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into
d
f V(x,y, vidv ,
c _ o .
where _ ‘
Ve, v, v) = B8 T ) L Ry F
and

¢c=1/b , d=1/a .
Thus we derive ten integrals of V(x,y,v) from (18.8-1)~ (18.8-
10). These ten integrals are solutions of (Fl).

THEOREM 18.2: The integrals
. B d . - - -3
(18.15) f B Gy ) Py T aw

c ' :

are solutions of the ’syst'em (12.2) under the respective restric- -
tions given in Table 18.2, where ¢ and d are any two points of
0, 1, x, y and o . The paths of integration are taken as
" indicated by Fig. 18.4 and branches of integrand are determined

as indicated by Table 18.2.

+60

t
8

o
v

[

Fig. 18.4

In Fig. 18.4 and Table 18.2, we assumed that

{0 <argy<argx <7
0 < arg(y-1) < arg(x-1) < ™
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Remark 2. 1In order to guarantee the convergence of the
integrals (18.3) and (18.15) we must assume certain conditions
on the pérametefs K, ﬂ R ﬂ' and Yy .v There are two ways of
weakening these conditions. One of them is to take closed paths
of integration. The other is to introduce new idea, called a
finite part of divergent integrals. The first method is as fol-

lows: For example, we replace the integrals

1 1
“' U(x, vy, u)du and j’ Vix, y, v)dv
0 0

respectively by the integrals
S;s u(x,y, u)au s j.c V(x, y, v)dv

along a closed curve C which is given by Fig. 18.5.

Fig. 18.5

Then : 1
S;.U(x,y,u)du = (l-ezni(,-d))(leeznix)J. U(x,y,u)du
: ‘ 0

i (Y- 27rio 3 -
’=t (l-e i (Y u))(l'e m)ﬁiLF(L*l)—“)‘ F]_("‘:F:ﬁ':yﬂt’}')

if none of «, y- and ¥ is an integer.

The second method, i.e. the method of the finite part of
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. o /
divergent integrals is essentially based on the concept of

‘analytic continuation. For example

1
J U(x, y, u)du
0

is originally defined for O<Rex < Rey . However, for fixed

(x, y), this integral can be analytically continuable with respect

_ to the parameters « ; . f' and ¥ . Thus we can define this

integral in a much larger domain. If we apply this idea to the

integral

1 (¥ A-1
F‘(';Jfo x-%) " e(Frdg ,
then this integral becomes meaningful for every value of A if

(x) 1is a C%-class function. We can regard
% _

X
. -1 _ A-1
T:% =TT ,(0 (x-§)" " ¢(§)d§
as é linear functional. This functional is a distribution in the

sense of L. Schwartz. In particular:

x R
fo fn (F)d5dE--df__ (A=m),
TV 8,9 g0 (=0,
?(n) ) , A l (A =-n),

where n is a positive integer and | Sx ~is the Dirac-distribu-

tion.
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19, Connection formula and monodromy representations for the

system (12.1) satisfied by Fl' In this section, we shallvbriefly

explain connection formulas among solutions of the system (12.1)
and monodromy representations fo? the system:(IZ.l).

To begin with; let us consider the ten integrals (18.15). We
suppose that these ten ihtegrals are well defined at the same time.
This is possible under a suitable assumption on the parameters « ,
B, ' and ¥ . The paths of integration for these integrals
arevshown by Fig. 18.4. (Cf. Theorem 18.2, p.133.) We shall use
the same idea as in Section 16 (Chapter III) to find connection
formulas among solutions of (12.1). The basic idea is
(i) to takeba closed curve consisting'of parté of these'paths
of integration and small ciréﬁlar arcs and large circular arcs sc
that Cauchy's integral theorem can be applied, and then
(ii to let the radius of small circular arcs tend to zero and to
let the radius of large circular arcs tend to infinity.

By using vafious closed curves of this kind, we can £ind more
than thiféy;relations among théktehrintegrals (18.15). For example,

if we use the closed curve given by Fig. 19.1, we get

0 1 %0
[ Vdv+J'Vdv+J Vdv =0 .
"R 0 1

It is known that the'system (12.1) has only three linearly inde-
pendent solutions. (Cf. Theorem 14.1, p.91.) This means that

there are only seven independent relations. As these relations

- 137 -

show, any three of the ten integrals (18.15) are not necessarily

linearly independent. It can be shown that three integrals.

x y 1
f Vdv, J- Vdv and - f Vdv
0 0 o

- are linearly independent.

Fig. 19.1

We shall now proceed to the monodromy for the system (12Z.7).
In Séction 14, it was explained that the system (12.1) has the
singular set which is the union of the five lines:
(19.1) {x=0}u{x=1}u{y=O}U{y=1}U{y=X}
and that any solution of the system (12.1) is regular analytic
in the domain B
(19.2) B = CxC={x=0}U{x=1}U{y=0}U{y=1}U{y=x}.
(Cf. Section 14, p.94.) In the same way as we defined the funda-
mental group ‘RI(D, xo) of D=¢€ -{Q, 1} with the base point
X, in Section 6 (Chapter 1), we can define the fundamental group
Ttl(pg N (xo, yo))’ of £ witha Pase point (xo, yo). Then
taking a fundamental system of solutions of (12.1), we can define

the monodromy representation with respect to this fundamental

system in the same way as we defined monodromy representations
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of the Gauss differential equation (6.1). (Cf. Section 6,
Chapter 1.) The monodromy representation thus defined is a homo-
morphism of 7|:1(a9 . (xo, yo)) into GL(3, ¢€).

It is known that 7tl(D, X is a free group generated by

o
two élements. (See Section 17, Chapter III.) However,

Kﬁ({@, (xo, yo)) is more complicated. It is true that

‘Ii(ag, (xo, yo)) is generated by five elements. To find these
five elements, consider a complex line in €x € which passes
through the base point (xo, yo) and intersects with the five
singular lines (19.1). This means‘that this line is not parallel
to any of these five singular lines (19.1). Furthermore assume
that this liné does not go through four points (0, 0), (0, 1),
(1,0) and (1,1). These four points are intersection-points
between thé singular lines (19.1). This complex line can be
identified with the complex plane C. The& the intersection-

points with five singular lines (19.1) are represented by five

points Al,;A2;>A3,VA; and As on this complex plane. The base

point (xo, yb) is also represented by a point B on this com-

plex plane. The intersection of ) and this complex line is

identified with C.={A1; ;";'AS}. The fundamental group

TLI(C 1{A1, -=-,A5}, B) of _C-—{Al, N As} is a free group
generated by five elements. Those generators are represented by
fivé'loops surrounding Al’ ceey, A5 respectively. Let us denote

these loops by €1, ceey 4 (See Fig. 19.2.) - 'It can be proved

5

- 139 -

that 7t1@8 ’ (xo, yo)) is generated by five elements correspond-

ing to these five loops.

Fig. 19.2

Although 7m1(€ -{Al, "',AS}, B) is a free group,
7t1(¢9, (xo, yo)) is not a free group. In other words, there
are relations among the five generators. To see this, let us
consider 'ZZ ahd ‘l3. Note that the complex line intersects
with the singular lines x =1 and y =0 at A2 and A3 re-
spectively. Suppose that the base point (xo, yo) is in a
neighborhood of (1, 0). The poiﬁt (1, 0) 1is the intersection-
point of the two singﬁlar lines x =1 and y = 0. More precise-

ly speaking, suppose that (xo; yd) is in the domain

(19.3) 0<|1-xlg<8, 0<|yl<céd, //x=y
where § 1is a sufficiently small positive \ ‘ y=1
number. The domain (19;3)>is homeomorphic A3\Q2 y=0
to Cxc-{x=l}u{y=0}-—j (C-{l})\((c-{O}). x=0 x=1

The loop .£2 can be deformed into a loop

lying in the line vy = Yg» and this deformed -
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loop can be considered as a circle S, defined by

8yt x = l-i-(xo-l)eie > ¥ =Yg -
The loop l3 can be deforgéd>into a loop lying in the line
X = Xg, and this deformed loop can be coﬁéi&ered as a circle
8y defined by

83 1 X =Xg y'= yoeie .
The product of s, and 84 is awtbrus éonﬁained in of , and
s, and s, are two circles on this torus. It is well known that
s, and, Sq are'commutative on the tqgus. In other words, $,S3
is homotopic to S38, on the ﬁo:us, The:efore, $,83 is homo-
topic to s,s, in & . This means that ZZ‘Z3 is homotopic
to £3 22 in & . Thus we conclude that [ /,] and [ (3]
are gommutatiye in thevgroup 7r1(,9, (xo, yo)). This shqws that
this group_is”not a free group. Similarly, K ll]. and [,Z4]
are comnutaﬁive in.j 7t1(x9, (xo, yo)).. There are other rélations.
For example, there are relations among ¢ 1’ ,83 and 15'
These relations arise from the fact that three singular lines
x=0, y=0 and x =y intersgét at one point (0, 0).

In order to compute the moﬁodromy representation with fespect

to the fundamental system

X y 1
‘I’ V(x, Y v)dv, j V(x, y, v)dv, ‘l V(x, vy, v)dv
o o - <0

of the system (12.1), let us first consider thiree loops ll, 12

and £5. The line y = Yo intersects with three singular lines
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x=0, x=1 and y =x ‘at (0, yo); (1,'yo) and (yo, yo)
respectively, but this line does not intersect with the other
two singular lines. The base point (xo, yo) is-oh this line.
Now we shall deform three loops [13 ‘12 and .ZS into three
loops Z]'_, Zé and _eg lying in the line Y =7, If we
identify the line ¥y =Yg _withﬁfhelépmplé; plane, ;he lopp'.[i
can be considered as a loop starting and terminating at #0 .and
surrounding the origin x =0 in the positive sense. The loop

0
and surrounding the point x =1 in the positive sense. The loop

[é can be considered as a loop starting and terminating at x

_[5 is a loop starting and terminating at x, and surrounding

the point x = Yo . in the positive sense. (See Fig. 19.3.)

4 [ o \ 1
o/

Fig. 19.3

1f we continue

o )
- X '- el - - '
s‘ V(x, y, v)dv =f P T oy T L) B v-y) Fav
0 0 ; ,

analytically along [i, then this integral becomes

. . X
eZ‘li(ﬂ ") jov(x, ¥, v)dv .
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This is due to the fact that arg v and arg(v-x) change to
arg v+2mi and arg(v-x)+2wi, but other arguments do not
change after the analytic continuation along ,Zi Let us next

continue the integral
y _
(19.4) f V(x, vy, vidv
o

along the loop [i We must deform the path of integration so
that x does not go across the path. Hence at the end of analy-
tic continuation the path of integration becomes a path as shown

by Fig. 19.4.

y
Yo

Fig. 19.4

Note that the path shown by 19.4 can be further deformed to a

path as shown by Fig. 19.5.

Fig. 19.5

Taking the change of arg(v-x) into consideration, we conclude

that the integral (19.4) becomes
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. rx y
(e 2"’“*-1)} Vdv+f Vv .
' 0 0

Similarly the integral

1
J- V(x, vy, v)dv
0

becomes

x 1 ‘
(e~2TB -1)f Vdv + f Vdv
o Jo

after the analytic continuation along l]'. Therefore the circuit

matrix along li is

-~ '
e_m(g -Y) 0 o h
e 2P 1 ol.
o ~2mif ) 0 1

\ - >

In the same way we get other four matrices corresponding to the

other four generators of TL‘l(a&, (xo, yo)). By these matrices
the monodromy representation with respect to the fundamental

system

X ~y -1
f Vdv, J Vdv, J Vdy
0 Jo 0

is completely determine:i.-
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20. General solutions of the sysﬁemsA(IZ;Z); (12.3) and (12.4).
In this section, we shall derive géﬁeral solutions of the systems
of partial differential equations which are satisfied by ‘fZ,IF3
and F4 respectivgly. We shail first consider the system (12.2)
which is satisfied by FZ :

x(1-x)r - xys+ [§-@+f+1)x]lp -Byq -afz = 0 ,
(12.2) { 7

y(l-y)t -xys+ [¥'-@+p'+1)ylq - B'xp -dp'z =0 .
Let us make the change of variablé | .
(20.1) z = ytz!
Then the system (12.2) is transformed into
x(l-x)r'-xys'+[2*+¥-(2*tﬂ+*+ﬁ+l)xlp"C*+5)YQ'

=[ (vt a+{3)—A(A+y-1)x'1]z' =0,

y(L-y)t' -xys "+[ 2+ ¥" - (Quhtect B+1)y]q" - r+p Ixp”

(20.2)

~[ (W) ik g -u ey -1)y L1zt = 0

If we remove the two terms

k(h+y-1)§-l and p(u+t x'-l)y-1
from (20.2), then the transformed system (20.2) has the samé form
as (12.2). For this purpose we shall take :A_ an& M so that
(20.3) _ A+ Y-1) =0, pa(mt+ ¥'-1) =0.

The equations (20.3) yield the following four solutions:

]

A A=0, A=1-Y, ¢A=0, A=1-y ,
(20.4) \f { {

m=0, lu=09, {/u.=1-x' p=1-7".
The first case of (20.4) corresponds to the identity transforma-

tion
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z=2z'

The second case of (20.4) yields the tr;nsformation
{20.5) z =vx1-¥z'

and the trgnsformed system (20.2) is obtained from (12.2) by
replacing «, f, f'» ¥, ¥' by X+l-y, p+l-y, g’, 2-¥,
Y' respectively. Therefore, this system admits a solution
(20.6) 2" = Fy(x+l-y, B+l-¥, B's 2=¥, Y's %, ¥).
From this we obtain a_solution of (12.2):

1-¥% . - )
X FZ(“"'I'X: ﬁ"'l'b', B':z Y¥s ¥ » %, Y) .

(20.7) =z =
‘Similarly, the third case of (20.4) yields a solution of (12.2):
(20.8) =z = y1°"1r2(c(+15 X', B BHL-Y'5 ¥, 2%, %, 7) |
and‘tﬁe four-th case of (20.4) yields a solutionrof (12.2):

(20.9) =z =‘x1'xy1'x'F2(m+2-x-§’". p+i-y, p'+i-y', 2-¥, 2-7', %, ¥).
Thus we oﬁtain the following ;heorem. -

THEOREM 20.1: A general solution of the system (12.2) is

given by
(20.10)  z - AFy (B ' 05 ¥' 5 %> Y)

B TTE, @ TpHLr gL 20, YK

+ Cyl'r_'Fz(e(H-x',F,f'ﬂ‘-l' »?:2‘7' »X,5¥)

+ D! Yyt T, @ 2-r- 1 pLev, LT ,2-¥,2-¥",%,7),
where A, B, C and D are arbitrary constants.

Let us consider the next the system (12.3) which is satisfied

by Fj. We shall show that (12.3) is transformed into the system
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(12.2) by the change of variables:
(20.11) x=1/§, y=1/n, 2= % Nz
In fact, by this transformation, the system

{x(1°x)r+ys+ [¥-(@+g+1)x]lp -xfz = 0,

(12.3) .
y(1-y)t+xs+ [y~ ("+p'+1)ylq - «'f'z = 0
becomes
E(L-B)T - §rL§+[ec-ﬁ+1-(2a+«'§-2-y)§]3 -wzc‘{ -ol@+a’-y+1)z' = 0,
(20.12)
(1-pT - FpSt[a’ -p +1- (2" +ab2-§ )91 - «'ED - «' (' -y +1)z"
v .o,
where

T = 322'/9§2 R 3’;'322'/35671 , &t = 322'/9’12 s
P=23z'/3§ , ?1'=iz'/37l
The system (20.12) haAs the same form as (12.2) with parameteré
e+ ety +l, o, ', «-B+1, a'¥p‘+1 .
Thus we can derive the-following theorem frorﬁ Theorem 20.1.
THEOREM 20.2: A general solution of the system (12.3) is
given by
{20.13) =z = Ax;dy;d‘er‘(e(+ot'+1-x,o(,’ot' ,e<+1—p;d'+1-ﬁ',1/x,l/y)
+ Bx"ey""'f'2 (p+«'+1-x,p,a' SpHloa, «'+1-p",1/x,1/y)
+ cx*y'ﬁ'ﬁ‘z(ﬁp'ﬂ-x,u,'p' ,'a+1-‘s, p'+1-¢x' s1/x,1/y)
"'»DX-FY-FFZ(F+ﬁ'+1-f,‘3,g'.,p+l-¢,ls'+l-ot',1/x,1/y) .
In particular, for z = F3(a¢, o', ﬂ, p', y,‘x, y), we determined the

coefficients A, B, C and D by using the Barnes integral
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representation in Section 11 (Chapter II). (See Theorem 11.3,
P-74.)

Let us now consider the system (12.4) which is satisfied by
F4 :
x(1-x)r - yzt - 2xys + [¥-(+g+1)x]p - (tf+1)yq -afz = 0 ,
(12.4){ 9

y(l-y)t -x"r - 2xys + [ Y' -&+p+l)ylq - (e+g+1)xp - «fz =0 .

This system is transformed into

x(l-x)r'- yzt' = 2xys' + [2A+y-(2A+2uta+B+1)x]p!

= (22 2pt+a+p+1)yq " - [ (Apcbx) (Atpetg) - /\(A+ar-l)x-11 z’

]
o

(20.14) )
y(l-y)t'-x"r'-2xys'+[2ut+ ¥’ - (Q+utetptl)ylq’

- (43t Yxp ' = (Nhpeb) bt ) - ¥ 1)y 1 2

by the transformation

[}
o

(20.15) z = xRyta!

As we did before, we shall choose )\ and A so that the terms

AO+Y-Dx™ and  u(m+ y'-1)y
may be removed from (20.14). Thus we determiné A and m by
(20.16) = X(A+¥-1) =0, m(u+¥'-1) =0. |
The equations (20.16) yield
A=0, A=1-¥, (A=0, A=1-y,
'{/u=o, {)a.=0, {/u=1-x', {/k=1-r'.~

Hence in the same way as we-derivedfrheorem 20.1, we obtain the
following theorem:

THEOREM 20.3: A general solution of the system (12.4) is

given by
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(20.17)  z = AF,(«, B, ¥, ¥'s %, 7)

+ Bxl Y («-x+1,ﬁ-x+1,2-a,3',x,y)

+ Cy]' v F4(aL-8'+l,B,-X'+1,X,2‘D" »X5Y)
+ Dxl"yl'"Fa(.x-x-mz,a-g- 1'42,2-4,2-%" ,%,)

In the'dsfinition of the hypergeometric functions of two
variables, we supposed that geithet ¥ nor Y' is zeroor a
negative integer. Therefore, in deriving Theorems 20.1, 20.2 and
20.3, we must suppose corresponding conditions. For example, we
must assume that

Y, ¥' # integer

'in Theorem 20.1.
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21. Euler transform in double integral. In the previous sec-

tion, we found four linearly independent solutions for each of

the systems (12.2), (12 3), and (12 4) However, we would be
unable to calculate the monodromy representations of those systems
with respect to these fundamental systems of solutions. in
Section 19, we explained how to use the siﬁple integrai represen-
tation of Euler for computing circuit matrices of the system

(12. 1) whlch is satlsfled by F,. A similar method based on the
double integral representations of Euler may yield monodromy .

repfeséntations for the systems (12.2) and (12.3) which are

satisfied respéctively by Fy- and F3, although, to the author's

knowledge, nobody has ever tried to compute the monodromy repre-
sentations for the system (12.2) and (12.3).

First of all, we must generalize Cauchy's integral theorem.
Such a generalization was given by H. Poincaré as follows: Let
£(x, y) be a holomorphic function of x and y ina domain D.
Let S (C.D) be a closed smooth surface of real dimension two.
1f there exists a set V of real dimension three such thatv
(i) vcpD, |
(ii) the boundary of V is §,
then | )

st f(x, y)dxdy =0 .

In Section 10 (Chapter II), we derived the double integral
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representations of Euler for Fl’ Fz and F3. {Tea Thenrem 10,1

on p.61.) We showed that the three integrals

(21.1) U' WF LB L ey B L gy ™ dudv

u,v,l-u-v20

1.1 ' 2. T -
(21.2) fo jo WP LB Ly A 1) T T (ke gy Fdudy

and
(2.13) g § aP Lo 8 ey T L ) T (L) " du v

u,v,l-u-v2 0

are gsolutioms of (12.1), (12.2) and (12.3) respectively, if these
Tiﬁtegrals are convergent. The method of the Euler transform which
was explained in Chapter III suggests, as in Section 18, that we
may replace the domains of integration

4, v, l-u-v 20 and O<Sugl, 0Svegl
by other suitable domains of integrations so that the integrals
thus obtained also satisfy the systems.(12.1), (12.2) or (12.3).
Actually we can find wore than four solutions of (12.2) and (12.3)
in this manner. However, any new solution of (12.1)‘gan not .be

obtained by this method.
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22, Characterization of the systems of partial differential -

equations satisfied by Fi, FZ’ F3 and F4. Consider first a
differential equation of the second order
(22.1) y'+px)y'+qx)y = 0 .
Suppose that x = a (# a{) is a singular point of (22.1). This
means that x =a is a éingular point of p(x) or q(x) or
both. The point x % a 1is called a regular singular point of
(22.1) if x = a 1is at most a simple pole of p(x) and at most
a double pole of q(x). Suppose that x =a is a regular sin-
gular péint of (22.1). Then the equation (22.1) can be written
in the form
@21 @)+ x-a)P)y' +Q)y = 0 ,
where P(x) and Q(x) are holomorphic at =x = a. As the general
theory of linear differential equations guaranﬁeeé, the differen-
tial equation (22.1') admits a solution of the form
y = x-a) ¢

where f is a cowplex counstant and ?(x? is holomorphic at
x =a and '?(a) # 0. As it is easily checked, the quantity §
is a root of the quédratic equation:b

f(f'l) + P(a)p +Qa) =0 .
Changing the letter, we call the equation

A(A-1) + P(a)a +Qa) =0

a. Two roots of the

the indicial equation of (22.1') at «x

indicial equation are called the exponents of (22.1') at x = a.




- 152 -

Let f1 and P be the exponents of (22.1') at x =a. If

- # integer, then (22.1') admits two solutions
£1° %2

(22.2) (x-a)flcjvl(x) , (x-a)fztfz(X) ,

where cfl and ?2‘ are holomorphic at . x = a and (fl(a) + 0,

?2’(3). # 0. If fl ol o integer, we may suppose that
fi-F2=7>

where n is a non-negative integer. Then (22.1') admits, in this

case, two solutions

22.3) (x-*a)?l(fl(x), x-a) 2 §,00) + 5(x-a)P1<f (x)log(x-a),
, : , 1

where ?1 and sz aré holomorphic at x =a; and ’(fl(a) # 0,.
(fz(a) #0 and § 1is a constant which is either 0 or 1. 1In
particular, if fl- ?2 =0, cthen 4§ =1. However, if
Pl - YZ >0, the constant & may be zero. A regular singular
point x = a is called 1ogafithmic if §=1. a system of
solutions (22.2) or (22.3) forms a fundamental system of solutions
of (22.1'). This fundamental system is called a canonical system
of solutions of (22.1') at x = a.

- Suppose >r'1ext that é(x) Varrtdv q(x) are holomorphic in a

domain

r-1< xi <+ .

If we make the change of the independent variable:
x=1/§ ,

then the differential equation (22.1) becomes
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2.1y dayrag’+ (%-?12- p(1/))dy/dg +?1; q(1/€)y = 0.

We shall call the point at x = a regular singular point of
(22.1) if ¥ =0 1is a regular singular point of (22.1"). The
indicial equation of (22.1") at § =0 is called the indicial
equation of (22.1) at x = . The exponents of (22.1") at § =0
are called the exponents of (22.1) at x =® . If x = 00 is a
regular singular point of (22.1), then x = ® 1is a zero of p(x)
of multiplicity at least one and-a zero of q(x) of mltiplici;y
at least two. Therefore, the differential equation (2ZZ.l) can be
written as
(22.1"") g +xP(x)y" +Q)y = 0 ,
where P(x) and Q(x) are holomorphic at x = o0 . The indicial
equation of (22.1"') at x =e is given by
A(A+1l) - AP() +Q(xw) =0 .

The differential equation (22.1) is called an equation of

Fuchsian type, if all singularities of (22.1) are regul.ar singular

points including the point at infinity, The Gauss differential

equation:

o+ -x+1}y.+ oLB

x~1 x(1-x) 7 0

(22.4) 'y"+{ 1.

is an equation of Fuchsian type which has three regular singular
points at x =0, 1 a'ndr 00 . The indicial equations and the

exponents at these three singular points are as follows:
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si;;g;;ltar indicial equation 1 exponents
0 AA-D+yx =0 0, 1-¥
1 _A(k-1)+ (x+8-¥y+L)A =0 0, ¥-«-8
%) AAHL) - (a+f+1)A +aB = 0 «> B
If ¥ # integer, then _
R I T Tty B-¥+1, 2-¥, x)

form a canonical system of solutions éf (22.4) at x =90. If
x-kx- ﬁ# integer, thén

F(«, }8’ o(+ﬂ+1-b’, 1-x), (l-x)x-“-pF(Y-x, x—p,‘ Y-«-A+1, 1-x)
form a canonical systém of solutions of (22.4) at x=1. 1If
«- B # integer, then

x YF(x, a-y+l, «-g+1, 1/x) , x"’F(ﬁ, B-¥+1, p-x+l, 1/x)
form a canonical system of (22.4) at x = oa .

A second order equation of Euchsian type with thrée 'regu'iar

singular points at x =a, b and co can be written as

(22.5) §".4 —AXEB Cx’4+DxtE

pps ol Al
(x-a) (x-b) (x-a)z(x~b)2

where A, B, C, D. and E- are co.n'stants-.A The indicial equations

of (22.5) at x = a, b and & are respectively given by

A(A-1) + (Aa+B) (a-b) “IA + (CatDa+E) (a-b) 2 = 0

22

A(A-1) + (Ab+B) (b-a)-l.l + (Cb2+Db+E)'(a‘-b)-2 =0

A(A+1) -AA+C =0 .
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Let fl’ ’72 be the exponents at x = a, 6'1, Ty the exponents
at x =b and ‘El, ’l:'2 the exponents at x = 60 . Then the
relations between roots and coefficients of a quadratic equation

yield
Py+ Py = 1- (AatB)(a-b) T, Py 8 = (<:a_a2+na+E)(a-b)'2 ,

€, + &, = 1- (Ab+B) (b-a)~1, § 5 = (cb+Db+E) ®-a)~%,
T+ T, = -1+4, T Ty =C.

From these relations, we obtain

(22.6) f1+ P2+ 6"1+ 6"2+ Tt T, = 1.

This relation is called the Riemann or Fuchs relation.

Suppose that two points a and b (a #b, a #w, b #w)
and six complex numbers fl’ fZ’ 0"1, 6"2, 'tl Vand ‘1:2 satis-
fying (22.6) are given. Then a second order differential equation
of Fuchsian type with three regular singular points at x = a, b,
and © 1is uniquely determined in such a way that its exponents

at x =a, b, and o are fl’ rz and 6"1, 6'2_ and tl’

'tz respectively. 1In fact,such a differential equation is given
by |
1-p.-p l-& - ¢
w2 F17f2 1 ;) \
(22.7) y,+( -2 T3 y
f1fo(a-b) ‘i“’z("'b)) y 0
*‘("-'1“2* x-a  x-b ) x-a)&b) 0"

The differential equation (22.7) is called Riemann's equation, and

the set of all solutions of (22.7) are denoted by
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a b . e
(22.8) y =P Pl < T, X
F2 92 Ty

The notation (22.8) is due to Riemann and it is called Riemann's
P-function. The set of all so__lutions of the Gauss differential
équatipn (22.4) is thus given by
B _ 0. 1 &
(22.9) y=P{ 0 O o« g
. | 10 Y-a-p
Now we shall explain the characterization of Riemann's dif-
ferential equation due to Riémann. To do thié, for simplicrity, sup -
pose that none of the singulér points a, b and e is logarithmic.
Let F be the set of allbasolu'tions of Riemann's differential equa-
tion (22.7). This ﬁééné‘ that > .denotes Riemanh's P-function |
(22.8). Let D be the domain D =S - {a, b, @}, where S is the
_}Riefmann sphere. Then % has the following properties: '
* @) Ever} function 1n F is a‘ﬁalytic in D, but it may be
“multiple-valued.
(ii) For every point Xq in D, there are two branches fl and
fZ of two functions or one in "5" which are defined in a neighbor-
hood of x' and which satisfy the condition

0

£,(xg)  £5(x)
$£0

fi (xo) ,fé (xo)
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A function £ defined in a neighborhood of X, is a branch of a
function in F if and only if £ is a linear combination of fl
and fz.

(iii) In a neighborhood of a, there are two branches of functions

in % which are of the form

i | Fy
(x - a) 1_71(10 ) (x-a) 272(::) > ,
where- ?1 and ?2 are holomorphic at % = a and ?l(a)_# 0,
?2 (a) # 0. In a neighborhood of =z = b, there are two branches

of functions in F which are of the»form'
d"l &,

: . » 2 :
(x 'a) ‘f’l(x) > (X - b) : \"z(x) >
where \h_ “and ‘#2 are holomorphic at x = b and \h.(b) #0,
\yz(b) # 0. In a neighborhood of x = 0, there are two branches

of functions in ¥ which are of the form
=T 9t .
v ‘ =T,
x lxl(x), X xz(X) 9
where X, and XZ are hblomorphic at x =6 and Xl(oo) # 0,=
xz(oo) # 0.

Riemann proved that the converse is true, i.e. Riemann's dif-
ferential equation can be characterized by the properties (i), (ii)
and (iii).

THEOREM 22.1: Suppose that a set of functions, F , satis-
fies the conditions (i), (ii) and (iii), where f1+vf2+ 6"1+ o"z

+1-1+ T, = 1, ?1 #YZ’ 6"‘1 0, Tl #Tz. Then
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a b o
F=PJ 9, €, Ty x .-
f2 o2 T
An ouﬁline of the proof is as follows: Let y(xj be an
arbitrary branch of a function in H wﬁich is defined in a
neighborhood of Xg- ‘Then the condition (ii) implies that vy, f1
and fz are linearly depéndent and hence
y&x) £, £,(x)
') £&x) £&)| =0
&) fjEx) &)
in a neighborhood of Xq- This relation can be written as
y'(x)+p)y'(x) +q(x)y = 0
which is a linear differential equation. By using (ii), we can
prove that p(x) and q(x) are holomorpﬁic at Xq and that they
do not depend on the choice of branches f1' and f2’ This means
that p(x) and q(x) are uniquely determined by % . On the
other hand, the condition (iii) assures that x =a, b and ®
are regular singular pgints,of this differential equation. This
proves Theorem 22.1.
Remark. If some of a, b and & , say a, 1is logarithmic,
then the first part of condition (iii) shou1d>be replaced by>the
following condition: - |

In a neighborhood of x = a there are two branches of func-
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tions in % which are of the form:

f
(x-a) T g, 00,

Fa f1
(x-a) "¢, (x)+ d(x-a) "¢, (x) log(x-a) ,
where ' $, and §, are holomorphic at g’= a and ‘?l(a) #0,
$,(a) # 0. | |

It was Picard ﬁho first generalized this result of Riemann to
the system (12.1) which is satisfied by Fl. He considered a family
of functions of x and y which sétisfies three conditions corre-
sponding to the three condifions given above, and he derived the
s}ystem (12.1) from the family. Mpre precisely speaking, l.et: 31

be a set of functions of two variables x and y which are defined

in the domain:

By =58t =0f 1Y fxmnf oy =0} Uy -1 oy o}v {x 3}
As we explained before, the five linesy x=0, x=1, y =0,

y =1 and x =y are singular lines of the system_(lZ.lj. In
order to describe the behaviors of functions in ?1_ as (%, v)
tends‘to infinity, we must determine the set of points at infinity.
We have remarked already that €x € has two natural compactifica-
tions, i.e. Pz "and SxS. Note that § = Pl. (See Remark 1,
Section 14, Chapter II, p.95.) Picard adopted Sx S as a compacti-
fication of €x €. Suppose that

(1) every function in §; 1is analytic in o8;, but it may be
mulfiple-valued; |

(1) for every point (x,, vg) in ,81, there exist three branches'
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fl(x, ¥), Ez(x,y) and f3(x, y) of functions in 31 such that

fl fz i f3

3, ox o, /ox of,fax £0 at (x,5) = (xp>7p)
_ Dfllay DfZ/Qy 3f3/3y

and that a function £(x, y) defined in a neighborhood of (xo, yo)
is a branch of a function in 31 if and only if £ is a linear
combination of fi, f2 and f3 3
(iii-1) for any point (0, yo), " where Yo #£0, 1, o, there are
three branches of functions in ;1 which are of the form:

8-r+1

. ?l(x’ ¥ ?Z(Xa ¥), X ?3(3‘? ¥) s

where (51’ ?2 and {3@3 are holomorphic at (0, ye};

(iii-2) for any point {1'9 yQ), where Yo #0, 1, e, there are

ghree branches of functions in 311 which are of the form:
W), Y09, DT Pen,

where \‘/1, \fz and ?3 are holomorphic at (1, yo) H

(i.i.i-3_)' for any point (&, yo), where .yo £0, 1, w , there are

three branches of functions in }.1 ‘'which are of‘ the form:

RN S A TR Ao

where X, X,» X5 are holomorphic at (_eo, yo);

(iii-4) for any point (xo, 0), where xdf 0, 1, » ,‘ there are

three branches of funé’tions in ?1 which are of the form:

F1007), F6y) . yP G =,
where ’3\;1, 2'];2, ?3: are holomorphic at (xo, 0);>

(iii-5) €£for any point (xo,l), where X #0, 1, e, there are

- 161 -

three branches of functions in ' '}-1 which are of the form:
~ ~ "O(‘ﬂ' ~ N
‘fl(x’ Y) s ‘f'z(x, y) (Y'l_) . \""3(}‘, Y) H
where »"11, \}12 and \}/3 are holomorphig at (xo, 1_);
(iii-6) for any point (xo, ®), where X # 0, 1, 00, there are
three branches of functions in }1 which are of the form:
' -g' At ~ ot ~
¥ xl(x’ y) s . y A X.z(x’ ¥) y X-3(xs ¥)»
where il’ ‘zz and i3 are holomorphic at (xo, ) ;
(1ii-7) for any point (xo, yo) » where =x, =y, # 0, 1, 00, there
are three branches of functions in 3:1 which are of the form:
: y-8-8'
by, by, & iy,
where 1>1, 952 and ?3 are holémorphic at  (xgs ¥g) -
Picard proved that, if 3’:1 satisfies (i), (ii) and (iii) and
some additional hypotheses, then ;1 is the set of all solutions
of the system (12.1). We do not know clearly what additional

hypotheses must be réquired. Picard as well as Appell and Kampé de

Fériet gave the hypotheses in a very vague form in their works.

-The principle of the proof is the same as in the case of Riemann's

equations. Let =z(x, y) be an arbitrary branch of a function in
3-«1 which is defined in a neighborhood of a point (xo,' yo) € a91.

Then the condition (ii) yields

z 21 22 23 Z zl zz 23

P Py Py Pl _ . |P P11 P2 P3l
e 9; 99 93 > la 9 9 93 ’
r r, Ty T4 s él 8, 8,




=%
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CHAPTER V
S TS
Automorphic Functions, Reducibility
P Py Pp P
=0, and
q ql .q2 Q3
Generalizations
t oY

whexe 2 2 2 23. Automorphic functions. It is well known that the elliptic
P=9dz/3x, q=23z/3y, r=23%%/3x", s = 23%/3xa3y,
: 5 ) _ : function was discovered by Gauss, although he did not publish his
t = 237z/2y ~

discovery. Then Abel and Jacobi rediscovered the elliptic function
and . - .
, independently. The discovery of the elliptic function opened an
p: = 9z,./9x, --- .
J ] epoch in the history of mathematics. Indeed, this discovery had
These three relations can be written as -
) influences not only on the analysis, but also upon all fields of
r= o (x, y)p+ %, (x, y)q+ 4 (x, y)z, ‘ .
A mathematics. Gauss also found a new function which is related to
8 = ﬁl(x, Y)P+ ﬁz(x’ Y)Q"‘ P3(x’ Y)Z s
: the elliptic function, quadrat1c forms, and arlthmetlco-geometrlc
t = Xl(x, y)p+ Xz(x’ Y)‘-I'*' )’3()(, y)z .
) . mean. This new functlon is called the elliptic modular function.
After very long calculations, Picard showed that this system coin-
It was Dedekind who rediscovered the elliptic modular functiog.
cides with (12.1). ‘
_ This is the earllest example of automorphlc functions.
PROBLEM 1. Complete the work of Picard.
In 1972 Schwarz derived, from the Gauss dlfferentlal function,

' ! oi £fvi can be applied to the systems (12.2),
wienann’s polat of view FP automorphic functions other than the elliptic modular function.

A). at applied the same principle <o the »
(12f3) and (12.4). Gours PP Then Fuchs tried to generalize Schwarz's results to more general

: s (1 . .3). However, the author does not know
systems (12.2) and (12.3) Ve linear differential equations of the second order. Stimulated by

inciple has ever been applied to th
FRERer oF ot the same princip : the work of Fuchs, Poincaré founded the general theory of automor-

syatem (12.4). phic functions and called a kind of automorphic functions the

PROBLEM 2.° Complete the work of Goursat. . .
- Fuchsian function.

PROBLEM 3, Derlve the system for F,. (i.e. the system (12.4)) .
' We shall now explain how we can derive automorphic functions

by using Riemann's point of view.




- 164 -

from a linear ordinary equation of the second order
(23.1) y'+p&x)y'+qx)y =0 .
Suppose that (23.1) is a Fuchsian equation with regular singular
points at a;s a8y, -*+, a . Set D= S_'{al’ “ee, an}. Let ffl(x)
and ?z(x) be linearly 'independent solutions of (23.1) and let
T P T, x) S ELE, ©

be the monodfomy representation of (23.1) with respect to the
fundamental system of solutions

t1

($2) -

We denote by T the set of linear fractional transformations

(23.2)

t(z) = i—g{% (ad -be # 0) ,

and define a homomorphism T : GL(Z, €) — T by

([ o

Then the compos.ite map Tef »is a homomorphism of 77r1(D, xo)
into T. Let us denote by G the image of 71'1(D, xo) under the
map "Cnr :

G= Toe f (TCI(D: xo)) .

G 1is a subgroup of T. Let g bea loop in D 1t zg- '1f

a b
prel = [c d]’

then fundamental system (23.2) becomes
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a bJ (Fl]
c d [?2
by analytic continuation along £ .
Consider the ratio

Ex) = )/ 9,00 .

Then £(x) becomes

ag I +bP, (X)) ry 4
c?l(x)+d?2(x) B cf(x)v+d

by analytic continuation along £/ . We let A denote the image

"of D by f. Suppose that A is a univalent domain in S. Then

the inverse function x =g(z) of z = £(x) is a single-valued
func,tipn_ definéd in A. When x moves along the loop —l and

comes back to the original point, the value z of f£(x) at the

_starting point becomes

az+b
cz+d

at the terminating point. This means that

s(Gva) —s@ -

We shall now give the definition of automorphic functions.

Let G be a subgroup of T and A be a domain in S. Suppose

that each linear fractional transformation of G maps A onto A.

A meromorphic function g(z) is called an automorphic function

relative to G if for any t € G and any z € A  we have

g(t(z)) = g(z) .
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{4} g{z) 1is single-wvalued i

Example 1: Let A =& zand G ={t st (8) = z¥+2nmi,
n & Z}, where Z 1is the set ¢f all integers. Then
glz) = &°

tive to G.

»

ig an automorphic function rel
where if one of A |, wm and v 1is one, the others are equal;

Exauple 2: Let A =€ and G ;-{g {z} = ztmw, +ow

M, 0 L 2’ (i1) if
®m, B & z!, where (9, and W, ave complex numbers such that
= < . Atpmty = 100 + 1/m+ Lin > 1,
Imlw,/w,i>0. |
“os ' then g(z} is a rational function;

(iii) 1if

with periods @ and wz, A
N R%ﬁ%&)*:’i/ﬁ,-%lfm-%-l/n?‘als
elliptic funetion Bz, w., ®»
then there exists a linear fractiocnal transformation t(z) im T
s L Su i 3 ;
P (=, Yy wz} =Ty v P ‘5 5 - = L guch that g{t(z)) 1is either a simply periodic function or a
, z m,neZ - {z=m@;,‘=n@2) {m(a?+n@2} §
(m,n)#(0,0) - = doubly periodic function;
Schwarz considered the Gauss diffevential equation under the (iv) if
assumption that all of the parameters af , # and ¥ are real Atpt Y = 1/8 + 1/ + i/n<gl,
aumbers. He determined all cases that the image A of D =2- then there exists a linear fractional transformation t{z) in T
{Qﬁ 1% under the map such that g(t(z)) 1is an automorphic function defined in jzj< 1.
2 o
2 = £(x) = jlz‘:% In case (ii), (4, m, n} is 2 permutation of (1,%k,k},
P F . r a e o n .
1,2, »+, {2,3,3), (2,3,4) or (2,3,53). 1In

2 . (29 Z) k) ] b =
is a univalent domain contained in 8§ and hence the inverse func-
tion this case € is a finite group. In case {(iii), (f,m,n) is a
permutation of (1, &, o9, (2,2, w0}, (2,4, &), (2,3,8) or
x = g(z)

P (3,3,3) and G 1is an infinite group isomorphic to a group of
of £ is single-valued in A . We shall summarize his results. -
. translations. 1In case (iv), G is an infinite group. In particu-
THEQOREM 23 .1 Assume that et ;3 and ’ af are all real. 1
Then lay, 1f A =J,§Jo =y =0, i.e., &= g =5, ¥ =1, the Gauss
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P ]

- j'm du ¢ = J‘Aw du

f17 ). eeDem’ 27} RebDen
and A 1is the upper half-plane Imz >0 and G 1is the group
generated by

-tl(z) =z+2, tz(z) = E;%TI .

We remark that ‘

?1 - ZJ.I dv , ?2 - [1 dv

: 10K V(1-v5) (1-xv®) -1 ;(l-v Y(-xv)

It is known that £(x) = ?1(x)/?2(x) satisfy a differential
equation of the third crder. We shall find it. Let Y1 and Yo
be any fundamental system of solution of (23.1) and set

z = y;x)/y,(x).
Since ¥y and y, are linear combinations of ?l and ?2, we

have

“P1Y Bty x£+g
T g tag, TE+S

It follows that =z depends essentially on three parameters. First
note that
x
y1¥y "¥1¥y =C exv{-[ p(t) dt},
where C 1is a constant. Observing that

] ' ' —w . w!
_Y1 Yy 15 "YiYs

z'
z ¥, Y Y1

we have
-2 x .
z'=-Cy2 exp{-J p(t)dt},

from which
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] y’
E—: -2—2-p
z Yy
Thus we have
(23.3) ¥y = -y, {p@+2"/2'].

Differgntiating both sides, we get .
v3 = -¥vy{p@+2"z'} kv, {p @) + (2121}

=ky {pt+ /2P oyy, o @ e 12 - (22012 -
and hence ' ‘ '
23.8) v; = %y, {pG0% 2" () - 22"/2" 4 302" 2'12 + 2p ()" /2" ).
Since Yy is a solution of (23.1), substituting (23.3) and (23.4)
into (23.1), we get '

%yz«{p(x)2 -2p' (x) -22'"/z'+.3[z"/z']2+ 2p(x)z"/z"' }

- %yz{p(x)2+p(x)z"/z’}+q(x)y2 =0 .
Dividing both sides by %yz, we obtain
3.9 et -31"21 = 2 e @ I ) -a).
The left-hand side of (23.5), i.e.
(23.6) | z'"/z'--‘g-[z"/z']2
is called the Schwarzian derivative of 2z and often denoted by
{z, x}. The right-hand side of (23.4) or the quantity

1) = kp@ +%p () ~qx)

is an invariant of (23.1) under a transforﬁation of the form
(23.7) ’y = a(x)u . -
In other words, if (23.1) is reduced to

u"+p1(x)u'+q1(x)u =0
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by (23.7), we have 2009, 5y, 23(x, ¥)
%p(x)z‘*%P' (x) ~q(x) = %pl(x)2+%p1(X) -ql(x) . and let Pl be the monodromy representation with respect to the
In particular, if we take a(x) = exp{'% Ix p(t)dt}, then (23.1) fundamental system
becomes z, (x, y)
Ty =0 . @8 226,
For Riemann's ‘equation with scheme 23("’ y)§-

a b 00 The representation ?1 is a homomorphism of Il(.g s xo) into

T
f1 1 1 ; GL(3, €). For a loop ¢ at X the homotopy class [£] is an
[ o T
Pa 2 2 element of Il(aal, xo), Now if
we get a b
c
2 a-b 2,b-a , ,_,2,___ 1 1 1 1
{Z, x} = %[(l-k);:a—'i' (1-,& )x_b‘i'l-” ] (x-a) (x-b) °* : f ([l]) =]a b c
. 1 2 2 2 ’
where , ) ) ) 5 ' ] a3 l."3 €3
. 2 = - : = - v = T, - T. ° :
A (P]_ PZ) s M (6-1 d.'2) > ( 1 2? , then the fundamental system (23.8) becomes
In particular, for the Gauss e-quation,‘we have ' a bl ¢1 zl(x’ v)
2 2 2 2 2 _ :
: 2 Lf1=A"  1-p"  1-X-uf4w } a, b, ¢ z, (x
{Z, X} = 3 { xf + (x-1)2 X(X‘l) 3 2 2 | 2 2( ? Y)
: a, b3 cq Z4 (x, y)
where v »
, 2 2 2 T by the analytic continuation alon £ . set
AP=a-n?, plegea-p?, WP e w-p?. | yHIS 8 5. e o
, ) o z, (%, y) z,(x, y)
About at the same time when the general theory of automorphic s =f(x,y) = t =g(x,y) = .

2,6 )
functions was founded by Poincaré, Picard discovered an example of Then the functions f(x, y) an& g(x,y) Dbecome

automorphif: function of two vaiiables by utilizing the system (12.1)

21517 b1Zpteyzy  ajftbigte)

which is satisfied by Fy. A5 we explained before, the system - ] ' ' 8321+b322+c323 B a‘3f+ b3g+c3
-~ (12.1) has three linearly independént solutions. Let us denote and

them by z +b222+ CyZy _ azf l-b2g+c2

3

82%1
a321+b3zz+<:3z3 a3f+b3g+c
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respectively by the analytic continuation along £ . Let
x = ¢(s,t), y = Y(s,t)
be the inverse of the transformatibq
s = f(x,y) . £ = glx,vy).
Suppose that ? and \i/ are single’«yalued functions. Then an

argument similar to that which we used before yields

1 1 1 )
> = Cf(s’ t) b ]
a3sﬁ-b3t+ cq a3sfb3t+c3

(a s+b t-i-c1 azs+b2t-!-<:2

1 1 )= ",(s t)
> > .
sv+b t+»c3 :a3s+b3t+c3

j’('a_s+b t+c azs+b2t+c2

R
This means that T and Y’ are aut.omorphic functions relative to
a subgroup of linéar fractiénf;l transformations which are derived
from the monodromy représentation Iy 1
Picard fiést considered a special case
x=f=p' =13, y=1.

Hsshowed that:., in this case, we can choose zi, zy and zy 8O
that ?(s, t) andv *(s, t)‘ are autouio;:phic fpnct:’;_ons defined
in [s\2+ \t\z <1. 1In th'isr spec_ial-g:ase, the system (12.1) has

solutions

J‘l du j‘l du
0 Yo DEm ey~ Jx VeeDeney

- !
We have already mentioned that the Gauss differential equation has

similar integrals as solutions when « = ‘3 =%, ¥Y=1. These

integrals are integrals of simple algebraic functions of u
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containing a pafameter X Or two parameters x, y. An inte_gralr
of algebraic function is called an Abelian integral which is very
important in the theory of algebraic functions and in the theory
of algebraic geometry. The theory of automorphic functions has
‘become a brar}ch of mathematics related to number theory and alge-
braic ge‘ometry. 4
Finally we shall state an extension of the Schwarzian

derivative to the case of two variables. Consider a completély
integrable system of partial differentiai equations

r= opt d2q+ x4z
(23.9) s = ﬁ1p+ qu'_'. [3‘32

b= Ypt+ Yqt Yjz .

Let zys 2, and z4 be linearly independent solutions of (23.9)

- and set
2z z
%3 3
Then
du 32v_32u dv
3x 3  3x? Ix _
a T2

321.1. 3v _ du 32\{ +2(32u 3v _ 3u azv)
Ix” Jy dy Ix’ dxdy 9x dx Ixdy _
A = _oll -252,,

Ju 32v _ Bzu v +2( du 32v - Bzu Qv)
9x 3y2 ©3y? 3x dy 3xdy IxIy dy
pa) = ¥-28,,
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Dzu«‘Qv_ du Bzv

ay> 3y 9y 342
A

=¥13

where

du dv _ du v
dx 3y 3y ax °

A =

The four differential expressions on the left-hand sides are a

. . . S 2
generalization of the Schwarzian derivative to a map of €° to

(:2 : (x, y) ~>(u, v).
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24. ‘Reducibility. We shall consider again a linear differential

equation
(26.1y v'+px)y' + q(x)y =0 .

We shall write thé equation (24.1) iﬁ a form
(—d—z+p(X)jf;+q(x)) y=0.
dx

The expression
| d2 d
(24.2) | d—x—2+ p(x) ix Tax)

is a differential operator. It happens that the operator (24.2) is
decon;posed into a product of two operators: ‘

d2

- (24.3) - 7-\‘"‘1?4 p(x) %-&»iq(:t) = (:—x‘+s(x))(é—dx—¥r(x)>

The right-hand member of (24.3) means that
d [ a g2 il e :
(d-;+S(x)) (d-;+r(X)) = E+[r(X)+S(X)]§+[r'(x)+s(X)r(x)] :

A polynomial is said to be redugible if it can be decompoged
ipto a productrof two polynomials of lower‘degrees. AIﬁ general,
:heypeducibilﬁty of polynomiglg depends'on the field to which the
coefficients_of pquqomials belpng.'.Similarly, for differential
operators, ghe_reéucibility.depends’on the coefficient-field. 1In

other words, it is'necessary_ to prescribe a field to which the
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coefficients p, q, r and s belong, if we discuss the decom- trivial solution of (24;1) which satisfies a first order linear
position (24.3) of the operator (24.2). We shall restrict our- : differential equation (24.4). We shall show that the converse is
selves to the set of all rational funcFions €(x). Namely, we '? also true. Let §(x) be a non-trivial solutioﬁ of (24.1) which
shall suppose that coefficients of differential operators belong ] satisfies {24.4). This means that |
to C(x). i (24.5) $"+prg'+ag =0
A Remark that €(x) is hot'only closed under the usual addition, ; “and .
gsubtraction, multiplication and.division, but also clbsed un@er the j (24.6) : | ?"+ rg = o .
. differentiation with respect to x. Such a se; is called a dif- jé Differentiating (24.6), we obtain
ferential field. A precise definition of a differential field is 5 (24.7) ?" +‘;,?v + rn? ='0-
as follows: ‘ A . : Subtracting (24.7) from (24.5),.ﬁé havé
A set K 1is called a differential field if : § - (24.8) (P-r).?v + (qfr')? =0 .
(i) K 1is a field in a‘usuallsense; : | Eliminating ? _vaﬁd.._?' from (24.6) and (24.8), we get
(ii) there exists a map D frdm K into K such that, for any } » 1 r s )
a, b € K, we have | | f ' ' ’p-r q-r" =a-ri - = 0.
(a) D(a+b) = D(a) +D() , Set |
(b) D(ab) = D(a)b+aD(b) . o cs=p-r
The map is called a différentiation. An element ¢ of K is ; to derive |
called a constant if D(e) =v0} _ | ; , A t+s =p ,
Let us return to the operator (24.2). The equation (24.1) or ; r'+rs =g ;
- the opérator (24.2) is said to be reducible if the opefator (24.2) : This means that (24.2) admits the decomposition (24.3).
admits a décompositionr5f'theAform (24;3) in €(&x). .Supbose fhat } THEOREM 24.1: The operator (24.2) is reducible if and only if
(24.2) adm;ts a decomposition (24.3). Then any solution of there exists a non-trivial solution’of (24.1) which satisfies a
(24_4) y'+r(x)y =0 ' first order linear differential equation (24.4).
is a solution of (24.1). This implies that there exists a non- | , Consider the Gauss differential eéuation
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(24.9) x(1-x)y" + | '(-.(O(-!_-pi-l)x]y' - #ﬁy.? 0. .
Suppose that (24.9) is reducible. Then there exists a non-trivial
solution of (24.9) which satisfies a linear differential equation

(24'.4). Such a solution is gi.'ven by

: X
{24.10) y = ?(x) = const. exp_[-s r(t) dt] .

Since r(x) is a rational function in x, we have
x . v
- S r(t)de = r, (x) + Z/“‘i log(x-ai) .

where /Li are non-zero constants. Hence _

| r, (x) oo
_?(x) = const. e 1 ,W(x-ai) i .

From the fact that (24.9) is an equation of Fuchsian type, it
follows that rl(x)' ‘must be a constant. Therefore, we can write
?(x) in the form
(24.10%) ) y = l?(x) = consé:. Tl'(x-ai),".1 .
On the other hand, the equation (24.9) has its singular points at
x=0, x =1 HandA x = . The exponents at x =0 are 0 and
1-.1 , while the exponents at x =1 are 0 and ¥-a- B -
Therefore, 1f a, #0 and # 1, then M = 1. This implies that
(r(x) is expressed as one of the following forms:

| P(x)

L) |

(24.11) x) =
T -1 * Prx)

xl-y(x-l)r-a‘ﬁP(x) »
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while P(x) is a polynomial' in x. Let P be of degree n 2 0.
Then T(x) is rewritten in one of the following forms:
9,
o - xl-X+n’ ¢(x) ,
<f xY-a(-ﬂ-i-n ¢(x) ,
| SR TOI
where ¢ i; ‘holo_morphic at x =8 apd }5(00)_' # 0. Since the

exponents of (24.9) at x = & are ® and B, we get

- (24.12) .o or;p =-n or Y-l-n or x+f-Y-n or «+f-1-a.

From (24.12) we conclude that one of four quantities
£, ﬁ: .x-_“, and X‘B
must be an integer. We can also pProve that the converse is true,
by using one of the transformations:
1-¥
z

y=x ’

y = (x-1)78,
and
y = xlnr(x-l)r-“-ﬁz .

THEOREM 24.2: The Gauss differegtial equation (24.9) is
reducible if and only if oﬁe of fhe four quantities o , Bs Y-«
and y-f _is anim_teger. _ |

Suppose again that (24.9)_ is red_ucible. Let y = \}'(x) be a

solution of (24.9) which is linearly independent of the solution

(24.10). Then
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?(x) .
(24.13) :
¥ (x)_

is a fundamental system of (24.9). Let § be the monodromy
represen;ation of (24.9) with respect to the fundamental sysrem
(24.13). 1If ‘£0 and .ZV are loope at :xo surrounding x = 0
and x =1 respectively, then the functlon ?(x) becomes
const. ?(k) by the analytlc continuation along _[0 and ;ﬁ

Hence

P LD = [* J LopayDd = | *] :
Consequently, the monodromy group consists of lower triangular
matricee;iléonvereeiy, it ie'eaéily verified that, ifAthe-menodromy
group consists of lower triangular‘matrrees,Ithen ?(x) takes Ene
of the forms (24.11). This means thet (24.§) is reducible. Thus
Qe proved the following theorem.

THEOREﬁ 24.3: The Gauss differential equation (24.9) is
reducible if and only if there exists a fundamental system of (24.9)
with respect to which the monodromy group consists of lower tri-
angular matrices. ' |

We shall now explain briefly how to geheralize the concept of
redﬁciﬁili#y'thlinear differential equations of higher orders.
Coﬁei&er aﬁAn-th order equetion

(24.14) y(“) + pl(x)y(n'l) + o0+ p (X)y =
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. or the corresponding differential operator

dn n-1

d
(24.15) ot pl(X) e

1+“'+P(x)

The equation (24 14) or the operator (24. 15) is sald to be reducible

if the operator (24 15) admits a decomp031t10n

q° dn -1 ‘
(24.16) oum T P4 (x) -l e ()

1 2y
(o).
r N 2

1? 8 < n. The following theorem is a generalization

where 0 < n

of fheorem 24.1.

THEOREM 24.4: The operator (24.15) is reducible*iffand'bnly
if there exists a non-trivial solution of (24.14) which satisfies a

linear dlfferential equatlon of an order lower than n.

A monodromy representation of (24. 14) is a homomorphism f ef
1t1(D X ) into GL(n,_c),_ where D - is the greatest domain in
which the coefficients of (24.14) are holomorphlc. A monodromy
representatlon f_”pf,(24.14) is said to be reducible if
f(7t1(D, xo)) consists of matrices of the form

n
reemamy,

Af]e]

where g and n, are determined by f and they are independent
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of each matrix of f (TEI(D, xo)). The following theo:em is a
generalization of Theorem 24.3.

THEOREM 24.5: Suppose that (24.14) is an equation of Fuchsian
type;b Then the equation (i&.l&) is feducible if and only if there
exists a reducible méhodromj representation of (24.14).

We shall now proceed to the systems (12.1), (12.2), (12.3) and

(12.4). The system (12.1) has a form

r = (Klp+&2q+ N3Z,

Prp+ fa+ Byz,
\’19 + ¥,q + Yq2z ,

(24.17) 1 s

t
while the systems (12.2), (12.3) and (12.4) have the form
‘ 4 r= als+a29+a3q + a,z ,
(24.18) { .
it =b1s+b2p+b3q+b42‘.
In their book, Appell and Kampé de Fériet gave the following defi-
nition of reducibility. Thé system (24.17) (or (24.18)) is feducible
if there exists a non-trivial solution of (24.17) (or (24.18)) which
satisfies a system of partial differential equations whose solutions
fb:m a vector space of dimension <3 (or <4). For example, (12.1)
is reducible if and only if there e#ists a non;trivial solution of
" (12.1) satisfying a system of the form
{ P =ajqta,z , : { p = az
: or
q = blq-szz R q = bz

etc.

We. do not know whether a systematic study had been already done for

- 183 -

reducibiliéy.‘ We do ‘not know any necéssary and sufficient condi-
tions for reducibility which are given explicitly in terms of

parameters. Appell and Kampé de Fériet gave only a few examples.

' The reducibility of monodromy represenﬁations of the systems (12.1)

~(12.4) can be int;oduced in a natural way. However, it seems to
us that there is‘no clear statement conéerning the relation between
reducibility of Systems and that of mohodromy representation;.
PROBLEM 1: Find a hecessary and sufficient condition that the
system§ (12.1) ~ (12.4) be reducible. Find also relations between
reduciﬁility of thevsystems‘(lz.l) ~ (12.4) and thét of their

monodromy representations.
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25. Generalizations. We defined_the hypergéometric functions of
two variables by utiliziﬁg the Gauss function. In a.natural way,
we can introduce hypgfggometric functions of n vériaﬁles;
Lauritella_introducedvthe following four functions:

FA(«’pl’ f--’ pn, Yl""."xh’ xl’ ?".’s xn)

. (“{mi;“" . '+m;!) A(P‘l,uil)"'- Bpm) m™ m
) 2 ( xl"ml)r... - ( Yn,mn)(l‘,ml) s (l’mn?' xl ot 'xn g

FB("‘l SR ITN STRALY NS P TR

(¢ 1 )m1+"'+mn) (lyml)"'(]-;mn) 1 n °*

'Fc(uxp, 713 T xn’x]_’ "':xn)

- Z ( ;m1+. : '+mn) (ﬁ ’m1+' * '+mn) Xml ] xmn
- (Xl,‘ml)"'(b’n,mn) (19m1)"'(1:mn) 1
and '
Byl s B Yoy g
(“rm1+"'+mn)(plsml)”' (ﬁn’mn) ml mn

= X =X .
n

| O smF - +m)(Lm) - (L,m) 1
In case when n =2, we have
'FA = F2, FB = F3, FC = F4

There are many functions of intermediate types.

and FD = Fl .
| :
On the other hand, many functions of one variable are defined
as generalization of the Gauss function. The Gauss function has

the three expressions:

1) > (K, m)(B,m) @
:’-:*o L@, -
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(1) ‘ " S (1) AL ey
ccmst:.»1 u  (u-l) (u-x) = du ,
+1i
(111) const. ® D(a+8) M (B +s) [(-s) s
_ " FOres) ()7 ds.

The second egpression can be written‘also in the form
(11') ~ const. folu571(1-u)’-'5_‘1(1-@.)"‘ du .
The serieé
u-,--- o o * .o
z-'( 1 %pe x)= 3 (pom) - Gppom)
, B o 6o oo (f1>m) e (,’,’,P,m)(l,m)x

is derived from the expression (i) in a natural manner

| More
generally, we get the following series:

90'(“;»m)"' (x_,m) ‘m
1 p’ X
ngo(ﬂl,m)‘--‘- (!qum) (1,m)

It is known that

o ses A
F(j 1 : ’ 6P+1-1<)
51’...’ ﬂp
1 1 o -1 By-ot, -1 o -
i O e T o R S L
const, fo JO uy (1-u1) ~'“upl,), (l-up) P P

- §
(1‘-u1. . .upx)‘ p-'-ldul

From the expression (ii), we can derive the following genéraiiza-

tion:

% b, -1 b,-1 . -
1 27l Byl -
.J; (u al) ‘ (u-az)r; T:-»(u-ap):p (u-x)* 1du

From the expression (iii);_we can'derivé:the following funcﬁion'

«e+du
p

v
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P
. TT F(x.+s)
+ie ' i ‘
f =l res) ()% ds .

-l 'lgf F(py+s)
i=1

These ideas of gene¥a1ization of the Gauss function are also
applicable to generalization of Appell's and Lauricella's functions.
Finally, we shall talk about the confluence-principle. To
start with, let us consider the Gauss function F(«, B> Y, X).

.Introducing a new parameter ¢ to define a function by
- F(t,1/e, y, £x)
andrthen taking a limit as & tends to zero, we obtain a new

function

o m
Lim F(x,1/e, 7, £x) = 2 LB E— 2 F(a, 3, 7).«

£-0 =0

- This function F(«, Yy, ‘x) ‘ is also denoted by‘v G(x,y,x) and is
called the confluent hypergeometric function. Furthermore, the
confluent hypergeometric function satisfies the differentiai
equatidn '

(25.1) xy" + (Y -x)y' -O(y.=0.
' On the other hand, it can be shown th&t F(a, ¥, x) admits an

integral representation:

-
(25.2) —-—Cﬂ—r( ~ )?‘(x s} go u“'l_gl-u) Y-l g“’f du .

Note that, in this expression, Laplace tiénsform takes the place

of Euler transform. The differential equation- (25.1) admits a
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regular siqgular point at x =0 and an irregular singular point
at x =00 . Suéh equations forﬁ an important class of equations
which contains Bessel equation: v
(25.3) xzy" + xy' + (x2 -nz)y =0 .
The equation (25.3) has the Bessel function of ofder n as a
solution. | o

Humbeft obtained from Appell's functions séveﬁ functions by

the confluence-principle. For example,

| - _ = (B,m) (B ,n)xTyn
= R I Il P ¢ T ew ey

and the function defined by this series admits an integral represen-

tation

C(x) | B-1 8'-1,,  _ r-g-g' uxh
FCHTCEIFCy-B- 80 SS 6T T L) TR Y g gy,
‘ - u,v20 : '
7 v l-u-v20
Fufthermore, this new function satisfies the system of partial

differential equations
’ xrtys+ b-x - =
(25.4) : { et (e - pe =0,
: yt+xs+(x-y)q-ﬂ'z =0 .
From (25.4) we derive

(x-y)s+ 'ﬁq -pp=0.

The confluence-principle is applied also to hypergeometric functions

of more than two variables.




