next | previous | forward | backward | up | top | index | toc | home

isHomogeneous -- whether something is homogeneous (graded)

Synopsis

Description

i1 : isHomogeneous(ZZ)

o1 = true
i2 : isHomogeneous(ZZ[x])

o2 = true
i3 : isHomogeneous(ZZ[x]/(x^3-x-3))

o3 = false

Rings may be graded, with generators having degree 0. For example, in the ring B below, every element of A has degree 0.

i4 : A = QQ[a,b,c];
i5 : B = A[x,y];
i6 : isHomogeneous B

o6 = true
i7 : isHomogeneous ideal(a*x+y,y^3-b*x^2*y)

o7 = true

Quotients of multigraded rings are homogeneous, if the ideal is also multigraded.

i8 : R = QQ[a,b,c,Degrees=>{{1,1},{1,0},{0,1}}];
i9 : I = ideal(a-b*c);

o9 : Ideal of R
i10 : isHomogeneous I

o10 = true
i11 : isHomogeneous(R/I)

o11 = true
i12 : isHomogeneous(R/(a-b))

o12 = false

A matrix is homogeneous if each entry is homogeneous of such a degree so that the matrix has a well-defined degree.

i13 : S = QQ[a,b];
i14 : F = S^{-1,2}

       2
o14 = S

o14 : S-module, free, degrees {1, -2}
i15 : isHomogeneous F

o15 = true
i16 : G = S^{1,2}

       2
o16 = S

o16 : S-module, free, degrees {-1, -2}
i17 : phi = random(G,F)

o17 = {-1} | -10a2+8ab-5b2 0 |
      {-2} | -9a3-7ab2-6b3 6 |

              2       2
o17 : Matrix S  <--- S
i18 : isHomogeneous phi

o18 = true
i19 : degree phi

o19 = {0}

o19 : List

Modules are homogeneous if their generator and relation matrices are homogeneous.

i20 : M = coker phi

o20 = cokernel {-1} | -10a2+8ab-5b2 0 |
               {-2} | -9a3-7ab2-6b3 6 |

                             2
o20 : S-module, quotient of S
i21 : isHomogeneous(a*M)

o21 = true
i22 : isHomogeneous((a+1)*M)

o22 = false

See also

Ways to use isHomogeneous :