next | previous | forward | backward | up | top | index | toc | home
Macaulay2 > chain complexes > maps between chain complexes

maps between chain complexes

One way to make maps between chain complexes is by lifting maps between modules to resolutions of those modules. First we make some modules.
i1 : R = QQ[x,y];
i2 : M = coker vars R

o2 = cokernel | x y |

                            1
o2 : R-module, quotient of R
i3 : N = coker matrix {{x}}

o3 = cokernel | x |

                            1
o3 : R-module, quotient of R
Let's construct the natural map from N to M.
i4 : f = inducedMap(M,N)

o4 = | 1 |

o4 : Matrix
Let's lift the map to a map of free resolutions.
i5 : g = res f

          1             1
o5 = 0 : R  <--------- R  : 0
               | 1 |

          2                 1
     1 : R  <------------- R  : 1
               {1} | 1 |
               {1} | 0 |

          1
     2 : R  <----- 0 : 2
               0

o5 : ChainComplexMap
We can check that it's a map of chain complexes this way.
i6 : g * (source g).dd == (target g).dd * g

o6 = true
We can form the mapping cone of g.
i7 : F = cone g

      1      3      2
o7 = R  <-- R  <-- R  <-- 0
                           
     0      1      2      3

o7 : ChainComplex
Since f is surjective, we know that F is quasi-isomorphic to (kernel f)[-1]. Let's check that.
i8 : prune HH_0 F

o8 = 0

o8 : R-module
i9 : prune HH_1 F

o9 = cokernel {1} | x |

                            1
o9 : R-module, quotient of R
i10 : prune kernel f

o10 = cokernel {1} | x |

                             1
o10 : R-module, quotient of R
There are more elementary ways to make maps between chain complexes. The identity map is available from id.
i11 : C = res M

       1      2      1
o11 = R  <-- R  <-- R  <-- 0
                            
      0      1      2      3

o11 : ChainComplex
i12 : id_C

           1             1
o12 = 0 : R  <--------- R  : 0
                | 1 |

           2                   2
      1 : R  <--------------- R  : 1
                {1} | 1 0 |
                {1} | 0 1 |

           1                 1
      2 : R  <------------- R  : 2
                {2} | 1 |

      3 : 0 <----- 0 : 3
               0

o12 : ChainComplexMap
i13 : x * id_C

           1             1
o13 = 0 : R  <--------- R  : 0
                | x |

           2                   2
      1 : R  <--------------- R  : 1
                {1} | x 0 |
                {1} | 0 x |

           1                 1
      2 : R  <------------- R  : 2
                {2} | x |

      3 : 0 <----- 0 : 3
               0

o13 : ChainComplexMap
We can use inducedMap or ** to construct natural maps between chain complexes.
i14 : inducedMap(C ** R^1/x,C)

                                     1
o14 = 0 : cokernel | x | <--------- R  : 0
                            | 1 |

                                                 2
      1 : cokernel {1} | x 0 | <--------------- R  : 1
                   {1} | 0 x |    {1} | 1 0 |
                                  {1} | 0 1 |

                                             1
      2 : cokernel {2} | x | <------------- R  : 2
                                {2} | 1 |

o14 : ChainComplexMap
i15 : g ** R^1/x

o15 = 0 : cokernel | x | <--------- cokernel | x | : 0
                            | 1 |

      1 : cokernel {1} | x 0 | <------------- cokernel {1} | x | : 1
                   {1} | 0 x |    {1} | 1 |
                                  {1} | 0 |

o15 : ChainComplexMap
There is a way to make a chain complex map by calling a function for each spot that needs a map.
i16 : q = map(C,C,i -> (i+1) * id_(C_i))

           1             1
o16 = 0 : R  <--------- R  : 0
                | 1 |

           2                   2
      1 : R  <--------------- R  : 1
                {1} | 2 0 |
                {1} | 0 2 |

           1                 1
      2 : R  <------------- R  : 2
                {2} | 3 |

      3 : 0 <----- 0 : 3
               0

o16 : ChainComplexMap
Of course, the formula we used doesn't yield a map of chain complexes.
i17 : C.dd * q == q * C.dd

o17 = false