next | previous | forward | backward | up | top | index | toc | home
ICMS2006 > schemes

schemes

Let's define a plane (affine) elliptic curve X.
i1 : R = QQ[x,y]

o1 = R

o1 : PolynomialRing
i2 : f = y^2 + y - x^3 - x

        3    2
o2 = - x  + y  - x + y

o2 : R
i3 : X = Spec(R/f)

o3 = X

o3 : AffineVariety
i4 : Z = singularLocus X

o4 = Z

o4 : AffineVariety
Let's check that it's nonsingular.
i5 : describe Z

                         QQ [x, y]
o5 = Spec(--------------------------------------)
              3    2              2
          (- x  + y  - x + y, - 3x  - 1, 2y + 1)
i6 : ideal Z

               3    2              2
o6 = ideal (- x  + y  - x + y, - 3x  - 1, 2y + 1)

o6 : Ideal of R
i7 : gens gb ideal Z

o7 = | 1 |

             1       1
o7 : Matrix R  <--- R
Let's do the same thing over the integers ZZ.
i8 : R = ZZ[x,y]

o8 = R

o8 : PolynomialRing
i9 : f = y^2 + y - x^3 - x

        3    2
o9 = - x  + y  - x + y

o9 : R
i10 : X = Spec(R/f)

o10 = X

o10 : AffineVariety
i11 : Z = singularLocus X

o11 = Z

o11 : AffineVariety
i12 : describe Z

                          ZZ [x, y]
o12 = Spec(--------------------------------------)
               3    2              2
           (- x  + y  - x + y, - 3x  - 1, 2y + 1)
i13 : ideal Z

                3    2              2
o13 = ideal (- x  + y  - x + y, - 3x  - 1, 2y + 1)

o13 : Ideal of R
i14 : gens gb ideal Z

o14 = | 91 y-45 x-11 |

              1       3
o14 : Matrix R  <--- R
i15 : char Z

o15 = 91
Now let's homogenize and do the same thing in projective space.
i16 : R = ZZ[x,y,z]

o16 = R

o16 : PolynomialRing
i17 : f = y^2 + y - x^3 - x

         3    2
o17 = - x  + y  - x + y

o17 : R
i18 : f = homogenize(f, z)

         3    2       2      2
o18 = - x  + y z - x*z  + y*z

o18 : R
i19 : X = Proj(R/f)

o19 = X

o19 : ProjectiveVariety
i20 : describe X

                 ZZ [x, y, z]
o20 = Proj(------------------------)
              3    2       2      2
           - x  + y z - x*z  + y*z
i21 : Z = singularLocus X

o21 = Z

o21 : ProjectiveVariety
i22 : describe Z

                ZZ [x, y, z]
o22 = Proj(----------------------)
           (91, y - 45z, x - 11z)
i23 : char Z

o23 = 91
i24 : factor oo

o24 = 7*13

o24 : Expression of class Product
Let's examine more closely how that computation was done.
i25 : J = ideal(f,diff_x f, diff_y f, diff_z f)

                3    2       2      2      2    2          2   2
o25 = ideal (- x  + y z - x*z  + y*z , - 3x  - z , 2y*z + z , y  - 2x*z +
      -----------------------------------------------------------------------
      2y*z)

o25 : Ideal of R
i26 : transpose gens gb J

o26 = {-2} | 2yz+z2       |
      {-2} | y2-2xz-z2    |
      {-2} | 3x2+z2       |
      {-3} | 4xz2+yz2+2z3 |
      {-3} | x3-xz2+yz2   |
      {-4} | 91z4         |
      {-4} | yz3-45z4     |
      {-4} | xz3-11z4     |
      {-4} | xyz2-40z4    |
      {-4} | x2z2-30z4    |
      {-4} | x2yz+15z4    |

              11       1
o26 : Matrix R   <--- R
We see 91. Let's check whether it's zero on the standard affine open covering of the scheme.
i27 : 91 * z^4 % J

o27 = 0

o27 : R
i28 : 91 * y^4 % J

o28 = 0

o28 : R
i29 : 91 * x^4 % J

o29 = 0

o29 : R
The saturate command automates that investigation.
i30 : saturate J

o30 = ideal (91, y - 45z, x - 11z)

o30 : Ideal of R