d=3/13, dx_0-P_0, dx_1-P_1
n=1
P_0=[[(1)/(x1-x0)]];
P_1=[[(-1)/(x1-x0)]];
n=2
P_0=[[(-49/26)/(x0),(-x1)/(x0)],[(1764/169)/(4*x0*x1-x0^2),(72/13*x1+x0)/(4*x0*x1-x0^2)]];
P_1=[[0,1],[(-1764/169)/(4*x1^2-x0*x1),(-222/13*x1+49/26*x0)/(4*x1^2-x0*x1)]];
n=3
P_0=[[(-36/13)/(x0),(-x1)/(x0),0],[0,(-49/13)/(x0),(-x1)/(x0)],[(754110/2197*x1-184680/2197*x0)/(9*x0*x1^3-10*x0^2*x1^2+x0^3*x1),(69237/169*x1^2-2675/13*x0*x1+882/169*x0^2)/(9*x0*x1^3-10*x0^2*x1^2+x0^3*x1),(1971/26*x1^2-605/13*x0*x1+23/26*x0^2)/(9*x0*x1^2-10*x0^2*x1+x0^3)]];
P_1=[[0,1,0],[0,0,1],[(-754110/2197*x1+184680/2197*x0)/(9*x1^4-10*x0*x1^3+x0^2*x1^2),(-69237/169*x1^2+2675/13*x0*x1-882/169*x0^2)/(9*x1^4-10*x0*x1^3+x0^2*x1^2),(-3087/26*x1^2+1225/13*x0*x1-147/26*x0^2)/(9*x1^3-10*x0*x1^2+x0^2*x1)]];
n=4
P_0=[[(-95/26)/(x0),(-x1)/(x0),0,0],[0,(-121/26)/(x0),(-x1)/(x0),0],[0,0,(-147/26)/(x0),(-x1)/(x0)],[(390646080/28561*x1-19169100/28561*x0)/(64*x0*x1^4-20*x0^2*x1^3+x0^3*x1^2),(47184192/2197*x1^2-4933800/2197*x0*x1+41895/2197*x0^2)/(64*x0*x1^4-20*x0^2*x1^3+x0^3*x1^2),(1558896/169*x1^2-262305/169*x0*x1+21315/676*x0^2)/(64*x0*x1^3-20*x0^2*x1^2+x0^3*x1),(12448/13*x1^2-2550/13*x0*x1+121/26*x0^2)/(64*x0*x1^2-20*x0^2*x1+x0^3)]];
P_1=[[0,1,0,0],[0,0,1,0],[0,0,0,1],[(-390646080/28561*x1+19169100/28561*x0)/(64*x1^5-20*x0*x1^4+x0^2*x1^3),(-47184192/2197*x1^2+4933800/2197*x0*x1-41895/2197*x0^2)/(64*x1^5-20*x0*x1^4+x0^2*x1^3),(-1558896/169*x1^2+262305/169*x0*x1-21315/676*x0^2)/(64*x1^4-20*x0*x1^3+x0^2*x1^2),(-17984/13*x1^2+4280/13*x0*x1-147/13*x0^2)/(64*x1^3-20*x0*x1^2+x0^2*x1)]];
n=5
P_0=[[(-59/13)/(x0),(-x1)/(x0),0,0,0],[0,(-72/13)/(x0),(-x1)/(x0),0,0],[0,0,(-85/13)/(x0),(-x1)/(x0),0],[0,0,0,(-98/13)/(x0),(-x1)/(x0)],[(478257230250/371293*x1^2-129835298520/371293*x0*x1+2098259775/371293*x0^2)/(225*x0*x1^6-259*x0^2*x1^5+35*x0^3*x1^4-x0^4*x1^3),(46854146250/28561*x1^3-19826578530/28561*x0*x1^2+53430705/2197*x0^2*x1-2471805/28561*x0^3)/(225*x0*x1^6-259*x0^2*x1^5+35*x0^3*x1^4-x0^4*x1^3),(5939173125/8788*x1^3-1750876815/4394*x0*x1^2+199628205/8788*x0^2*x1-425565/2197*x0^3)/(225*x0*x1^5-259*x0^2*x1^4+35*x0^3*x1^3-x0^4*x1^2),(78856875/676*x1^3-60541365/676*x0*x1^2+4922505/676*x0^2*x1-71295/676*x0^3)/(225*x0*x1^4-259*x0^2*x1^3+35*x0^3*x1^2-x0^4*x1),(87525/13*x1^3-78736/13*x0*x1^2+7665/13*x0^2*x1-134/13*x0^3)/(225*x0*x1^3-259*x0^2*x1^2+35*x0^3*x1-x0^4)]];
P_1=[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[(-478257230250/371293*x1^2+129835298520/371293*x0*x1-2098259775/371293*x0^2)/(225*x1^7-259*x0*x1^6+35*x0^2*x1^5-x0^3*x1^4),(-46854146250/28561*x1^3+19826578530/28561*x0*x1^2-53430705/2197*x0^2*x1+2471805/28561*x0^3)/(225*x1^7-259*x0*x1^6+35*x0^2*x1^5-x0^3*x1^4),(-5939173125/8788*x1^3+1750876815/4394*x0*x1^2-199628205/8788*x0^2*x1+425565/2197*x0^3)/(225*x1^6-259*x0*x1^5+35*x0^2*x1^4-x0^3*x1^3),(-78856875/676*x1^3+60541365/676*x0*x1^2-4922505/676*x0^2*x1+71295/676*x0^3)/(225*x1^5-259*x0*x1^4+35*x0^2*x1^3-x0^3*x1^2),(-112500/13*x1^3+107485/13*x0*x1^2-11550/13*x0^2*x1+245/13*x0^3)/(225*x1^4-259*x0*x1^3+35*x0^2*x1^2-x0^3*x1)]];
$d=\frac{3}{13}, \partial_0-P_0, \partial_1-P_1$
$n=1$
$P_0=\left(\begin{array}{c}
\frac{ 1} { ( {x}_{1}- {x}_{0})} \\
\end{array}\right)
$
$P_1=\left(\begin{array}{c}
\frac{ - 1} { ( {x}_{1}- {x}_{0})} \\
\end{array}\right)
$
$n=2$
$P_0=\left(\begin{array}{cc}
\frac{ - 49/26} { ( {x}_{0})}& \frac{ ( - 1) ( {x}_{1})} { ( {x}_{0})} \\
\frac{ 1764/169} { ( {x}_{0}) ( 4 {x}_{1}- {x}_{0})}& \frac{ ( \frac{ 1} { 13}) ( 72 {x}_{1}+ 13 {x}_{0})} { ( {x}_{0}) ( 4 {x}_{1}- {x}_{0})} \\
\end{array}\right)
$
$P_1=\left(\begin{array}{cc}
0& 1 \\
\frac{ - 1764/169} { ( {x}_{1}) ( 4 {x}_{1}- {x}_{0})}& \frac{ ( - \frac{ 1} { 26}) ( 444 {x}_{1}- 49 {x}_{0})} { ( {x}_{1}) ( 4 {x}_{1}- {x}_{0})} \\
\end{array}\right)
$
$n=3$
$P_0=\left(\begin{array}{ccc}
\frac{ - 36/13} { ( {x}_{0})}& \frac{ ( - 1) ( {x}_{1})} { ( {x}_{0})}& 0 \\
0& \frac{ - 49/13} { ( {x}_{0})}& \frac{ ( - 1) ( {x}_{1})} { ( {x}_{0})} \\
\frac{ ( \frac{ 15390} { 2197}) ( 49 {x}_{1}- 12 {x}_{0})} { ( {x}_{0}) ( {x}_{1}) ( {x}_{1}- {x}_{0}) ( 9 {x}_{1}- {x}_{0})}& \frac{ ( \frac{ 1} { 169}) ( 69237 {x}_{1}^{ 2} - 34775 {x}_{0} {x}_{1}+ 882 {x}_{0}^{ 2} )} { ( {x}_{0}) ( {x}_{1}) ( {x}_{1}- {x}_{0}) ( 9 {x}_{1}- {x}_{0})}& \frac{ ( \frac{ 1} { 26}) ( 1971 {x}_{1}^{ 2} - 1210 {x}_{0} {x}_{1}+ 23 {x}_{0}^{ 2} )} { ( {x}_{0}) ( {x}_{1}- {x}_{0}) ( 9 {x}_{1}- {x}_{0})} \\
\end{array}\right)
$
$P_1=\left(\begin{array}{ccc}
0& 1& 0 \\
0& 0& 1 \\
\frac{ ( - \frac{ 15390} { 2197}) ( 49 {x}_{1}- 12 {x}_{0})} { ( {x}_{1})^{ 2} ( {x}_{1}- {x}_{0}) ( 9 {x}_{1}- {x}_{0})}& \frac{ ( - \frac{ 1} { 169}) ( 69237 {x}_{1}^{ 2} - 34775 {x}_{0} {x}_{1}+ 882 {x}_{0}^{ 2} )} { ( {x}_{1})^{ 2} ( {x}_{1}- {x}_{0}) ( 9 {x}_{1}- {x}_{0})}& \frac{ ( - \frac{ 49} { 26}) ( 63 {x}_{1}^{ 2} - 50 {x}_{0} {x}_{1}+ 3 {x}_{0}^{ 2} )} { ( {x}_{1}) ( {x}_{1}- {x}_{0}) ( 9 {x}_{1}- {x}_{0})} \\
\end{array}\right)
$
$n=4$
$P_0=\left(\begin{array}{cccc}
\frac{ - 95/26} { ( {x}_{0})}& \frac{ ( - 1) ( {x}_{1})} { ( {x}_{0})}& 0& 0 \\
0& \frac{ - 121/26} { ( {x}_{0})}& \frac{ ( - 1) ( {x}_{1})} { ( {x}_{0})}& 0 \\
0& 0& \frac{ - 147/26} { ( {x}_{0})}& \frac{ ( - 1) ( {x}_{1})} { ( {x}_{0})} \\
\frac{ ( \frac{ 201780} { 28561}) ( 1936 {x}_{1}- 95 {x}_{0})} { ( {x}_{0}) ( {x}_{1})^{ 2} ( 4 {x}_{1}- {x}_{0}) ( 16 {x}_{1}- {x}_{0})}& \frac{ ( \frac{ 9} { 2197}) ( 5242688 {x}_{1}^{ 2} - 548200 {x}_{0} {x}_{1}+ 4655 {x}_{0}^{ 2} )} { ( {x}_{0}) ( {x}_{1})^{ 2} ( 4 {x}_{1}- {x}_{0}) ( 16 {x}_{1}- {x}_{0})}& \frac{ ( \frac{ 3} { 676}) ( 2078528 {x}_{1}^{ 2} - 349740 {x}_{0} {x}_{1}+ 7105 {x}_{0}^{ 2} )} { ( {x}_{0}) ( {x}_{1}) ( 4 {x}_{1}- {x}_{0}) ( 16 {x}_{1}- {x}_{0})}& \frac{ ( \frac{ 1} { 26}) ( 24896 {x}_{1}^{ 2} - 5100 {x}_{0} {x}_{1}+ 121 {x}_{0}^{ 2} )} { ( {x}_{0}) ( 4 {x}_{1}- {x}_{0}) ( 16 {x}_{1}- {x}_{0})} \\
\end{array}\right)
$
$P_1=\left(\begin{array}{cccc}
0& 1& 0& 0 \\
0& 0& 1& 0 \\
0& 0& 0& 1 \\
\frac{ ( - \frac{ 201780} { 28561}) ( 1936 {x}_{1}- 95 {x}_{0})} { ( {x}_{1})^{ 3} ( 4 {x}_{1}- {x}_{0}) ( 16 {x}_{1}- {x}_{0})}& \frac{ ( - \frac{ 9} { 2197}) ( 5242688 {x}_{1}^{ 2} - 548200 {x}_{0} {x}_{1}+ 4655 {x}_{0}^{ 2} )} { ( {x}_{1})^{ 3} ( 4 {x}_{1}- {x}_{0}) ( 16 {x}_{1}- {x}_{0})}& \frac{ ( - \frac{ 3} { 676}) ( 2078528 {x}_{1}^{ 2} - 349740 {x}_{0} {x}_{1}+ 7105 {x}_{0}^{ 2} )} { ( {x}_{1})^{ 2} ( 4 {x}_{1}- {x}_{0}) ( 16 {x}_{1}- {x}_{0})}& \frac{ ( - \frac{ 1} { 13}) ( 17984 {x}_{1}^{ 2} - 4280 {x}_{0} {x}_{1}+ 147 {x}_{0}^{ 2} )} { ( {x}_{1}) ( 4 {x}_{1}- {x}_{0}) ( 16 {x}_{1}- {x}_{0})} \\
\end{array}\right)
$
$n=5$
$P_0=\left(\begin{array}{ccccc}
\frac{ - 59/13} { ( {x}_{0})}& \frac{ ( - 1) ( {x}_{1})} { ( {x}_{0})}& 0& 0& 0 \\
0& \frac{ - 72/13} { ( {x}_{0})}& \frac{ ( - 1) ( {x}_{1})} { ( {x}_{0})}& 0& 0 \\
0& 0& \frac{ - 85/13} { ( {x}_{0})}& \frac{ ( - 1) ( {x}_{1})} { ( {x}_{0})}& 0 \\
0& 0& 0& \frac{ - 98/13} { ( {x}_{0})}& \frac{ ( - 1) ( {x}_{1})} { ( {x}_{0})} \\
\frac{ ( \frac{ 374355} { 371293}) ( 1277550 {x}_{1}^{ 2} - 346824 {x}_{0} {x}_{1}+ 5605 {x}_{0}^{ 2} )} { ( {x}_{0}) ( {x}_{1})^{ 3} ( {x}_{1}- {x}_{0}) ( 9 {x}_{1}- {x}_{0}) ( 25 {x}_{1}- {x}_{0})}& \frac{ ( \frac{ 45} { 28561}) ( 1041203250 {x}_{1}^{ 3} - 440590634 {x}_{0} {x}_{1}^{ 2} + 15435537 {x}_{0}^{ 2} {x}_{1}- 54929 {x}_{0}^{ 3} )} { ( {x}_{0}) ( {x}_{1})^{ 3} ( {x}_{1}- {x}_{0}) ( 9 {x}_{1}- {x}_{0}) ( 25 {x}_{1}- {x}_{0})}& \frac{ ( \frac{ 15} { 8788}) ( 395944875 {x}_{1}^{ 3} - 233450242 {x}_{0} {x}_{1}^{ 2} + 13308547 {x}_{0}^{ 2} {x}_{1}- 113484 {x}_{0}^{ 3} )} { ( {x}_{0}) ( {x}_{1})^{ 2} ( {x}_{1}- {x}_{0}) ( 9 {x}_{1}- {x}_{0}) ( 25 {x}_{1}- {x}_{0})}& \frac{ ( \frac{ 15} { 676}) ( 5257125 {x}_{1}^{ 3} - 4036091 {x}_{0} {x}_{1}^{ 2} + 328167 {x}_{0}^{ 2} {x}_{1}- 4753 {x}_{0}^{ 3} )} { ( {x}_{0}) ( {x}_{1}) ( {x}_{1}- {x}_{0}) ( 9 {x}_{1}- {x}_{0}) ( 25 {x}_{1}- {x}_{0})}& \frac{ ( \frac{ 1} { 13}) ( 87525 {x}_{1}^{ 3} - 78736 {x}_{0} {x}_{1}^{ 2} + 7665 {x}_{0}^{ 2} {x}_{1}- 134 {x}_{0}^{ 3} )} { ( {x}_{0}) ( {x}_{1}- {x}_{0}) ( 9 {x}_{1}- {x}_{0}) ( 25 {x}_{1}- {x}_{0})} \\
\end{array}\right)
$
$P_1=\left(\begin{array}{ccccc}
0& 1& 0& 0& 0 \\
0& 0& 1& 0& 0 \\
0& 0& 0& 1& 0 \\
0& 0& 0& 0& 1 \\
\frac{ ( - \frac{ 374355} { 371293}) ( 1277550 {x}_{1}^{ 2} - 346824 {x}_{0} {x}_{1}+ 5605 {x}_{0}^{ 2} )} { ( {x}_{1})^{ 4} ( {x}_{1}- {x}_{0}) ( 9 {x}_{1}- {x}_{0}) ( 25 {x}_{1}- {x}_{0})}& \frac{ ( - \frac{ 45} { 28561}) ( 1041203250 {x}_{1}^{ 3} - 440590634 {x}_{0} {x}_{1}^{ 2} + 15435537 {x}_{0}^{ 2} {x}_{1}- 54929 {x}_{0}^{ 3} )} { ( {x}_{1})^{ 4} ( {x}_{1}- {x}_{0}) ( 9 {x}_{1}- {x}_{0}) ( 25 {x}_{1}- {x}_{0})}& \frac{ ( - \frac{ 15} { 8788}) ( 395944875 {x}_{1}^{ 3} - 233450242 {x}_{0} {x}_{1}^{ 2} + 13308547 {x}_{0}^{ 2} {x}_{1}- 113484 {x}_{0}^{ 3} )} { ( {x}_{1})^{ 3} ( {x}_{1}- {x}_{0}) ( 9 {x}_{1}- {x}_{0}) ( 25 {x}_{1}- {x}_{0})}& \frac{ ( - \frac{ 15} { 676}) ( 5257125 {x}_{1}^{ 3} - 4036091 {x}_{0} {x}_{1}^{ 2} + 328167 {x}_{0}^{ 2} {x}_{1}- 4753 {x}_{0}^{ 3} )} { ( {x}_{1})^{ 2} ( {x}_{1}- {x}_{0}) ( 9 {x}_{1}- {x}_{0}) ( 25 {x}_{1}- {x}_{0})}& \frac{ ( - \frac{ 5} { 13}) ( 22500 {x}_{1}^{ 3} - 21497 {x}_{0} {x}_{1}^{ 2} + 2310 {x}_{0}^{ 2} {x}_{1}- 49 {x}_{0}^{ 3} )} { ( {x}_{1}) ( {x}_{1}- {x}_{0}) ( 9 {x}_{1}- {x}_{0}) ( 25 {x}_{1}- {x}_{0})} \\
\end{array}\right)
$