next | previous | forward | backward | up | top | index | toc | home

fVector -- the f-vector of a simplicial complex

Synopsis

Description

i1 : loadPackage "SimplicialComplexes";
The pentagonal bipyramid has 7 vertices, 15 edges and 10 triangles.
i2 : R = ZZ[a..g];
i3 : bipyramid = simplicialComplex monomialIdeal(
                    a*g, b*d, b*e, c*e, c*f, d*f)

o3 = | efg bfg deg cdg bcg aef abf ade acd abc |

o3 : SimplicialComplex
i4 : f = fVector bipyramid

o4 = HashTable{-1 => 1}
               0 => 7
               1 => 15
               2 => 10

o4 : HashTable
i5 : f#0

o5 = 7
i6 : f#1

o6 = 15
i7 : f#2

o7 = 10
Every simplicial complex other than the void complex has a unique face of dimension -1.
i8 : void = simplicialComplex monomialIdeal 1_R

o8 = 0

o8 : SimplicialComplex
i9 : fVector void

o9 = HashTable{-1 => 0}

o9 : HashTable
For a larger examp;le we consider the polarization of an artinian monomial ideal from section 3.2 in Miller-Sturmfels, Combinatorial Commutative Algebra.
i10 : S = ZZ[x_1..x_4, y_1..y_4, z_1..z_4];
i11 : I = monomialIdeal(x_1*x_2*x_3*x_4,
                     y_1*y_2*y_3*y_4,
                     z_1*z_2*z_3*z_4,
                     x_1*x_2*x_3*y_1*y_2*z_1,
                     x_1*y_1*y_2*y_3*z_1*z_2,
                     x_1*x_2*y_1*z_1*z_2*z_3);

o11 : MonomialIdeal of S
i12 : D = simplicialComplex I;
i13 : fVector D

o13 = HashTable{-1 => 1 }
                0 => 12
                1 => 66
                2 => 220
                3 => 492
                4 => 768
                5 => 837
                6 => 609
                7 => 264
                8 => 51

o13 : HashTable

The f-vector is computed using the Hilbert series of the Stanley-Reisner ideal. For example, see Hosten and Smith's chapter Monomial Ideals, in Computations in Algebraic Geometry with Macaulay2, Springer 2001.

See also

Ways to use fVector :