@overfullrule=0pt
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The computer algebra system
asir
can use servers, which support the OpenXM
protocols
(Open message eXchange for Mathematics, http://www.openxm.org),
as components.
The interface functions to call these servers
are loaded by loading the file ‘OpenXM/rc/asirrc’.
This file is automatically loaded in "Risa/Asir(OpenXM distribution)",
which we call OpenXM/Risa/Asir
in this document.
This document explains these interface functions for asir
and several mathematical and utility functions
written in the user languages of Risa/Asir.
These mathematical and utilitiy functions are outcome
of the Asir-contrib project.
The latest asir-contrib manual of the HEAD branch is at
http://www.math.kobe-u.ac.jp/OpenXM/Current/doc/index-doc.html
As to technical details on the OpenXM
protocols,
see ‘openxm-en.tex’ at
‘$(OpenXM_HOME)/doc/OpenXM-specs’.
Enjoy mathematics on your computer.
List of contributors:
See OpenXM/Copyright
for the copyright notice.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
With loading ‘OpenXM/rc/asirrc’, we can use most functions
in Asir/Contrib.
The OpenXM/Risa/Asir reads this file, which is specified by
the ASIR_CONFIG
environmental variable, when it starts.
The file ‘names.rr’ is the top level file of the Asir/Contrib.
Most other files are loaded from ‘names.rr’.
Some packages are not loaded from ‘names.rr’ and they must be
loaded individually.
A sample of ‘asirrc’ to use Asir/Contrib.
load("gr")$ load("primdec")$ load("katsura")$ load("bfct")$ load("names.rr")$ load("oxrfc103.rr")$ User_asirrc=which(getenv("HOME")+"/.asirrc")$ if (type(User_asirrc)!=0) { if (!ctrl("quiet_mode")) print("Loading ~/.asirrc")$ load(User_asirrc)$ else{ $ end$
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Not yet written.
Not yet written.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
A part of Asir-contrib works on Windows. The following functions and components work on windows; the outer component sm1 and functions in asir-contrib which do not call outer components. In the cygwin environement, the outer components sm1, phc work. The other outer components do not work.
The following functions do not work on Windows. Some of them work in the cygwin environment of Windows.
gnuplot.*
om.*
mathematica.*
phc.*
print_dvi_form
print_gif_form
print_open_math_xml_form
print_png_form
print_xdvi_form
print_xv_form
tigers_xv_form
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_cancel
: It simplifies S by canceling the common factors of denominators and numerators.
Example:
base_cancel([(x-1)/(x^2-1), (x-1)/(x^3-1)]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_choose
: It returns the list of the order M subsets of L.
Example:
base_choose([1,2,3],2);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_f_definedp
: returns 1 if the function Func is defined.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_flatten
: It flattens a nested list S.
Example:
base_flatten([[1,2,3],4]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_intersection
: It returns the intersection of A and B as a set.
Example:
base_intersection([1,2,3],[2,3,5,[6,5]]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_is_asir2018
: returns 1 if the system is asir2018.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_is_equal
: returns 1 if the objects L1 and L2 are equal else return 0
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_ith
: It returns A[I].
Example:
R=[[x,10],[y,20]]; map(base_ith,R,0);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_makelist
: base_makelist generate a list from Obj where K runs in [B,T]. Options are qt=1 (keep quote data), step (step size). When B is a list, T is ignored and K runs in B.
Example 0:
base_makelist(k^2,k,1,10);
Example 1:
map(print_input_form,base_makelist(quote(x^2),x,1,10 | qt=1, step=0.5))
Example 2:
base_makelist(quote("the "+k),k,["cat","dog"],0);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_memberq
: It returns 1 if A is a member of the set S else returns 0.
Example:
base_memberq(2,[1,2,3]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_permutation
: It outputs all permutations of L. BUG; it uses a slow algorithm.
Example:
base_permutation([1,2,3,4]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_position
: It returns the position of A in S.
Example:
base_position("cat",["dog","cat","monkey"]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_preplace
: It rewrites S by using the rule Rule. psubst is used instead of subst. The replacement is not performed for function arguments.
Example:
base_preplace(exp(x)+x^2,[[x,a+1],[exp(x),b]]);
x is replaced by a+1 and exp(x) is replaced by b in exp(x)+x^2.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_product
: base_product returns the product of Obj where K runs in [B,T]. Options are qt=1 (keep quote data), step (step size). When B is a list, K runs in B and T is ignored.
Example 0:
base_product(k^2,k,1,10);
Example 1:
base_product(quote(x^2),x,1,10 | qt=1, step=0.5);
Example 2:
base_product(quote(x^2),x,[a,b,c],0 | qt=1);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_prune
: It returns a list in which A is removed from S.
Example:
base_prune("cat",["dog","cat","monkey"]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_range
: It returns a list numbers [Start, Start+Step, Start+2*Step, ..., Start+n*Step] where Start+n*Step < End <= Start+(n+1)*Step Default value of step is 1.
: This function allows optional variables step=Step
Example:
base_range(0,10);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_rebuild_opt
: It rebuilt the option list Opt
Example:
base_rebuild_opt([[key1,1],[key2,3]] | remove_keys=["key2"]);
it returns [[key1,1]]
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_replace
: It rewrites S by using the rule Rule
Example:
base_replace(x^2+y^2,[[x,a+1],[y,b]]);
x is replaced by a+1 and y is replaced by b in x^2+y^2.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_replace_n
: It rewrites S by using the rule Rule. It is used only for specializing variables to numbers and faster than base_replace.
Example:
base_replace_n(x^2+y^2,[[x,1/2],[y,2.0+3*@i]]);
x is replaced by 1/2 and y is replaced by 2.0+3*@i in x^2+y^2.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_rest
: It returns cdr(L).
Example:
R=[[x,10,30],[y,20,40]]; map(base_rest,R);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_set_intersection
:
Example:
base_set_intersection([1,2,3],[3,4,5]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_set_minus
:
Example:
base_set_minus([1,2,3],[3,4,5]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_set_union
:
Example:
base_set_union([1,2,3],[3,4,5]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_subsequenceq
: if A is a subsequence B, then it returns 1 else 0.
Example:
base_subsequence([3,2,5],[1,2,3,4,5]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_subsetq
:
Example:
base_subsetq([1,2],[1,2,3,4,5]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_subsets_of_size
: It outputs all subsets of S of the size K. BUG; it uses a slow algorithm. Do not input a large S.
Example:
base_subsets_of_size(2,[3,5,3,2]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_sum
: base_sum returns the sum of Obj where K runs in [B,T]. Options are qt=1 (keep quote data), step (step size). When B is a list, K runs in B and T is ignored. When K is 0, then Obj is assumed to be a list or vector and Obj[B]+...+Obj[T] is returned.
Example 0:
base_sum(k^2,k,1,10);
Example 1:
base_sum(quote(x^2),x,1,10 | qt=1, step=0.5);
Example 2:
base_sum(quote(x^2),x,[a,b,c],0 | qt=1);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
base_var_list
: base_var_list generate a list of variables Name+Index where Index runs on [B,T].
Example 0:
base_var_list(x,0,10);
Example 1:
base_var_list(x,1,4 | d = 1); Options are d=1 (add d before the name).
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
number_abs
:
Example:
number_abs(-3);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
number_ceiling
:
Example:
number_abs(1.5);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
number_eval
:
Example:
number_eval([1/10^10,@pi,exp(1)]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
number_factor
: It factors the given integer X.
Example:
number_factor(20);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
number_float_to_rational
:
Example:
number_float_to_rational(1.5234); number_setprec(30); //About 30 digits after the decimal point. It also set setprec
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
number_floor
:
Example:
number_floor(1.5);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
number_imaginary_part
:
Example:
number_imaginary_part(1+2*@i);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
number_is_integer
:
Example:
number_is_integer(2/3);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
number_real_part
:
Example:
number_real_part(1+2*@i);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
number_setprec
: When X is 0, it returns the current value of precision.
Example:
number_setprec(30); number_float_to_rational(F) returns an approximation of F by a rational number with the accuracy about 30 digits after the decimal point. It also calls setprec(30);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Not yet written
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_adjugate
: It generates the adjugate matrix of the matrix M.
Example:
matrix_adjugate(matrix_list_to_matrix([[a,b],[c,d]]));
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_clone
: It generates the clone of the matrix M.
Example:
matrix_clone(matrix_list_to_matrix([[1,1],[0,1]]));
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_det
: It returns the determinant of the matrix M.
Example:
poly_factor(matrix_det([[1,x,x^2],[1,y,y^2],[1,z,z^2]]));
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_diagonal_matrix
: It returns the diagonal matrix with diagonal entries L.
Example:
matrix_diagonal_matrix([1,2,3]);
References:
matrix_list_to_matrix
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_eigenavalues
: It returns the eigenvalues of the matrix M. if the option num=1, it returns the numerical approximate eigenvalues.
Example:
matrix_eigenvalues([[x,1],[0,y]]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_gauge_transformation
: It returns T^(-1) M T - T^(-1) dT/dV
Example:
matrix_gauge_transformation([[0,x],[1,x]],[[x,0],[0,1]],x);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_identity_matrix
: It returns the identity matrix of the size N.
Example:
matrix_identity_matrix(5);
References:
matrix_diagonal_matrix
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_ij
: It returns the matrix for exchanging II-th row(col) and JJ-th row(col).
Example:
matrix_ij(4,0,2);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_image
: It computes the image of M. Redundant vectors are removed.
Example:
matrix_image([[1,2,3],[2,4,6],[1,0,0]]);
References:
matrix_kernel
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_inner_product
: It returns the inner product of two vectors A and B.
Example:
matrix_inner_product([1,2],[x,y]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_inverse
: It returns the inverse of the matrix M.
Example:
matrix_inverse([[1,2],[0,1]]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_inverse_singular
: It returns a quasi-inverse matrix of Mat when it has 0-row and 0-column.
Example:
matrix_inverse_singular(newmat(3,3,[[1,0,2],[0,0,0],[3,0,4]]));
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_is_zero
: If it is 0 matrix or 0 vector or list consisting of 0, then it returns 1 else it returns 0.
Example:
matrix_is_zero(newmat(2,3));
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_kernel
: It returns the basis of the kernel of the matrix M.
Example:
matrix_kernel([[1,1,1,1],[0,1,3,4]]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_kronecker_product
: Kronecker product of the matrices A and B.
Example:
matrix_kronecker_product([[a11,a12],[a21,a22]],[[b11,b12],[b21,b22]]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_list_to_matrix
: It translates the list M to a matrix.
Example:
print_xdvi_form(matrix_list_to_matrix([[1,1],[0,2]]));
References:
matrix_matrix_to_list
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_matrix_to_list
: It translates the matrix M to a list.
References:
matrix_list_to_matrix
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_ones
: It returns the vector [1 1 ... 1] of length N. When one=m, it returns [m m ... m]. When size=[p,q] is given, N is ignored and returns p by q matrix with entries 1.
: This function allows optional variables one=m, size=[p, q]
Example:
vtol(matrix_ones(3)); returns the list [1,1,1]
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_poly_to_matrix
: Replace variables in the polynomial Poly by matrices in the Rule.
Example:
matrix_poly_to_matrix(x^2-1,[[x,newmat(2,2,[[2,0],[0,3]])]]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_rank
: It returns the rank of the matrix M.
Example:
matrix_rank([[1,1,1,1],[0,1,3,4]]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_rank_ff
: It evalutes the rank of the matrix Mat by mod P. Entries may be rational numbers, and the inverse of the denominator D in F_P is properly computedd when P does not devide D, but the case P devides D does not raise an error.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_row_matrix
: It returns 1*n matrix [[L,L,...,L]] when L is a scalar. It returns 1*length(L) matrix [L].
: This function allows optional variables size=n
Example:
matrix_row_matrix(1 | size=5);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_solve_linear
: It solves the system of linear equations M X = B
Example:
matrix_solve_linear([[1,2],[0,1]],[x,y],[1,2]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_stack
: Stack the matrices A and B.
Example:
matrix_stack([[a11,a12],[a21,a22]],[[b11,b12],[b21,b22]]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_submatrix
: It returns the submatrix of M defined by the index set Ind.
Example:
matrix_submatrix([[0,1],[2,3],[4,5]],[1,2]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
matrix_transpose
: It returns the transpose of the matrix M.
References:
matrix_list_to_matrix
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Not yet written.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
print_c_form
: It transforms S to the C format or python format string.
Example 0:
print_c_form(x^2+1);
Example 1:
print_c_form(x^2+1 | mode=python);
Example 2:
print_c_form(sin(x^2+1)/5 | mode=c);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
print_dvi_form
: It outputs S to a dvi file.
Example:
print_dvi_form(x^2-1);
References:
print_xdvi_form
,print_tex_form
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
print_em
: It outputs S by a font to emphasize it.
Example:
print_em(x^2-1);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
print_format
: It changes the list format of S. Options are list, sep. Defaults are list=["",""], sep=",".
Example 0:
print_format([1,[x,y^2]]);
Example 1:
print_format([1,[x,y^2]] | list=["(",")"], sep=" ");
Example 2:
print_format(print_c_form([1,[x,y^2]]) );
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
print_gif_form
: It outputs S to a file of the gif format.
: This function allows optional variables table
Example:
print_gif_form(newmat(2,2,[[x^2,x],[y^2-1,x/(x-1)]]));
References:
print_tex_form
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
print_input_form
: It transforms S to a string which can be parsed by asir.
Example:
print_input_form(quote(x^3-1));
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
print_open_math_tfb_form
: It transforms S to a tfb format of OpenMath XML.
Description:
It is experimental. You need to load taka_print_tfb.rr to call it.
Example:
print_open_math_tfb_form(quote(f(x,1/(y+1))+2));
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
print_open_math_xml_form
: It transforms S to a string which is compliant to OpenMath(1999).
Example:
print_open_math_xml_form(x^3-1);
References:
www.openmath.org
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
print_output
: It outputs the object Obj to a file. If the optional variable file is set, then it outputs the Obj to the specified file, else it outputs it to "asir_output_tmp.txt". If the optional variable mode is set to "w", then the file is newly created. If the optional variable is not set, the Obj is appended to the file.
: This function allows optional variables file, mode
Example:
print_output("Hello"|file="test.txt");
References:
glib_tops
,(
,)
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
print_ox_rfc100_xml_form
: It transforms S to a string which is compliant to OpenXM RFC 100.
Example:
print_ox_rfc100_xml_form(x^3-1);
References:
www.openxm.org
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
print_pdf_form
: It transforms S to a pdf file and previews the file.
Example 0:
print_pdf_form(newmat(2,2,[[x^2,x],[y^2-1,x/(x-1)]]));
Example 1:
print_pdf_form(poly_factor(x^10-1));
References:
print_tex_form
,print_xdvi_form
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
print_png_form
: It transforms S to a file of the format png. dvipng should be installed.
Example:
print_png_form(x^3-1);
References:
print_tex_form
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
print_terminal_form
: It transforms S to the terminal form???
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
print_tex_form
: It transforms S to a string of the LaTeX format.
: This function allows optional variables table, raw
Description:
The global variable Print_tex_form_fraction_format takes the values "auto", "frac", or "/". The global variable Print_tex_form_no_automatic_subscript takes the values 0 or 1. BUG; A large input S cannot be translated.
Example:
print_tex_form(x*dx+1 | table=[["dx","\\partial_x"]]);
The optional variable table is used to give a translation table of asir symbols and tex symbols. when AMSTeX = 1, "begin pmatrix" and "end pmatrix" will be used to output matrix.
References:
print_xdvi_form
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
print_tfb_form
: It transforms S to the tfb format.
Example:
print_tfb_form(x+1);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
print_xdvi_form
: It transforms S to a xdvi file and previews the file by xdvi.
Example 0:
print_xdvi_form(newmat(2,2,[[x^2,x],[y^2-1,x/(x-1)]]));
Example 1:
print_xdvi_form(print_tex_form(1/2) | texstr=1);
References:
print_tex_form
,print_dvi_form
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
print_xv_form
: It transforms S to a gif file and previews the file by xv.
: This function allows optional variables input, format
Example 0:
print_xv_form(newmat(2,2,[[x^2,x],[y^2-1,x/(x-1)]]));
Example 1:
print_xv_form(x+y | format="png");
If the optional variable format="png" is set, png format will be used to generate an input for xv.
References:
print_tex_form
,print_gif_form
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_coefficient
: It returns the coefficient of V^Deg in F. F may be rational or list or vector.
Example:
F=[(x+y+z)^10/z^2,(x-y+z)^10/z^3]$ poly_coefficient(F,10,x);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_dact
: Act the differential operator Op to F. XL is a list of x variables.
Example:
poly_dact( x*dx+y*dy+a, x^(-3)*y^(-2), [x,y]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_decompose_by_weight
: decompose F into homogeneous components with respect to the variable V with the weight W. The return value is [[Max_ord,Min_ord],[component of Max_ord, ..., component of Min_ord]];
Example:
poly_decompose_by_weight(x^2*dx^2-x*(x*dx+y*dy+a),[x,y,dx,dy],[-1,-1,1,1]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_degree
: It returns the degree of F with respect to the given weight vector.
: This function allows optional variables weight, v
Description:
The weight is given by the optional variable weight w. It returns
Example:
poly_degree(x^2+y^2-4 |weight=[100,1],v=[x,y]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_denominator
: It returns the denominator of L. L may be a list.
Example:
poly_denominator([1/(x^2-1),1/(x^3-1)]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_diff2euler
: Express the differential operator Op by the euler operators. XL is a list of x variables. When XL=[x,y], dx,dy are differential operators and tx,ty are Euler operators (tx=x*dx, ty=y*dy). t stands for theta. When the return value is R, R[0]*R[1]=Op.
Example:
poly_diff2euler(dx^2-a*x,[x]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_dmul
: Multiply Op1 and Op2 in the Weyl algebra (the ring of differential operators). XL is a list of x variables.
Example:
poly_dmul( x*dx+y*dy+a*x, x*y*dx*dy, [x,y]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_dvar
: Add d to the variable name V.
Example:
poly_dvar([x1,x2,x3]); poly_dvar([x1,x2,x3] | d=t);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_elimination_ideal
: It computes the intersection of the ideal I and the subring K[VV].
: This function allows optional variables grobner_basis, gb, v, homo, grace, strategy
Description:
If grobner_basis is "yes" or gb=1, I is assumed to be a Grobner basis. The optional variable v is a list of variables which defines the ring of polynomials.
Example 0:
poly_elimination_ideal([x^2+y^2-4,x*y-1],[x]);
Example 1:
A = poly_grobner_basis([x^2+y^2-4,x*y-1]|order=2,v=[y,x]); poly_elimination_ideal(A,[x]|grobner_basis="yes"); When strategy=1(default), nd_gr is used when trace=0(defauult), nd_gr_trace is used when trace=1.
References:
gr
,hgr
,gr_mod
,dp_*
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_euler2diff
: Translate the differential operator Op expressed in terms of euler operators into the operators in terms of d. XL is a list of x variables. When XL=[x,y], dx,dy are differential operators and tx,ty are Euler operators (tx=x*dx, ty=y*dy). t stands for theta.
Example:
poly_euler2diff(tx^2-x*(tx+1/2)^2,[x]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_expand
: This is an alias of poly_sort.
References:
poly_sort
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_factor
: It factorizes the polynomial F.
Example:
poly_factor(x^10-y^10);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_gcd
: It computes the polynomial GCD of F and G.
Example:
poly_gcd(x^10-y^10,x^25-y^25);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_gr_w
: It returns the Grobner basis of F for the weight vector W. It is the second interface for poly_grobner_basis.
Example:
poly_gr_w([x^2+y^2-1,x*y-1],[x,y],[1,0]);
References:
poly_in_w
,poly_grobner_bais
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_grobner_basis
: It returns the Grobner basis of I.
: This function allows optional variables order, v
Description:
The optional variable v is a list of variables which defines the ring of polynomials.
Example:
A = poly_grobner_basis([x^2+y^2-4,x*y-1]|order=2,v=[y,x],str=1); A->Generators; A->Ring->Variables; A->Ring->Order; B = poly_grobner_basis([x^2+y^2-4,x*y-1]|order=[[10,1]],v=[y,x]); C = poly_grobner_basis([x^2+y^2-4,x*y-1]|order=[block,[0,1],[0,1]],v=[y,x]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_hilbert_polynomial
: It returns the Hilbert polynomial of the poly_init(I).
: This function allows optional variables s, v, sm1
Description:
The optional variable v is a list of variables. sm1=1 forces to call sm1. [sum(H(k),{k,0,h), H(h)] where H(h) is the number of degree h monomials when h>>0. On asir2018, it returns [sum(H(k),{k,0,h), H(h),[H[0],H[1],...],F,d] where F/(1-h)^d is the Poincare series.
Example:
poly_hilbert_polynomial([x1*y1,x1*y2,x2*y1,x2*y2]|s=k,v=[x1,x2,y1,y2]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_ideal_colon
: It computes the colon ideal of I by J V is the list of variables.
Example:
B=[(x+y+z)^50,(x-y+z)^50]$ V=[x,y,z]$ B=poly_ideal_colon(B,[(x+y+z)^49,(x-y+z)^49],V);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_ideal_intersection
: It computes the intersection of the ideal I and J V is the list of variables. Ord is the order.
Example:
A=[j*h*g*f*e*d*b,j*i*g*d*c*b,j*i*h*g*d*b,j*i*h*e*b,i*e*c*b,z]$ B=[a*d-j*c,b*c,d*e-f*g*h]$ V=[a,b,c,d,e,f,g,h,i,j,z]$ poly_ideal_intersection(A,B,V,0);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_ideal_saturation
: It computes the saturation ideal of I by J. V is the list of variables.
Example:
B=[(x+y+z)^50,(x-y+z)^50]$ V=[x,y,z]$ B=poly_ideal_saturation(B,[(x+y+z)^49,(x-y+z)^49],V);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_in
: It is an alias of poly_initial().
: This function allows optional variables order, v
Example:
poly_in([x^2+y^2-4,x*y-1]|order=0,v=[x,y]); poly_in([x^2+y^2-4,x*y-1]|order=[1,0],v=[x,y]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_in_w
: It returns the initial term or the initial ideal in_w(F) for the weight vector given by order. F is s single polynomial or a list of polynomials.
: This function allows optional variables gb
Example:
poly_in_w([x^2+y^2-1,x*y-x] , [x,y], [1,0]);
References:
poly_weight_to_omatrix
,(
,W
,V
,)
,poly_grobner_basis
,poly_gr_w
,poly_in_w_
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_in_w_
: It returns the initial term or the initial ideal in_w(F) for the weight vector given by order. F is s single polynomial or a list of polynomials. This is a new interface of poly_in_w with shorter args.
: This function allows optional variables v, weight, gb
Example:
poly_in_w_([x^2+y^2-1,x*y-x] | v=[x,y],weight=[1,0]);
References:
poly_weight_to_omatrix
,(
,W
,V
,)
,poly_grobner_basis
,poly_gr_w
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_initial
: It returns the initial ideal of I with respect to the given order.
: This function allows optional variables order, v
Description:
The optional variable v is a list of variables. This function computes
Example:
poly_initial([x^2+y^2-4,x*y-1]|order=0,v=[x,y]); poly_initial([x^2+y^2-4,x*y-1]|order=0,v=[x,y],gb=1); poly_in([x^2+y^2-4,x*y-1]|order=[1,0],v=[x,y]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_initial_coefficients
: It computes the coefficients of the initial ideal of I with respect to the given order.
: This function allows optional variables order, v
Description:
The optional variable v is a list of variables. The order is specified by the optional variable order
Example:
poly_initial_coefficients([x^2+y^2-4,x*y-1]|order=0,v=[x,y]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_initial_term
: It returns the initial term of a polynomial F with respect to the given weight vector.
: This function allows optional variables weight, order, v
Description:
The weight is given by the optional variable weight w. It returns
Example:
poly_initial_term( x^2+y^2-4 |weight=[100,1],v=[x,y]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_lcm
: It returns the LCM of L[0], L[1], ...
Example:
poly_lcm([x^2-1,x^3-1]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_numerator
: It returns the numerator of L. L may be a list.
Example:
poly_numerator([1/(x^2-1),1/(x^3-1)]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_ord_w
: It returns the order with respect to W of F.
Example:
poly_ord_w(x^2+y^2-1,[x,y],[1,3]);
References:
poly_in_w
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_prime_dec
: It computes the prime ideal decomposition of the radical of I. V is a list of variables.
Example:
B=[x00*x11-x01*x10,x01*x12-x02*x11,x02*x13-x03*x12,x03*x14-x04*x13, -x11*x20+x21*x10,-x21*x12+x22*x11,-x22*x13+x23*x12,-x23*x14+x24*x13]; V=[x00,x01,x02,x03,x04,x10,x11,x12,x13,x14,x20,x21,x22,x23,x24]; poly_prime_dec(B,V | radical=1);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_r_omatrix
: It gives a weight matrix, which is used to compute a Grobner basis in K(x)<dx>, |x|=|dx|=N.
Example:
poly_r_omatrix(3);
References:
poly_weight_to_omatrix
,(
,W
,V
,)
,;
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_solve_linear
: It solves the system of linear equations Eqs with respect to the set of variables V. When the option p=P is given, it solves the system by mod P. When the option reverse=1 is given, the lex order of reverse(V) is used.
Example:
poly_solve_linear([2*x+3*y-z-2, x+y+z-1], [x,y,z]); poly_solve_linear([2*x+3*y-z-2, x+y+z-1], [x,y,z] | p=13);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_sort
: It expands F with a given variables v=V and a given weight w=W. It returns a quote object. If trucate option is set, the expansion is truncated at the given degree.
: This function allows optional variables v, w, truncate
Example:
poly_sort((x-y-a)^3 | v=[x,y], w=[-1,-1]) returns a series expansion in terms of x and y.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_toric_ideal
: It returns generators of the affine toric ideal defined by the matrix(list) A. V is the list of variables.
Example:
poly_toric_ideal([[1,1,1,1],[0,1,2,3]],base_var_list(x,0,3));
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
poly_weight_to_omatrix
: It translates the weight vector W into a matrix, which is used to set the order in asir Grobner basis functions. V is the list of variables.
Example:
M=poly_weight_to_omatrix([2,1,0],[x,y,z]); nd_gr([x^3+z^3-1,x*y*z-1,y^2+z^2-1,[x,y,z],0,M);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The library glib provides a simple interface like old BASIC to the graphic primitive (draw_obj) of Risa/Asir.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
glib_clear
: Clear the screen.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
glib_flush
: ; Flush the output. (Cfep only. It also set initGL to 1.).
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
glib_line
: It draws the line [X0,Y0]– [X1,Y1] with color and shape
: This function allows optional variables color, shape
Example:
glib_line(0,0,5,3/2 | color=0xff00ff); glib_line(0,0,10,0 | shape=arrow);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
glib_open
: It starts the ox_plot server and opens a canvas. The canvas size is set to Glib_canvas_x X Glib_canvas_y (the default value is 400). This function is automatically called when the user calls glib functions.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
glib_plot
: It plots an object F on the glib canvas.
Example 0:
glib_plot([[0,1],[0.1,0.9],[0.2,0.7],[0.3,0.5],[0.4,0.8]]);
Example 1:
glib_plot(tan(x));
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
glib_print
: It put a string Text at [X,Y] on the glib canvas.
: This function allows optional variables color
Example:
glib_print(100,100,"Hello Worlds" | color=0xff0000);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
glib_ps_form
: It returns the PS code generated by executing S (experimental).
Example 0:
glib_ps_form(quote( glib_line(0,0,100,100) ));
Example 1:
glib_ps_form(quote([glib_line(0,0,100,100),glib_line(100,0,0,100)]));
References:
glib_tops
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
glib_putpixel
: It puts a pixel at [X,Y] with color
: This function allows optional variables color
Example:
glib_putpixel(1,2 | color=0xffff00);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
glib_remove_last
: Remove the last object. glib_flush() should also be called to remove the last object. (cfep only).
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
glib_set_pixel_size
: Set the size of putpixel to P. 1.0 is the default. (cfep only).
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
glib_tops
: If Glib_ps is set to 1, it returns a postscript program to draw the picture on the canvas.
References:
print_output
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
glib_window
: It generates a window with the left top corner [Xmin,Ymin] and the right bottom corner [Xmax,Ymax]. If the global variable Glib_math_coordinate is set to 1, mathematical coordinate system will be employed, i.e., the left top corner will have the coordinate [Xmin,Ymax].
Example:
glib_window(-1,-1,10,10);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
16.1.1 ox_check_errors2 |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
ox_check_errors2
:: get a list of error objects on the statck of the server p.
List
Number
[219] P=sm1.start(); 0 [220] sm1.sm1(P," 0 get "); 0 [221] ox_check_errors2(P); [error([7,4294967295,executeString: Usage:get])] Error on the server of the process number = 1 To clean the stack of the ox server, type in ox_pops(P,N) (P: process number, N: the number of data you need to pop) out of the debug mode. If you like to automatically clean data on the server stack, set XM_debug=0;
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
OXshell is a system to execute system commands from ox servers. As to details, see the files OpenXM/src/kan96xx/Doc/oxshell.oxw and OpenXM/doc/Papers/rims-2003-12-16-ja.tex.
17.0.1 oxshell.get_value | ||
17.0.2 oxshell.oxshell | ||
17.0.3 oxshell.set_value |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
oxshell.get_value
: It get the value of the variable NAME on the server ox_shell.
Example:
oxshell.set_value("abc","Hello world!"); oxshell.oxshell(["cp", "stringIn://abc", "stringOut://result"]); oxshell.get_value("result"); What we do is a file $TMP/abc* is generated with the contents Hello world! and copied to $TMP/result* The contents of the file is stored in the variable result on ox_sm1.
References:
oxshell.oxshell
,oxshell.set_value
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
oxshell.oxshell
: It executes command L on a ox_shell server. L must be an array. The result is the outputs to stdout and stderr. A temporary file will be generated under $TMP. cf. oxshell.keep_tmp()
Example:
oxshell.oxshell(["ls"]);
References:
ox_shell
,oxshell.set_value
,oxshell.get_value
,oxshell
,of
,sm1.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
oxshell.set_value
: It set the value V to the variable Name on the server ox_shell.
Example:
oxshell.set_value("abc","Hello world!"); oxshell.oxshell(["cat", "stringIn://abc"]);
References:
oxshell.oxshell
,oxshell.get_value
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
18.0.1 asir_contrib_update |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
asir_contrib_update
: It updates the asir-contrib library and/or some other files to the HEAD branch. The usage will be shown by asir_contrib_update() without the option update. Options are update, clean, url, install_dir, zip_files, tmp. Default values update=0, clean=0, url="http://www.math.kobe-u.ac.jp/OpenXM/Current", install_dir=%APPDATA%/OpenXM (win) or install_dir=$OpenXM_tmp/OpenXM (others) zip_files=["lib-asir-contrib.zip"]
Example:
asir_contrib_update(); asir_contrib_update(|update=1); update the library asir_contrib_update(|update=3); update the library and the documents asir_contrib_update(|clean=1); asir_contrib_update(|zip_files=["lib-asir-contrib.zip","doc-asir2000.zip","doc-asir-contrib.zip","doc-other-docs.zip"]);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Utility functions provide some usuful functions to access to the system and to process strings.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
util_damepathq
: When S is a string by the ShiftJIS code and S contains dame-moji with respect to \, it returns [a non-zero number, the string].
Example:
T = [0x5c,0xe4,0x5c,0x41,0x42]$ T2=asciitostr(T)$ util_damepathq(T2);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
util_file_exists
: It returns 1 when Fname exists. It returns 0 when Fname does not exist.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
util_filter
: It executes the filter program Command with the Input and returns the output of the filter as a string.
: This function allows optional variables env
Example:
util_filter("sort","cat\ndog\ncentipede\n");
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
util_find_and_replace
: It replaces W in S by Wnew. Arguments must be lists of ascii codes or strings.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
util_find_start
: It tries to find the gnome-open command or an installed browser in unix systems. It returns "open" on MacOS X and returns "start" on Windows.
: This function allows optional variables browser
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
util_find_substr
: It returns the position of W in S. If W cannot be found, it returns -1. Arguments must be lists of ascii codes or strings.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
util_index
: It returns the name part and the index part of V.
Example:
util_index(x_2_3)
References:
util_v
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
util_load_file_as_a_string
: It reads a file F as a string.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
util_part
: It returns from Pth element to Qth element of S.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
util_read_file_as_a_string
: It reads a file F as a string.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
util_remove_cr
: It removes cr/lf/tabs from S. Arguments must be a list of ascii codes.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
util_timing
: Show the timing data to execute Q.
Example:
util_timing( quote( fctr(x^50-y^50) ));
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
util_v
: It returns a variable indexed by L.
Example:
util_v("x",[1,3]);
References:
util_index
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
util_write_string_to_a_file
: It writes a string S to a file Fname.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This section introduces other manuals in the asir-contrib project.
This section also describes functions that have not yet been classifed. These will be moved to independent sections in a future.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
../gtt_ekn-html/gtt_ekn-en.html
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
../gnuplot-html/gnuplot-en.html
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
../mathematica-html/mathematica-en.html
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
../mk_graph-html/mk_graph-en.html
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
../n_wishartd-html/n_wishartd-en.html
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
../nn_ndbf-html/nn_ndbf-en.html
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
../noro_mwl-html/noro_mwl-en.html
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
../noro_module_syz-html/noro_module_syz-en.html
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
../ns_twistedlog-html/ns_twistedlog-en.html
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
../nk_fb_gen_c-html/nk_fb_gen_c-en.html
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
../ok_diff-html/ok_diff-en.html
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
../ok_dmodule-html/ok_dmodule-en.html
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
../ox_pari-html/ox_pari-en.html
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
../plucker-html/plucker-en.html
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
../tk_ode_by_mpfr-html/tk_ode_by_mpfr-ja.html
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
todo_parametrize/todo_parametrize_toc
With loading the file todo_parametrize/todo_parametrize.rr
the function paramerize
is installed.
The function finds a parametric expression of a given rational curve.
As to details, see
See in A package for algebraic curves (in Japanese).
[1205] load("todo_parametrize/todo_parametrize.rr"); 1 [1425] parametrize(y^2-x^3); [155*t^2+20*t+1,720*t^4+1044*t^3+580*t^2,155*t^4+20*t^3+t^2,(-x)/(y)] [1426] parametrize(y^2+x^3); [-t,1,t^3,(-x)/(y)]
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
With loading the file taji_alc.rr
functions for algebraic local cohomology groups in one variable are imported.
import("taji_alc.rr"); taji_alc.laurent_expansion(x,(x-1)^3);
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Links to manuals and papers related to files and commands in asir-contrib are at OpenXM documents.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Jump to: | A B G M N O P U |
---|
Jump to: | A B G M N O P U |
---|
[Top] | [Contents] | [Index] | [ ? ] |
base_cancel
base_choose
base_f_definedp
base_flatten
base_intersection
base_is_asir2018
base_is_equal
base_ith
base_makelist
base_memberq
base_permutation
base_position
base_preplace
base_product
base_prune
base_range
base_rebuild_opt
base_replace
base_replace_n
base_rest
base_set_intersection
base_set_minus
base_set_union
base_subsequenceq
base_subsetq
base_subsets_of_size
base_sum
base_var_list
matrix_adjugate
matrix_clone
matrix_det
matrix_diagonal_matrix
matrix_eigenavalues
matrix_gauge_transformation
matrix_identity_matrix
matrix_ij
matrix_image
matrix_inner_product
matrix_inverse
matrix_inverse_singular
matrix_is_zero
matrix_kernel
matrix_kronecker_product
matrix_list_to_matrix
matrix_matrix_to_list
matrix_ones
matrix_poly_to_matrix
matrix_rank
matrix_rank_ff
matrix_row_matrix
matrix_solve_linear
matrix_stack
matrix_submatrix
matrix_transpose
print_c_form
print_dvi_form
print_em
print_format
print_gif_form
print_input_form
print_open_math_tfb_form
print_open_math_xml_form
print_output
print_ox_rfc100_xml_form
print_pdf_form
print_png_form
print_terminal_form
print_tex_form
print_tfb_form
print_xdvi_form
print_xv_form
poly_coefficient
poly_dact
poly_decompose_by_weight
poly_degree
poly_denominator
poly_diff2euler
poly_dmul
poly_dvar
poly_elimination_ideal
poly_euler2diff
poly_expand
poly_factor
poly_gcd
poly_gr_w
poly_grobner_basis
poly_hilbert_polynomial
poly_ideal_colon
poly_ideal_intersection
poly_ideal_saturation
poly_in
poly_in_w
poly_in_w_
poly_initial
poly_initial_coefficients
poly_initial_term
poly_lcm
poly_numerator
poly_ord_w
poly_prime_dec
poly_r_omatrix
poly_solve_linear
poly_sort
poly_toric_ideal
poly_weight_to_omatrix
util_damepathq
util_file_exists
util_filter
util_find_and_replace
util_find_start
util_find_substr
util_index
util_load_file_as_a_string
util_part
util_read_file_as_a_string
util_remove_cr
util_timing
util_v
util_write_string_to_a_file
[Top] | [Contents] | [Index] | [ ? ] |
[Top] | [Contents] | [Index] | [ ? ] |
This document was generated on May 9, 2024 using texi2html 5.0.
The buttons in the navigation panels have the following meaning:
Button | Name | Go to | From 1.2.3 go to |
---|---|---|---|
[ << ] | FastBack | Beginning of this chapter or previous chapter | 1 |
[ < ] | Back | Previous section in reading order | 1.2.2 |
[ Up ] | Up | Up section | 1.2 |
[ > ] | Forward | Next section in reading order | 1.2.4 |
[ >> ] | FastForward | Next chapter | 2 |
[Top] | Top | Cover (top) of document | |
[Contents] | Contents | Table of contents | |
[Index] | Index | Index | |
[ ? ] | About | About (help) |
where the Example assumes that the current position is at Subsubsection One-Two-Three of a document of the following structure:
This document was generated on May 9, 2024 using texi2html 5.0.