: 例
: 常微分方程式の数値解
: 不安定現象
  目次
  索引
定理 9.1
微分方程式
を考える.
ある数

が存在して,
任意の,

および
![$t \in [0,b]$](img344.png)
に対して

はリプシッツ連続の条件
をみたすと仮定する.
さらに,

回連続微分可能な解

が
![$t \in [0,b]$](img344.png)
の間で存在すると
仮定する.

を数,

とおくとき数列

を漸化式
で定義する.
このとき,

に関係しないある数

が存在して,
 |
(3) |
となる.
定理の意味を説明しよう.
は
に依存しないので,
式 (9.3) の右辺は,
のとき
に収束する.
したがって,
が十分大きいとき
(すなわち
が十分小さいとき),
差分法で求まる数列
は真の解
に
の区間で十分近い.
定理の証明をしよう.
を真の解とし,
,
とおく.
に Taylor 展開の公式を
次まで適用すると,
等式
 |
(4) |
が成立する.
ここで,
は
と
に依存し,
を満たす定数である.
(9.4) を微分方程式を用いてかきなおすと,
となる.
差分方程式の方の解
と差をとると,
を得る.
よって不等式
 |
(5) |
を得る.
ここで
のリプシッツ連続性および,
区間
で
が有界であり, ある定数
で上からおさえられることを用いた.
(9.5) の右辺の
を
,
に対する場合の不等式 (9.5) で上から
おさえることにより,
をえる.
これを繰り返して,
ここで
なので,
とおくと, 定理の不等式がみたされる.
証明おわり.
同様の差分化および証明法は連立常微分方程式
でも通用する.
: 例
: 常微分方程式の数値解
: 不安定現象
  目次
  索引
Masayuki Noro
平成15年10月20日